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Abstract - In recent years, Artificial Intelligence (Al) has begun to play a significant role across the renewable energy sector,
yet its application within the Small Hydropower (SHP) sector remains underexplored compared to solar and wind. This review
critically examines the state of Al integration in SHP, focusing on its potential to enhance forecasting accuracy, optimise
operations, improve fault detection, and support sustainable environmental management. By synthesising evidence from recent
advances across renewable energy sectors, the paper identifies both transferable methods, such as inflow forecasting adapted
from solar irradiance prediction, and unique SHP challenges, including sedimentation, ecological flow management, and limited
data availability. A comparative analysis demonstrates that while deep learning models such as Long Short-Term Memory
(LSTM) networks and Convolutional Neural Networks (CNNs) achieve high predictive performance, hybrid models that combine
data-driven and physics-based approaches are particularly promising for data-scarce SHP environments. Economic
considerations remain central, as Al integration often requires upfront investment in sensors and digital infrastructure, though
long-term benefits in efficiency and reliability can outweigh costs. Furthermore, Al applications in SHP align with broader
sustainability goals, contributing to the United Nations Sustainable Development Goals (SDGs) through improved energy access,
resilient infrastructure, and climate action. The review highlights research gaps in collaborative learning, federated frameworks,
and edge Al for rural deployments, underscoring the need for scalable and inclusive solutions. Ultimately, this paper positions
Al as a critical enabler for the modernisation of SHP, offering a roadmap for advancing both technical innovation and
sustainable development in the global energy transition.

Keywords - Artificial Intelligence, Hybrid models, Inflow forecasting, Predictive maintenance, Renewable energy systems, Small
hydropower, Sustainable energy.

comprehensively reviewed, particularly within engineering
journals such as IJETT. Trends in Al-related publications

1. Introduction
The global energy transition is pushing for renewable

energy technologies to play larger roles in meeting increasing
demand while reducing carbon emissions. Small Hydropower
(SHP) systems, typically defined as hydropower plants with a
capacity up to 10 MW, represent an underutilised resource that
can supply reliable electricity to remote or rural areas.
Advances in digitalisation and Avrtificial Intelligence (Al) now
offer new opportunities to optimise SHP performance,
improve operational reliability, and reduce costs. Artificial
intelligence encompasses techniques such as machine
learning, neural networks, metaheuristic optimisation, and
predictive analytics. In renewable energy sectors such as solar
and wind, Al has been applied to load and generation
forecasting, optimisation of component performance,
predictive maintenance, and grid integration. Despite this, the
degree to which SHP has benefited from Al is less

across renewable energy sectors (2015-2025) are illustrated in
Figure 1, showing higher adoption in solar and wind, while
hydropower,  particularly ~ small ~ hydro,  remains
underrepresented. Several recent studies illustrate the
relevance of Al-based methods in renewable energy
optimisation. For example, “Hybrid Renewable Energy
System Optimization via Slime Mould Algorithm” shows a
metaheuristic algorithm optimising a hybrid renewable
system, including hydro turbine components. The paper
“Artificial Neural Networks Based on Optimization
Technique for Short-Term Electricity Demand Forecasting”
demonstrates combining ANN with optimization to improve
forecasting accuracy. These works suggest an opportunity to
synthesise how Al has been (and can be) applied specifically
in SHP.
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1.1. Problem Statement

SHP continues to face persistent challenges such as
inflow variability, sedimentation, and equipment wear [1] and
limited digital monitoring, all of which reduce reliability and
increase operational costs. Although Al has significantly
enhanced forecasting and optimisation in solar and wind
sectors, its application in SHP remains limited and
fragmented. These gaps highlight the need for a systematic
review on how Al can address SHP-specific operational and
technical constraints.

Most of the Al research in green energy is on solar and
wind power. However, current SHP research remains broad
and lacks a clear research focus. Existing works usually only
look at single jobs, like predicting input or finding faults,
without giving a full lifecycle view. Key SHP problems, like
sedimentation, biological flow needs, and low-head operation,
are also not often looked at in Al-based studies right now.
There is a clear gap in the literature because there isn't a
complete summary that focuses on SHP.

1.2. Research Novelty

The novelty of this review lies in delivering the first
holistic and comparative evaluation of Al techniques
specifically for SHP. This review is different from others that
have looked at Al in the renewable energy sector as a whole
because it looks at both solar and wind energy, compares how
well Al models work with SHP restrictions, and finds research
gaps in technical, economic, environmental, and policy areas.
This comprehensive strategy offers useful, yet unexplored,
ideas for developing Al in SHP.

1.3. Research Questions
To refine the problem statement and guide the scope of
this review, the following research questions were formulated:

e How has artificial intelligence been applied in the various
phases of SHP plants' operations?

e What are the advantages, drawbacks, and output
performance of the Al models used in SHP applications?

e How do Al applications in SHP compare with
developments in the solar and wind sectors, and what
research gaps remain unaddressed?

This review article, therefore, aims to critically evaluate
the current state of Al use in the small hydropower industry.
The objectives are to examine existing applications of Al in
SHP, identify benefits and limitations, compare SHP lessons
with other sectors, and provide key research directions.

2. Background

The background section discussed how SHP works with
Al and how it can be used as a clean, self-sufficient energy
source in rural areas.

2.1. Small Hydropower’s Overview

An SHP system is often defined as one that has an
installed capacity of less than 10 MW [2]. If the rules are
different in different places, though, the maximum power
could be as high as 30 MW [3]. Run-of-river systems are often
used for SHP projects. These use turbines to change the flow
of a river without building big dams or lakes. This is not the
same as large-scale electricity. This system makes sure that
the power source stays steady while causing as little trouble as
possible for people and the environment [4]. Because it is
flexible and spread out, SHP is a good choice for bringing
electricity to distant places that are still growing. The
International Energy Agency says that SHP only makes up a
small part of the world's hydropower potential. However, it is
very important for setting up off-grid and mini-grid systems,
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especially in Asia, Latin America, and Sub-Saharan Africa
[5]. Because of new developments in digital tracking systems,
lightweight materials, and engine design, SHP sites are now
even more technically and financially possible. Kaplan and
crossflow turbines made for low-head sites are an example of
how the number of possible locations has grown [6]. Despite
the growing need to broaden green energy assets, SHP is still
a safe and reasonable option for small towns. Cost, flexibility,
and environmental care are all well-balanced [7].

2.2. Basics of Artificial Intelligence in Energy Systems

One of the most well-known Al methods is Artificial
Neural Networks (ANN). They are very good at simulating
complicated connections, like the one between how water
moves and how energy is made [8]. It is also possible to use
support vector machines (SVMs) to sort things, like finding
problems in wind blades. Meanwhile, random forests and
decision trees are utilised to look for odd trends in sensor data

[9].

Recurrent Neural Networks (RNN) and Convolutional
Neural Networks (CNN) are two deep learning tools that are
used a lot in green energy projects these days. To find
problems in wind blades, CNNs can handle sound or moving
signs that are very tricky. RNNs and their more advanced
form, Long Short-Term Memory (LSTM) networks, are very
good at guessing sequential data, like how fast rivers flow or
how much power people need [10]. Reinforcement Learning
(RL) has also been used to improve strategy plans by letting
Al learn from constant input in environments that are always
changing [11].

Genetic  Algorithms (GA) and Particle Swarm
Optimisation (PSO) from metaheuristic optimisation methods
work with predictive Al models to find the best answers in
areas of design and operation that are very complicated. For
example, GA-optimised ANN models have shown better
accuracy in predicting energy demand, which is a general idea
that can be used to predict hydropower input. Together, these
Al methods make up a set of tools that can make energy
systems much more reliable and efficient. Their use in small
water, on the other hand, is still limited compared to solar and
wind power, which shows how important this review is. The
general mathematical representation of an Al-based predictive
model is given as:

y=f(x;0) (1)

where x represents the input features (e.g., rainfall, river
discharge, head), 6 denotes the model parameters learned
during training, and ¥ is the predicted output, such as power
generation or turbine efficiency.

2.3. Intersection of Al and Small Hydropower
Standard hydrological and mechanical models may not be
able to show how things like river flows, the movement of silt,
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and tool wear and tear change over time in ecosystems that are
always changing. Al, on the other hand, is based on data and
can change based on things like weather, wind speed, rainfall,
and rotor moves to give real-time, useful information [12].

Al is used by SHP to do many things, such as predict
floods, make processes better, figure out when repairs are
needed, and protect the environment. ANN and LSTM models
were used to correctly guess how much water would flow into
rivers. This made the power source more stable and the plan
for how the turbines would work better [13]. It is possible for
Al-based systems that use vibration and sound data to find
early signs of bearing wear or cavitation. This can save money
on repair costs [14] and unplanned downtime [15]. The
programs in these systems change the way the turbine works
based on the inputs. This makes the turbine better at making
energy [16].

Putting Al and SHP together is like having a feedback
loop where devices gather data on mechanics and hydraulics
and send it to Al models. It is possible to guess how much
power will be made for merging into a grid or community
using these models. They also give the best control signals for
how to run the turbines and when to do maintenance [17]. Al
is not seen as an option to standard engineering models, but
rather as an extra layer that makes systems more efficient and
robust. This is because these two things work well together.
Figure 2 shows a diagram of the AI-SHP environment.

Hydrological Input
(Rainfall, River
Flow, Head)

|

Sensors & loT
Devices (Level
Flow, Vibration)

| !

Controls Actions
(Turbine, Generator,
Maintenance)

Electricity Output
(Grid/ Off-grid)

Al Models (ANN,

SVM, LSTM, RF)

Fig. 2 Al-SHP ecosystem schematic

3. Applications of Al in Small Hydropower

This section describes how key Al techniques, including
Acrtificial Neural Networks (ANN), Support Vector Machines
(SVM), Random Forests (RF), Convolutional Neural
Networks (CNN), and Long Short-Term Memory (LSTM)
models, were assessed against SHP-specific challenges. This
section also introduced figures and tables to map Al
workflows and summarise model performance, ensuring a
rigorous and transparent review framework.
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3.1. Hydrological Forecasting and Water Flow Prediction

One of the most significant tasks of SHP plants is
hydrological forecasts, since the amount of energy they
produce is very dependent on changes in the water that comes
in. Operators can plan when to turn on the turbines, when to
expect the most power, and how to reduce risks during low-
flow or flood events if they can accurately guess when the
river will flood or flow down. Moreover, linear or statistical
models, such as the Autoregressive Integrated Moving
Average (ARIMA), regression analysis, or conceptual
rainfall-runoff models, have been used to predict water flow
[18].

Some types of machine learning, such as ANN, Support
Vector Regression (SVR), and random forests, can find
complicated links between weather data, such as temperature,
humidity, and rainfall, and river flow [19], or sequential time-
series forecasting, Recurrent Neural Networks (RNN) and
Long Short-Term Memory (LSTM) models work well
because they can find long-term temporal links that are
common in hydrological datasets [13]. The LSTM method
was better at predicting Jakarta's sea level than the ARIMA
method. In training data, it made an average error of 0.512%,
and in testing data, it made an average error of 0.564% [20].

When they use mixed Al models that combine physical
hydrology equations with learning from data, they are even
more accurate. ANN can be used with evolutionary
optimisation methods like Genetic Algorithms (GA) or
Particle Swarm Optimisation (PSO) to make more accurate
predictions [19]. This is because the model parameters can be
changed automatically. With ensemble learning methods that
use more than one technique, models are less likely to become
too good at what they do or not have enough data. Due to the
lack of high-resolution maps in less developed areas, these
methods work best for SHP plants there.

Traditional Statistical Forecasting

Statistical Model
(ARIMA,

Hydrological Data

(Rainfall, Flow, Predicted Inflow

Temperature) Regression)
Al-Based Forecasting
Hydrological
Data Al Models ; Optimized
(Rainfall, (ANN; Precicted Turbine
Flow, LSTM, RNN) Operation
Temperature)

Fig. 3 Comparison of traditional vs Al-based hydrological forecasting

The use of Al-based hydrological forecasting has a direct
effect on how well things run. SHP operators can change the
order in which turbines are dispatched ahead of time when
they have more accurate inflow projections. This improves
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load matching and cuts down on downtime. This feature also
makes hybrid renewable systems more stable by making
hydropower's contribution more predictable. Al-based
forecasting systems are a better and more flexible option than
traditional statistical methods, as shown in Figure 3. They may
help SHP operations stay strong even when the weather
changes and energy demand rises.

3.2. Optimal Turbine and Generator Operation

The performance of SHP plants is greatly affected by the
operating parameters of the turbines and generators, especially
the flow rate, net head, and system load. Static efficiency
curves or rule-based control techniques are typically used in
conventional operations; however, these may not completely
account for changes in inputs or wear and tear on machines.
Al learns the nonlinear relationship between input parameters
and turbine performance in real time, which makes it easier to
adapt. ANNs have been extensively utilised for this objective,
facilitating the development of efficient prediction models
articulated as;

ne = f(Q,H;6) 2)

where 7, is the turbine efficiency, Q is the water flow, H
is the net head, and 6 represents the learned model parameters
[10]. Such models have been used to construct digital twins of
SHP plants, enabling virtual testing of operational strategies.

Reinforcement learning (RL) makes operational
optimisation even better by letting Al agents change their
control techniques all the time based on feedback from the real
world. For instance, RL-based controllers have been used on
hydropower units in cascaded systems, where they change the
apertures of the guiding vanes in real time to get the most
efficiency out of the system while avoiding cavitation [21].
These controllers are better at adapting to changing inflows
than standard proportional-integral-derivative (PID) systems.

Metaheuristic optimisation methods are also very
important for designing and running turbines. Systems such as
GA and PSO have been utilised to optimise operational
parameters, including runner blade angles and generator
excitation levels [22]. Recent studies integrating ANN with
GA have shown that these hybrid models can make turbine
operations more efficient than static models [23]. Adding Al
to the operation of turbines and generators not only makes the
plant work better, but it also makes the equipment last longer
by lowering the mechanical stress that comes from poor
control. Al-based adaptive operation helps make rural
electrification projects more reliable and long-lasting because
SHP plants are often set up in distant areas where maintenance
resources are hard to come by.

3.3. Fault Detection and Predictive Maintenance
Fault detection and predictive maintenance are among the
most impactful applications of Al in SHP plants. In the past,
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fault detection was done manually by hand checks and
tracking sound or temperature data based on thresholds. These
traditional methods are not very sensitive and often miss
initial-stage failures [24].

Supporting Vector Machines (SVM), Random Forests
(RF), and Artificial Neural Networks (ANN) are often used to
sort things into groups [25] and figure out if a state of action
is healthy or sick. Deep learning models, like Convolutional
Neural Networks (CNN), make this even better by taking
elements from raw sound or movement patterns on their own.
This means that signal processing does not have to be done by
hand as much [26]. As summarised in Table 1, a range of Al
techniques has been successfully applied in SHP fault
detection.

Table 1. Al techniques for fault detection in SHP components
Application in Reported
SHP Accuracy
Fault c_Ia33|f|ca_t|on 85% - 92%
in turbine bearings

Detection of
abnormal vibration

patterns

Acoustic and

image-based fault

Al Technique

Atrtificial Neural
Networks (ANN)

Support Vector
Machines (SVM)

Convolutional
Neural Networks

88% - 94%

90% - 96%

(CNN) detection
General
RanchgFI;orests classification of 84% - 90%

sensor anomalies
Enhanced accuracy
through a combined
approach

Hybrid Models

0% - 970
(e.g., ANN+GA) 92% - 97%

Hybrid Al systems that use both predictive models and
optimisation methods make things even more reliable. As an
example, getting the best model parameters with the help of
an ANN and genetic algorithms has been shown to improve
the accuracy of fault detection [27]. A study showed that these
mixed methods are better than single-model classifiers at
finding faults in spinning machinery, with an accuracy of up
to 97% [23].

3.4. Design Optimisation

Design optimisation is important for making SHP
systems work better, last longer, and be more reliable.
Components like turbine runners, penstocks, and draft tubes
need to be carefully planned so that they can get the most
energy out of changing water flows while causing the least
amount of cavitation, shaking, and wear. The best way to look
at fluid flow and turbine performance is still through
traditional Computational Fluid Dynamics (CFD) simulations.
However, they are very demanding on computers and involve
a lot of trial and error when optimising across many design
variables. Al technologies are a strong addition since they may
be used as surrogate models that get similar results to CFD at
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a much lower computing cost [28]. In this case, ANN and
Gaussian Process Regression (GPR) are commonly used.
They are trained using data sets made from CFD simulations
[29, 30]. After training, these models can quickly estimate
cavitation thresholds, pressure distributions, and turbine
efficiency curves for novel design candidates. This speeds up
the optimisation process, giving engineers access to a bigger
design area than they would have if they only used CFD.
Genetic Algorithms (GA) and Particle Swarm Optimisation
(PSO) are two examples of metaheuristic algorithms that are
typically used with these predictive models to determine
excellent solutions for the whole world. For instance, PSO-
based optimisation used on turbine blade design made them
up to 8% to 15% more efficient than typical baseline designs
[31].

More modern methods use hybrid CFD-AI frameworks,
where CFD simulations give the first training data and Al
models improve predictions as more data is added [32]. This
iterative learning method shortens design cycles and adjusts to
the characteristics of the site, such as low-head river settings
or flows with a lot of sediment. SHP developers can use Al to
optimise designs and make turbines that are cost-effective and
high-performance, taking into account the resources available
in the area. This makes projects more financially viable and
environmentally friendly.

3.5. Energy Management and Smart Grid Integration

As energy systems move away from centralisation, it has
become more vital to connect SHP facilities to smart
microgrids. SHP units are widely used in rural electrification
together with solar photovoltaics, wind turbines, and battery
storage. It is important to control energy in these systems so
that they stay stable and effective [33].

These systems are called hybrid systems. Most
scheduling methods are based on fixed rules or linear
planning, which might not take into account the unknowns of
new customers or changing demand patterns well enough. Al
methods offer more adaptable answers by letting improvement
happen in real time and in advance [34].

Some Al models that are often used to guess load are
ANN and Long Short-Term Memory (LSTM) networks. With
these models, SHP workers can guess how much power will
be needed in the short term. This lets them change when they
make power ahead of time. This, along with estimates of water
flow, lets users run a balanced system that does not require
petrol engines as much for backup power as hybrid systems
[35]. In small power lines that employ SHP, this could mean
providing important loads like hospitals or water pumping
systems with more power when demand is high [36]. When
SHP and Al combine, they raise voltage levels and lower
frequency changes. Hence, this makes the grid more stable.
Meanwhile, Figure 4 shows a possible design for a smart grid.
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Fig. 4 Smart grid schematic integrating SHP with Al

In this design, SHP plants are linked to units that use Al
to balance energy production, storage, and demand. People
have usually thought of SHP as a resource that can be used by
itself, but this shows how it can be an active part of smart,
flexible energy systems. This is especially true in growing
areas where electricity is not yet connected to the grid.

3.6. Environmental Impact Assessment and Sustainability
Environmental Impact Assessments (EIA) that are used
today use data from people and water models, which may not
show the long-term effects on the environment or how
different projects in a river area add up [37]. Al can be made
better in new ways because it lets us use data for tracking,
making predictions, and managing things in a flexible way.

Engineers have used machine learning to guess how fish
will move in different flow conditions. This has helped them
make better paths and escape ways for fish [38]. Drones with
Al and underwater cameras can also keep an eye on wildlife
by finding new fish species or changes in the plants along the
banks of rivers [39]. This reduces the need for biological
studies that are done by hand, which makes watching the
environment more efficient and less expensive.

Al is also being used more and more to control sediment.
Too much silt can hurt environments further downstream,
make turbines less effective, and speed up the wear and tear
on equipment. Al can predict sediment loads by looking at
weather and sediment data. This lets workers plan when to
flush or clean [40]. This stops the unchecked release of silt,
which is good for the environment and helps make electricity.
Acceptance by society is also closely linked to the long-term
viability of SHP. Al-based decision-support systems can make
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plans with multiple goals that take into account community
interests, water needs in different sectors, and natural needs
[41].

4. Systematic Review Methodology

A systematic review approach was used to ensure a
transparent assessment of Al applications in SHP. Relevant
literature was identified through four major databases, such as
Scopus, Web of Science, IEEE Xplore, and Google Scholar.

The search strategy combined Al and SHP-related
keywords such as “artificial intelligence”, “machine
learning”, “neural networks”, “metaheuristic optimisation”,
“small hydropower”, “inflow forecasting”, “sedimentation”,
and “low-head turbine”. The screening process involved three

stages, including:

Duplicate removal;

Title and abstract screening to exclude irrelevant studies;
and

Full-text assessment for methodological clarity and SHP
relevance.

Inclusion criteria required studies to apply Al, ML, ANN,
or metaheuristic methods to SHP-related tasks such as inflow
prediction, optimisation, turbine performance, or fault
detection [42].

Meanwhile, exclusion criteria removed studies focused
solely on large hydropower, papers lacking technical detail,
and non-peer-reviewed materials. A PRISMA diagram in
Figure 5 summarises the identification, screening, eligibility,
and final selection of studies used in this review.
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Identification:
Records identified through database searching
(n=432)
I

Screening:
Records after duplicates removed
(n=289)
I
Eligibility:
Full-text articles assessed
(n=74)

Included:
Studies included in review
(n=42)

Fig. 5 PRISMA flow diagram for the study selection process

5. Critical Review and Comparative Analysis

In the critical review part, the results were put together by
comparing how Al is used in solar, wind, and SHP. It was
pointed out that SHP is behind because it does not have as
much data and digital infrastructure. The tables showed how
different sectors used the models and how well they worked,
while the discussion focused on the technical, economic,
environmental, and social effects.

5.1. Comparison of Al Applications across Renewable
Energy Sectors

Al is now used in a lot of different types of green energy,
but they are all at very different stages of development and can

be used in very different ways. A lot of Al is used in solar
energy to figure out how much sun will hit a panel, keep track
of the MPPT (Maximum Power Point Tracking), and find
panels that are not working right. Convolutional Neural
Networks (CNN) and Recurrent Neural Networks (RNN) are
two advanced deep learning models that are the best at
predicting the short term and usually do better than standard
statistical methods [43].

In the wind business, Reinforcement Learning (RL) has
also been used to improve yaw and blade pitch control. The
wind can then change the speed and direction of the mills.
These methods not only help get more energy, but they also
ease the stress on buildings, which makes equipment last
longer [16].

Solar and wind energy systems, on the other hand, have
access to larger datasets, more advanced tracking
infrastructure, and well-established Al planning tools, while
SHP is still not as digitally stable. Table 2 shows a comparison
of how Al is being used in solar, wind, and SHP to show how
SHP fits into the bigger picture of digitalising green energy.

This comparison shows how differences between sectors
affect data access, Al model growth, practical limits, and
research gaps. It also shows how lessons learnt from solar and
wind can help shape future progress in SHP. The comparison
is important because it makes this review even more unique,
as it is the first organised, cross-sector study that is specially
designed for SHP.

Table 2. Comparison of Al adoption in solar, wind, and small hydropower

maintenance

Aspects Solar Wind Small Hydropower (SHP)
Data availability High High Low-Moderate
e Wind speed
e Irradiance forecasting prediction ¢ Inflow forecasting
Common Al . .
applications e MPPT control e Yaw/pitch control o Fault detection
e PV fault detection o Predictive e Turbine performance estimation

Model maturity Very mature and

Mature and widely

Emerging and experimental

commercially deployed validated
Operatic_mal « Weather variability e Turbulence e Sedimentation
constraints o Wake effects o Low-head variability
Technical e Cloud cover e Real-time adaptive o Limited sensing
challenges o Rapid fluctuations control o Ecological constraints
. . o Lifecycle modelling
Research gaps Enhanced hybrid forecasting “(:I&Iiurr;itsggz)nne o Hybrid Al-hydrology models

o SHP specific datasets

Review
contributions

o First integrated synthesis of Al across
the SHP lifecycle

e Systematic cross-sector
with solar/wind

o Identification of multidimensional SHP
research gaps

comparison
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SHP, on the other hand, has been slow to adopt Al. The
uses that have been talked about mostly have to do with
guessing what will be put in and making repairs ahead of time.
This is still not possible to fully connect to smart grids or tune
in more complex ways [17]. Al has a lot of data to work with
because solar and wind farms usually have complicated
supervisory control and data acquisition (SCADA) systems.
This is one reason for the difference. However, a lot of SHP
plants, especially those in new places, do not have as much
digital tracking gear. For deep learning and other difficult Al
systems, this means that the data that can be used to build
models is rarely enough. In the past, policies and funding
goals have also favoured solar and wind, which made the
imbalance even worse [44].

Thus, while SHP currently trails behind solar and wind in
terms of Al implementation, comparative analysis
demonstrates that cross-sectoral knowledge transfer can
accelerate adoption. Tailoring Al models to the unique
technical and environmental realities of SHP remains the
central challenge moving forward.

5.2. Comparative Performance of Al Models in SHP

There are many methods for SHP that use Al, and each
has its own pros and cons that change based on the case.
Artificial Neural Networks (ANN) are the most common type
of network and are great at predicting the input/output of a
turbine. Furthermore, people say they are hard to understand,
but they are praised for being able to fake complicated
systems. It has been shown that using ANNSs instead of regular

autoregressive models can cut the Root Mean Square Error
(RMSE) by up to 25% when it comes to predicting floods. To
find flaws and vibrations in turbines, Support Vector
Machines (SVMs) and Support Vector Regression (SVR) are
often used. They can handle small datasets well, which makes
them good for SHP sites that do not get a lot of tracking [15].
But they need to be carefully tuned, which can make them less
useful in real time. Random Forests (RF) can handle noisy or
overfitted data well, which makes them good at finding
outliers. However, when working with big datasets, they
might not work as well as deep learning methods [45].

Long Short-Term Memory (LSTM) networks are about
25% more accurate than ARIMA baselines in places where
rain falls a lot [48]. More than 95% of the time, Convolutional
Neural Networks (CNNs) can find problems from shaking and
sound data, which is a lot better than traditional signal
processing methods [10]. Reinforcement Learning (RL) has a
lot of promise for real-time dispatch improvement by
changing how the rotor works as the water level changes.

Many individuals are looking at hybrid methods as a good
middle ground. For example, ANN combined with Genetic
Algorithms (GA) or Particle Swarm Optimisation (PSO).
These models keep the good things about machine learning for
making predictions while using optimization methods to make
them more accurate and consistent. The classification
accuracy of mixed systems is usually the best (92% to 97%),
as in Table 3. These systems strike a good balance between
performance and processing efficiency.

Table 3. Comparative performance of Al models in SHP applications

Al Model

Details

Artificial Neural Network
(ANN)

Typical Application in SHP: Inflow forecasting; Turbine efficiency prediction
Strengths: Captures nonlinear relationships; Widely used; Flexible

Limitations: Requires large datasets; “Black box” nature reduces interpretability
Reported Accuracy: RMSE reduction of 20%-25% compared to ARIMA [45]

Support Vector Machine
(SVM) / Support Vector
Regression (SVR)

Typical Application in SHP: Turbine fault detection; Vibration pattern classification
Strengths: Performs well with small datasets; Good generalisation.
Limitations: Sensitive to kernel choice; Computationally intensive for large datasets

Reported Accuracy: Fault detection accuracy 88%-94% [46]

Random Forest (RF)

Typical Application in SHP: Sensor anomaly detection; Classification of operational states
Strengths: Robust against overfitting; Works with noisy data

Limitations: Less accurate than deep learning for large datasets

Reported Accuracy: Classification accuracy 84%-90% [47]

Long Short-Term Memory
(LSTM) Networks

Typical Application in SHP: River inflow and load forecasting

Strengths: Handles sequential and seasonal data; Outperforms ANN in time-series tasks
Limitations: Requires long training times and large datasets

Reported Accuracy: 25% lower forecasting error than ARIMA [48]

Convolutional Neural
Network (CNN)

Typical Application in SHP: Vibration and acoustic-based fault detection
Strengths: Automatically extracts features; High accuracy in condition monitoring
Limitations: Requires large, labelled datasets; High computational demand
Reported Accuracy: Fault detection accuracy above 95% [49]
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Hybrid Models (e.g.,
ANN+GA, ANN+PSO)

Typical Application in SHP: Efficiency prediction; Fault classification; Optimisation tasks
Strengths: Combines predictive modelling with optimisation; Improved accuracy
Limitations: Higher complexity; May require fine-tuning for convergence

Reported Accuracy: 92%-97% [50]

To support clearer comparison across the reviewed
literature, the following summary Table 4 consolidates key
patterns related to Al models, application domains, dataset
characteristics, and methodological limitations in SHP
research. This table provides a consolidated view of the
methodological landscape in SHP-AI research and highlights
recurring patterns that inform the critical analysis presented in
the subsequent sections.

This comparative evidence indicates that no single Al
model is universally superior. Instead, model selection must
balance accuracy, interpretability, data availability, and
computational resources. For SHP plants in rural or resource-
constrained settings, hybrid and ensemble methods may
currently provide the most practical solutions.

Table 4. Summary of SHP tasks addressed in the literature

Common T
Task Al models Limitations
forecasting LSTM : g
data
Often based on
Turbine GA, P.SO’ simulated conditions;
P hybrid - .
optimisation limited real-site
methods o
validation
Lack of standard
. SVM, performance metrics;
Fault detection ANN minimal testing on real
devices
. . Few studies; high
Sedimentation S
modelling ANN sensitivity to data
quality

5.3. Economic and Technical Feasibility of Al Adoption in
SHP

Both economic and technical factors affect how likely it
is that SHP will be able to use Al. When it comes to the
economy, SHP projects often have trouble because they have
a limited budget. This is especially true for rural electricity
projects that depend on small energy sales to cover their costs
[46]. To add Al, you need to buy sensors, data storage
systems, and computing power, which could make the initial
costs higher [47]. But these costs can be recovered over time
by making operations more efficient, lowering the need for
upkeep, and making tools last longer. For instance, using Al
for fault detection in predictive maintenance has been shown
to cut down on unplanned plant breakdowns by up to 30%,
which saves a lot of money in the long run [7]. The amount
and quality of data provided determine how useful Al is in
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SHP. Most solar and wind farms use high-tech SCADA
systems, but many SHP sites, especially those in low-income
areas, lack them. As a result, it is not always possible to obtain
the large datasets required to train deep learning models [17].
As an alternative, mixed methods such as physics-informed
models or transfer learning can be used. These approaches
work well with smaller datasets and require fewer large
training samples [48]. Cloud and edge Al tools also help get
around problems with data and hardware. Cloud platforms can
process data without having strong computers on-site, and
small edge devices put in place at SHP plants can help with
making decisions in real time [49].

In the end, it is up to each SHP site to decide if adopting
Al is worth it based on its own technology needs and budget.
Larger SHP plants that get more money from revenue and the
government are more likely to invest in advanced Al systems.
Smaller community-based projects, on the other hand, might
like low-cost blend types that balance efficiency and cost [50].
While adding Al to SHP can be hard at first, the long-term
benefits make it an investment that is worth making.

6. Discussion

Beyond reviewing specific Al models, the discussion
must consider how Al fits with SHP’s technical, economic,
environmental, and social or policy realities. These four
dimensions determine how effectively Al can support SHP.
As shown in Figure 6, Al contributes through technical
optimisation, economic benefits, environmental
sustainability, policy, and social factors.

|

Technical Optimisation

(Forecasting, Control,
Fault Detection)

|

Environmental
Sustainability

Economic Feasibility
(Ecological
Flows, Sediment

(Cost Benefit,
Control)

Predictive
Maintenance)
Fig. 6 Conceptual framework: Al contributions to SHP

Policy & Social Dimensions

(Givernance, Acceptance,
Training)

6.1. Balancing Technical
Constraints

Al in SHP should be judged on both how well it works
and how much it costs. There are not many funds for SHP
projects, especially in the country [51]. To add Al, companies

Feasibility with Economic
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often need to buy new sensors, computer tools, and
supervisory control and data acquisition (SCADA) systems
[52]. This can make the cost of capital rise by 10% to 20%
[47]. Al can still save money, as shown by predictive
maintenance. Using Al to find faults can cut down on rapid
turbine breaks by as much as 30% [7], which saves money on
fixes and energy. It is easier to plan how to use energy, save

water, and keep the grid safe when they know how much water
will come in. These benefits come in slowly, but they cut
down on the time it takes to get the money back. Though it
takes longer to see results, ecological flow management is
worth it because it helps people follow the rules and protect
the environment more than it makes money. Table 5 shows
that the costs and benefits of each Al application are different.

Table 5. Cost-benefit considerations of Al in SHP

Al Application Upfront Cost Long-Term Benefit Payback Horizon
Inflow Forecasting Medium (sensors, data o Improved load matching;
" . 2-3 years
acquisition) e Reduced spillage
Predictive Maintenance High (sensors, vibration o Reduced unplanned outages;
oo . . 3-5 years
monitoring) o Extended equipment life
Ecological Flow Optimisation Medium (environmental . B:rl]z?actggnelegttrrllg:;tgs o 46 vears
sensors, modelling) 9 on wi y y
protection
Energy Management & Dispatch Low—Medium (software | e Higher plant efficiency;
. . s . 2-4 years
integration) o Better grid integration

In several cases, Al models like ANNs paired with
planning methods are a good compromise because they
require less computer power while still making accurate
predictions. Costs are also cut by cloud and edge Al platforms,
which do not need as many expensive tools on-site [48].
Taking care of these technical and financial trade-offs is
important for making Al use in SHP sustainable and scalable.

6.2. Al and Environmental Sustainability in SHP

SHP is often viewed as a more environmentally friendly
option than large hydropower, yet it is not entirely free from
environmental impacts. Even at smaller scales, SHP
installations can influence river ecosystems, alter sediment
movement, and affect how water is shared and used locally. In
practice, many Environmental Impact Assessments (EIAS)
still depend on simplified hydrological models and manual
field surveys, which may overlook gradual or long-term
changes. With the ability to support continuous monitoring
and informed decision-making, Al offers a more adaptive
approach to managing SHP systems in ways that better align
with environmental sustainability. [37].

Controlling flow in the environment is a huge application.
Al models can guess how different flow rates will affect fish
and other species by using past biology and hydrological data.
RNNs and LSTMs can predict how things will move during
different times of the year, which helps operators change how
much water they release [38]. Also, CNNs combined with
drone images can easily find different types of fish and
changes in the plants along the banks of rivers, which cuts
down on the need for hard work in the field [39].

Al also makes it easier to handle sediment, which is
especially helpful in rivers that have a lot of it. Based on
weather and water conditions, machine learning can predict
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when sand will enter a system. This lets workers plan when to
flush [40]. This keeps the rotor from wearing out and stops the
release of dangerous sediment.

In addition to making things more efficient, Al can also
help people accept it by using tools that help them make
decisions that take environmental, social, and economic issues
into account. This helps SHP projects meet their
environmental goals while still making money [41]. Overall,
Al helps make things run more smoothly, protect the
environment better, and be more in line with what the
community wants.

6.3. Institutional, Policy, and Social Dimensions

Adoption of Al in SHP is also affected by how ready
institutions are, how the government sets laws, and how well
the community accepts Al. Institutionally, SHP does not
always have clear rules about how to use technology. Large
wind or hydropower farms use standard SCADA systems, but
small SHP plants often use equipment from different
manufacturers. This means that the data forms are not always
the same, which makes it harder to integrate Al [50]. Setting
clear rules for sharing data would help with tracking and make
the adoption of Al go more smoothly.

From a policy point of view, funding for green energy has
mostly gone to solar and wind, leaving SHP with fewer
reasons to make digital changes. Countries that include SHP
in their national energy plans are more likely to use Al because
digital tracking is required in order to get financial help [53].

Cybersecurity must also be covered by regulations, as
digital strikes can happen on SHP plants that use Al. Before
Al can be used on a large scale safely, it needs to be protected
by strong data safety and security rules [51]. Social acceptance
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is equally important. People who live in rural areas may be
afraid that technology will take away work or make it harder
for them to control the power system. In order to fix this
problem, Al plans should include communities in making
choices and offer training to improve local skills [54]. Long-
term SHP success depends on making sure Al helps both
scientific progress and balance in society.

6.4. Future Outlook for Al in SHP

The future of Al in SHP is closely tied to the need for
scalable, sustainable, and context-specific solutions. While
pilot projects have demonstrated Al’s technical feasibility,
wider deployment will require approaches that address data
scarcity, cost constraints, and environmental considerations. A
great approach is to use hybrid models, such as Physics-
Informed Neural Networks (PINNSs), which mix hydrology
equations with data-driven learning. This makes them more
accurate while cutting down on the need for big datasets. This
means they can be used for SHP sites that are remote or not
well watched [48].

A big part is also likely to be played by collaborative
learning methods. Transfer learning lets models that were

learnt on big hydropower or green datasets be used on smaller
SHP plants. Federated learning, on the other hand, lets many
operators train the same models without sharing private data
[52]. Edge Al can help remote SHP sites even more by running
simple, real-time algorithms on nearby devices, so they do not
have to rely on the expensive cloud [55].

Itis also important that Al in SHP fits in with bigger goals
for sustainability. Al should not only improve technical
performance and economic efficiency, but it should also help
protect ecosystems and make communities stronger. It will be
important to use multi-objective planning that takes into
account things like ecology, the need to share water, and social
acceptance. Inflow forecasting, predictive maintenance,
ecological flow control, and energy management are some of
the Al applications shown in Table 6. These directly help
reach several UN Sustainable Development Goals, such as
SDG 7 (Clean Energy), SDG 9 (Innovation and
Infrastructure), SDG 13 (Climate Action), and SDG 15 (Life
on Land) [56]. Connecting the use of Al to these global goals
can help SHP projects get more support from policymakers
and get money for growth.

Table 6. Alignment of Al applications with Sustainable Development Goals (SDGs)

Al Application

Related SDG

Impact Pathway

Inflow Forecasting Energy)

SDG 7 (Affordable and Clean

o Improves the reliability of the electricity supply
for rural communities;
Reducing reliance on fossil fuels.

Predictive Maintenance

SDG 9 (Industry, Innovation,
and Infrastructure)

Enhances infrastructure resilience and reduces
downtime.
Enabling sustainable energy access.

Ecological Flow Optimisation

SDG 15 (Life on Land)

Protects river ecosystems and biodiversity
while maintaining energy production.

Energy Management & Dispatch

SDG 13 (Climate Action)

Enables efficient integration of SHP into grids.
Reducing carbon emissions and supporting
decarbonization.

The chosen studies were very different in terms of
datasets, water sources, model design, and evaluation
methods, even though a thorough review method was used. A
meta-analysis could not be done because of this difference.
Instead, an organised story method was used, which is often
used in reviews of engineering and Al, where the data is not
all the same.

6.5. Ethical and Socio-Environmental Considerations
When Al is used in SHP, there are also important moral,
social, and environmental issues to think about. Strong data
control and privacy rights are needed for Al systems because
they use operating and environmental data gathered from
whole communities. On a social level, Al may make rural SHP
systems more reliable by reducing the need for constant
human control. However, this could lead to job loss,
overdependence on technology, and less local preparation. To
ensure fair acceptance and community trust, planning must be
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open, the community must be involved, and efforts must be
made to build people's skills all the time. In terms of the
environment, methods that are not well thought out could hurt
ecosystems without meaning to, for example, by messing up
biological flows or making sediment stress higher.

For responsible implementation, Al needs to be used with
expert knowledge, clear biological boundaries, and rules about
protecting the environment. Closer consideration must be
given to the quality of the examined research, in addition to
the more general insights already stated. Many SHP-AI works
use small or very site-specific datasets, which makes it hard
for their models to be used in other situations. It is common
for cross-validation and stability tests to be missing, which
raises the risk of overfitting. Different performance measures
and not enough information about trial sets are also used in
different ways when reporting. Even though this review was
organised in a way that made sense, the studies that were
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looked at were very different from one another in terms of the
datasets, water inputs, model designs, performance measures,
and validation methods. It was not possible to do a formal
summary or meta-analysis because the data were so different.
An organised story synthesis was used instead, which is good
for reviews in engineering and Al, where data uniformity is
not great. A quick look at possible bias was also done, and
common issues were found, such as small datasets, poor cross-
validation, uneven reporting, and the heavy use of generated
flow data. These problems show that future SHP-AI research
needs to use more uniform datasets and better ways to
compare results.

7. Conclusion

In conclusion, this review looked at the role that Al plays
in SHP and pointed out both its pros and cons. A lot of people
in solar and wind have used Al for forecasts, predictive repair,
and energy management, but not many people in SHP have
done the same. Because of problems like sediments, changing
low-head conditions, and the need for natural flow, SHP
cannot just copy methods from other sources. Instead, Al
needs to be mixed with water models based on physics to
make sure that they work well in all places.

There are three main reasons why this review goes into
more detail about the analysis than other state-of-the-art
studies. First, it combines Al applications from several areas,
such as hydrology, optimising turbines, predictive
maintenance, environmental tracking, and connecting to the
smart grid. Most earlier SHP reviews were limited to
predicting input or finding faults. Second, the study shows
how Al techniques can be used in different fields by
comparing SHP to solar and wind energy. It also explains why
some methods work better than standard SHP models when
there isn't enough data. Third, it combines scientific,
economic, environmental, and policy views into a single
framework. This gives us a fuller picture than studies that only
focus on model correctness or computational performance.
This review highlights several overarching insights:

Al offers strong potential for improving inflow
forecasting, predictive maintenance, and environmental
monitoring in SHP.

Hybrid physics-Al approaches are the most promising for
data-scarce environments, and

Technical progress must be paired with digital
infrastructure, policy support, and community acceptance
to achieve meaningful impact.
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