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Abstract - In recent years, Artificial Intelligence (AI) has begun to play a significant role across the renewable energy sector, 

yet its application within the Small Hydropower (SHP) sector remains underexplored compared to solar and wind. This review 

critically examines the state of AI integration in SHP, focusing on its potential to enhance forecasting accuracy, optimise 

operations, improve fault detection, and support sustainable environmental management. By synthesising evidence from recent 

advances across renewable energy sectors, the paper identifies both transferable methods, such as inflow forecasting adapted 

from solar irradiance prediction, and unique SHP challenges, including sedimentation, ecological flow management, and limited 

data availability. A comparative analysis demonstrates that while deep learning models such as Long Short-Term Memory 

(LSTM) networks and Convolutional Neural Networks (CNNs) achieve high predictive performance, hybrid models that combine 

data-driven and physics-based approaches are particularly promising for data-scarce SHP environments. Economic 

considerations remain central, as AI integration often requires upfront investment in sensors and digital infrastructure, though 

long-term benefits in efficiency and reliability can outweigh costs. Furthermore, AI applications in SHP align with broader 

sustainability goals, contributing to the United Nations Sustainable Development Goals (SDGs) through improved energy access, 

resilient infrastructure, and climate action. The review highlights research gaps in collaborative learning, federated frameworks, 

and edge AI for rural deployments, underscoring the need for scalable and inclusive solutions. Ultimately, this paper positions 

AI as a critical enabler for the modernisation of SHP, offering a roadmap for advancing both technical innovation and 

sustainable development in the global energy transition. 

Keywords - Artificial Intelligence, Hybrid models, Inflow forecasting, Predictive maintenance, Renewable energy systems, Small 

hydropower, Sustainable energy. 

1. Introduction  
The global energy transition is pushing for renewable 

energy technologies to play larger roles in meeting increasing 

demand while reducing carbon emissions. Small Hydropower 

(SHP) systems, typically defined as hydropower plants with a 

capacity up to 10 MW, represent an underutilised resource that 

can supply reliable electricity to remote or rural areas. 

Advances in digitalisation and Artificial Intelligence (AI) now 

offer new opportunities to optimise SHP performance, 

improve operational reliability, and reduce costs. Artificial 

intelligence encompasses techniques such as machine 

learning, neural networks, metaheuristic optimisation, and 

predictive analytics. In renewable energy sectors such as solar 

and wind, AI has been applied to load and generation 

forecasting, optimisation of component performance, 

predictive maintenance, and grid integration. Despite this, the 

degree to which SHP has benefited from AI is less 

comprehensively reviewed, particularly within engineering 

journals such as IJETT. Trends in AI-related publications 

across renewable energy sectors (2015-2025) are illustrated in 

Figure 1, showing higher adoption in solar and wind, while 

hydropower, particularly small hydro, remains 

underrepresented. Several recent studies illustrate the 

relevance of AI-based methods in renewable energy 

optimisation. For example, “Hybrid Renewable Energy 

System Optimization via Slime Mould Algorithm” shows a 

metaheuristic algorithm optimising a hybrid renewable 

system, including hydro turbine components. The paper 

“Artificial Neural Networks Based on Optimization 

Technique for Short-Term Electricity Demand Forecasting” 

demonstrates combining ANN with optimization to improve 

forecasting accuracy. These works suggest an opportunity to 

synthesise how AI has been (and can be) applied specifically 

in SHP. 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Mohd Farriz Basar et al. / IJETT, 74(2), 293-307, 2026 

 

294 

 
Fig. 1 Example for a small figure  

1.1.  Problem Statement  
SHP continues to face persistent challenges such as 

inflow variability, sedimentation, and equipment wear [1] and 

limited digital monitoring, all of which reduce reliability and 

increase operational costs. Although AI has significantly 

enhanced forecasting and optimisation in solar and wind 

sectors, its application in SHP remains limited and 

fragmented. These gaps highlight the need for a systematic 

review on how AI can address SHP-specific operational and 

technical constraints. 

Most of the AI research in green energy is on solar and 

wind power. However, current SHP research remains broad 

and lacks a clear research focus. Existing works usually only 

look at single jobs, like predicting input or finding faults, 

without giving a full lifecycle view. Key SHP problems, like 

sedimentation, biological flow needs, and low-head operation, 

are also not often looked at in AI-based studies right now. 

There is a clear gap in the literature because there isn't a 

complete summary that focuses on SHP. 

1.2. Research Novelty 
The novelty of this review lies in delivering the first 

holistic and comparative evaluation of AI techniques 

specifically for SHP. This review is different from others that 

have looked at AI in the renewable energy sector as a whole 

because it looks at both solar and wind energy, compares how 

well AI models work with SHP restrictions, and finds research 

gaps in technical, economic, environmental, and policy areas. 

This comprehensive strategy offers useful, yet unexplored, 

ideas for developing AI in SHP. 

1.3. Research Questions 

To refine the problem statement and guide the scope of 

this review, the following research questions were formulated: 

 

 How has artificial intelligence been applied in the various 

phases of SHP plants' operations? 

 What are the advantages, drawbacks, and output 

performance of the AI models used in SHP applications? 

 How do AI applications in SHP compare with 

developments in the solar and wind sectors, and what 

research gaps remain unaddressed? 

This review article, therefore, aims to critically evaluate 

the current state of AI use in the small hydropower industry. 

The objectives are to examine existing applications of AI in 

SHP, identify benefits and limitations, compare SHP lessons 

with other sectors, and provide key research directions.  

2. Background  
The background section discussed how SHP works with 

AI and how it can be used as a clean, self-sufficient energy 

source in rural areas.  

2.1. Small Hydropower’s Overview  

An SHP system is often defined as one that has an 

installed capacity of less than 10 MW [2]. If the rules are 

different in different places, though, the maximum power 

could be as high as 30 MW [3]. Run-of-river systems are often 

used for SHP projects. These use turbines to change the flow 

of a river without building big dams or lakes. This is not the 

same as large-scale electricity. This system makes sure that 

the power source stays steady while causing as little trouble as 

possible for people and the environment [4]. Because it is 

flexible and spread out, SHP is a good choice for bringing 

electricity to distant places that are still growing. The 

International Energy Agency says that SHP only makes up a 

small part of the world's hydropower potential. However, it is 

very important for setting up off-grid and mini-grid systems, 
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especially in Asia, Latin America, and Sub-Saharan Africa 

[5]. Because of new developments in digital tracking systems, 

lightweight materials, and engine design, SHP sites are now 

even more technically and financially possible. Kaplan and 

crossflow turbines made for low-head sites are an example of 

how the number of possible locations has grown [6]. Despite 

the growing need to broaden green energy assets, SHP is still 

a safe and reasonable option for small towns. Cost, flexibility, 

and environmental care are all well-balanced [7]. 

2.2. Basics of Artificial Intelligence in Energy Systems 

One of the most well-known AI methods is Artificial 

Neural Networks (ANN). They are very good at simulating 

complicated connections, like the one between how water 

moves and how energy is made [8]. It is also possible to use 

support vector machines (SVMs) to sort things, like finding 

problems in wind blades. Meanwhile, random forests and 

decision trees are utilised to look for odd trends in sensor data 

[9].  

Recurrent Neural Networks (RNN) and Convolutional 

Neural Networks (CNN) are two deep learning tools that are 

used a lot in green energy projects these days. To find 

problems in wind blades, CNNs can handle sound or moving 

signs that are very tricky. RNNs and their more advanced 

form, Long Short-Term Memory (LSTM) networks, are very 

good at guessing sequential data, like how fast rivers flow or 

how much power people need [10]. Reinforcement Learning 

(RL) has also been used to improve strategy plans by letting 

AI learn from constant input in environments that are always 

changing [11]. 

Genetic Algorithms (GA) and Particle Swarm 

Optimisation (PSO) from metaheuristic optimisation methods 

work with predictive AI models to find the best answers in 

areas of design and operation that are very complicated. For 

example, GA-optimised ANN models have shown better 

accuracy in predicting energy demand, which is a general idea 

that can be used to predict hydropower input. Together, these 

AI methods make up a set of tools that can make energy 

systems much more reliable and efficient. Their use in small 

water, on the other hand, is still limited compared to solar and 

wind power, which shows how important this review is. The 

general mathematical representation of an AI-based predictive 

model is given as:  

ŷ = 𝑓(𝑥; 𝜃) (1) 

 where 𝑥 represents the input features (e.g., rainfall, river 

discharge, head), 𝜃 denotes the model parameters learned 

during training, and ŷ is the predicted output, such as power 

generation or turbine efficiency. 

2.3. Intersection of AI and Small Hydropower  

Standard hydrological and mechanical models may not be 

able to show how things like river flows, the movement of silt, 

and tool wear and tear change over time in ecosystems that are 

always changing. AI, on the other hand, is based on data and 

can change based on things like weather, wind speed, rainfall, 

and rotor moves to give real-time, useful information [12].  

AI is used by SHP to do many things, such as predict 

floods, make processes better, figure out when repairs are 

needed, and protect the environment. ANN and LSTM models 

were used to correctly guess how much water would flow into 

rivers. This made the power source more stable and the plan 

for how the turbines would work better [13]. It is possible for 

AI-based systems that use vibration and sound data to find 

early signs of bearing wear or cavitation. This can save money 

on repair costs [14] and unplanned downtime [15]. The 

programs in these systems change the way the turbine works 

based on the inputs. This makes the turbine better at making 

energy [16]. 

Putting AI and SHP together is like having a feedback 

loop where devices gather data on mechanics and hydraulics 

and send it to AI models. It is possible to guess how much 

power will be made for merging into a grid or community 

using these models. They also give the best control signals for 

how to run the turbines and when to do maintenance [17]. AI 

is not seen as an option to standard engineering models, but 

rather as an extra layer that makes systems more efficient and 

robust. This is because these two things work well together. 

Figure 2 shows a diagram of the AI-SHP environment.  

 

Fig. 2 AI-SHP ecosystem schematic 

3. Applications of AI in Small Hydropower  
This section describes how key AI techniques, including 

Artificial Neural Networks (ANN), Support Vector Machines 

(SVM), Random Forests (RF), Convolutional Neural 

Networks (CNN), and Long Short-Term Memory (LSTM) 

models, were assessed against SHP-specific challenges. This 

section also introduced figures and tables to map AI 

workflows and summarise model performance, ensuring a 

rigorous and transparent review framework. 
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3.1. Hydrological Forecasting and Water Flow Prediction  

One of the most significant tasks of SHP plants is 

hydrological forecasts, since the amount of energy they 

produce is very dependent on changes in the water that comes 

in. Operators can plan when to turn on the turbines, when to 

expect the most power, and how to reduce risks during low-

flow or flood events if they can accurately guess when the 

river will flood or flow down. Moreover, linear or statistical 

models, such as the Autoregressive Integrated Moving 

Average (ARIMA), regression analysis, or conceptual 

rainfall-runoff models, have been used to predict water flow 

[18].  

 Some types of machine learning, such as ANN, Support 

Vector Regression (SVR), and random forests, can find 

complicated links between weather data, such as temperature, 

humidity, and rainfall, and river flow [19], or sequential time-

series forecasting, Recurrent Neural Networks (RNN) and 

Long Short-Term Memory (LSTM) models work well 

because they can find long-term temporal links that are 

common in hydrological datasets [13]. The LSTM method 

was better at predicting Jakarta's sea level than the ARIMA 

method. In training data, it made an average error of 0.512%, 

and in testing data, it made an average error of 0.564% [20].  

When they use mixed AI models that combine physical 

hydrology equations with learning from data, they are even 

more accurate. ANN can be used with evolutionary 

optimisation methods like Genetic Algorithms (GA) or 

Particle Swarm Optimisation (PSO) to make more accurate 

predictions [19]. This is because the model parameters can be 

changed automatically. With ensemble learning methods that 

use more than one technique, models are less likely to become 

too good at what they do or not have enough data. Due to the 

lack of high-resolution maps in less developed areas, these 

methods work best for SHP plants there. 

Traditional Statistical Forecasting 

 

AI-Based Forecasting 

 
Fig. 3 Comparison of traditional vs AI-based hydrological forecasting 

The use of AI-based hydrological forecasting has a direct 

effect on how well things run. SHP operators can change the 

order in which turbines are dispatched ahead of time when 

they have more accurate inflow projections. This improves 

load matching and cuts down on downtime. This feature also 

makes hybrid renewable systems more stable by making 

hydropower's contribution more predictable. AI-based 

forecasting systems are a better and more flexible option than 

traditional statistical methods, as shown in Figure 3. They may 

help SHP operations stay strong even when the weather 

changes and energy demand rises. 

3.2. Optimal Turbine and Generator Operation 

The performance of SHP plants is greatly affected by the 

operating parameters of the turbines and generators, especially 

the flow rate, net head, and system load. Static efficiency 

curves or rule-based control techniques are typically used in 

conventional operations; however, these may not completely 

account for changes in inputs or wear and tear on machines. 

AI learns the nonlinear relationship between input parameters 

and turbine performance in real time, which makes it easier to 

adapt. ANNs have been extensively utilised for this objective, 

facilitating the development of efficient prediction models 

articulated as; 

𝜂𝑡 = 𝑓(𝑄,𝐻; 𝜃) (2) 

where 𝜂𝑡 is the turbine efficiency, 𝑄 is the water flow, 𝐻 

is the net head, and 𝜃 represents the learned model parameters 

[10]. Such models have been used to construct digital twins of 

SHP plants, enabling virtual testing of operational strategies. 

Reinforcement learning (RL) makes operational 

optimisation even better by letting AI agents change their 

control techniques all the time based on feedback from the real 

world. For instance, RL-based controllers have been used on 

hydropower units in cascaded systems, where they change the 

apertures of the guiding vanes in real time to get the most 

efficiency out of the system while avoiding cavitation [21]. 

These controllers are better at adapting to changing inflows 

than standard proportional-integral-derivative (PID) systems.  

Metaheuristic optimisation methods are also very 

important for designing and running turbines. Systems such as 

GA and PSO have been utilised to optimise operational 

parameters, including runner blade angles and generator 

excitation levels [22]. Recent studies integrating ANN with 

GA have shown that these hybrid models can make turbine 

operations more efficient than static models [23]. Adding AI 

to the operation of turbines and generators not only makes the 

plant work better, but it also makes the equipment last longer 

by lowering the mechanical stress that comes from poor 

control. AI-based adaptive operation helps make rural 

electrification projects more reliable and long-lasting because 

SHP plants are often set up in distant areas where maintenance 

resources are hard to come by. 

3.3. Fault Detection and Predictive Maintenance 

Fault detection and predictive maintenance are among the 

most impactful applications of AI in SHP plants. In the past, 
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fault detection was done manually by hand checks and 

tracking sound or temperature data based on thresholds. These 

traditional methods are not very sensitive and often miss 

initial-stage failures [24]. 

Supporting Vector Machines (SVM), Random Forests 

(RF), and Artificial Neural Networks (ANN) are often used to 

sort things into groups [25] and figure out if a state of action 

is healthy or sick. Deep learning models, like Convolutional 

Neural Networks (CNN), make this even better by taking 

elements from raw sound or movement patterns on their own. 

This means that signal processing does not have to be done by 

hand as much [26]. As summarised in Table 1, a range of AI 

techniques has been successfully applied in SHP fault 

detection. 

Table 1. AI techniques for fault detection in SHP components  

AI Technique 
Application in 

SHP 

Reported 

Accuracy 

Artificial Neural 

Networks (ANN) 

Fault classification 

in turbine bearings 
85% - 92% 

Support Vector 

Machines (SVM) 

Detection of 

abnormal vibration 

patterns 

88% - 94%  

Convolutional 

Neural Networks 

(CNN)  

Acoustic and 

image-based fault 

detection 

90% - 96% 

Random Forests 

(RF) 

General 

classification of 

sensor anomalies 

84% - 90% 

Hybrid Models 

(e.g., ANN+GA) 

Enhanced accuracy 

through a combined 

approach 

92% - 97% 

Hybrid AI systems that use both predictive models and 

optimisation methods make things even more reliable. As an 

example, getting the best model parameters with the help of 

an ANN and genetic algorithms has been shown to improve 

the accuracy of fault detection [27]. A study showed that these 

mixed methods are better than single-model classifiers at 

finding faults in spinning machinery, with an accuracy of up 

to 97% [23].   

3.4. Design Optimisation 

Design optimisation is important for making SHP 

systems work better, last longer, and be more reliable. 

Components like turbine runners, penstocks, and draft tubes 

need to be carefully planned so that they can get the most 

energy out of changing water flows while causing the least 

amount of cavitation, shaking, and wear. The best way to look 

at fluid flow and turbine performance is still through 

traditional Computational Fluid Dynamics (CFD) simulations. 

However, they are very demanding on computers and involve 

a lot of trial and error when optimising across many design 

variables. AI technologies are a strong addition since they may 

be used as surrogate models that get similar results to CFD at 

a much lower computing cost [28]. In this case, ANN and 

Gaussian Process Regression (GPR) are commonly used. 

They are trained using data sets made from CFD simulations 

[29, 30]. After training, these models can quickly estimate 

cavitation thresholds, pressure distributions, and turbine 

efficiency curves for novel design candidates. This speeds up 

the optimisation process, giving engineers access to a bigger 

design area than they would have if they only used CFD. 

Genetic Algorithms (GA) and Particle Swarm Optimisation 

(PSO) are two examples of metaheuristic algorithms that are 

typically used with these predictive models to determine 

excellent solutions for the whole world. For instance, PSO-

based optimisation used on turbine blade design made them 

up to 8% to 15% more efficient than typical baseline designs 

[31].  

More modern methods use hybrid CFD-AI frameworks, 

where CFD simulations give the first training data and AI 

models improve predictions as more data is added [32]. This 

iterative learning method shortens design cycles and adjusts to 

the characteristics of the site, such as low-head river settings 

or flows with a lot of sediment. SHP developers can use AI to 

optimise designs and make turbines that are cost-effective and 

high-performance, taking into account the resources available 

in the area. This makes projects more financially viable and 

environmentally friendly. 

3.5. Energy Management and Smart Grid Integration 

As energy systems move away from centralisation, it has 

become more vital to connect SHP facilities to smart 

microgrids. SHP units are widely used in rural electrification 

together with solar photovoltaics, wind turbines, and battery 

storage. It is important to control energy in these systems so 

that they stay stable and effective [33].  

These systems are called hybrid systems. Most 

scheduling methods are based on fixed rules or linear 

planning, which might not take into account the unknowns of 

new customers or changing demand patterns well enough. AI 

methods offer more adaptable answers by letting improvement 

happen in real time and in advance [34].  

Some AI models that are often used to guess load are 

ANN and Long Short-Term Memory (LSTM) networks. With 

these models, SHP workers can guess how much power will 

be needed in the short term. This lets them change when they 

make power ahead of time. This, along with estimates of water 

flow, lets users run a balanced system that does not require 

petrol engines as much for backup power as hybrid systems 

[35]. In small power lines that employ SHP, this could mean 

providing important loads like hospitals or water pumping 

systems with more power when demand is high [36]. When 

SHP and AI combine, they raise voltage levels and lower 

frequency changes. Hence, this makes the grid more stable. 

Meanwhile, Figure 4 shows a possible design for a smart grid. 
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Fig. 4 Smart grid schematic integrating SHP with AI 

In this design, SHP plants are linked to units that use AI 

to balance energy production, storage, and demand. People 

have usually thought of SHP as a resource that can be used by 

itself, but this shows how it can be an active part of smart, 

flexible energy systems. This is especially true in growing 

areas where electricity is not yet connected to the grid.  

3.6.  Environmental Impact Assessment and Sustainability 

Environmental Impact Assessments (EIA) that are used 

today use data from people and water models, which may not 

show the long-term effects on the environment or how 

different projects in a river area add up [37]. AI can be made 

better in new ways because it lets us use data for tracking, 

making predictions, and managing things in a flexible way. 

Engineers have used machine learning to guess how fish 

will move in different flow conditions. This has helped them 

make better paths and escape ways for fish  [38]. Drones with 

AI and underwater cameras can also keep an eye on wildlife 

by finding new fish species or changes in the plants along the 

banks of rivers [39]. This reduces the need for biological 

studies that are done by hand, which makes watching the 

environment more efficient and less expensive.  

AI is also being used more and more to control sediment. 

Too much silt can hurt environments further downstream, 

make turbines less effective, and speed up the wear and tear 

on equipment. AI can predict sediment loads by looking at 

weather and sediment data. This lets workers plan when to 

flush or clean [40]. This stops the unchecked release of silt, 

which is good for the environment and helps make electricity. 

Acceptance by society is also closely linked to the long-term 

viability of SHP. AI-based decision-support systems can make 

plans with multiple goals that take into account community 

interests, water needs in different sectors, and natural needs 

[41].   

4. Systematic Review Methodology 
A systematic review approach was used to ensure a 

transparent assessment of AI applications in SHP. Relevant 

literature was identified through four major databases, such as 

Scopus, Web of Science, IEEE Xplore, and Google Scholar.  

The search strategy combined AI and SHP-related 

keywords such as “artificial intelligence”, “machine 

learning”, “neural networks”, “metaheuristic optimisation”, 

“small hydropower”, “inflow forecasting”, “sedimentation”, 

and “low-head turbine”. The screening process involved three 

stages, including: 

 Duplicate removal; 

 Title and abstract screening to exclude irrelevant studies; 

and 

 Full-text assessment for methodological clarity and SHP 

relevance. 

Inclusion criteria required studies to apply AI, ML, ANN, 

or metaheuristic methods to SHP-related tasks such as inflow 

prediction, optimisation, turbine performance, or fault 

detection [42].  

Meanwhile, exclusion criteria removed studies focused 

solely on large hydropower, papers lacking technical detail, 

and non-peer-reviewed materials. A PRISMA diagram in 

Figure 5 summarises the identification, screening, eligibility, 

and final selection of studies used in this review. 

AI Forecasting (Inflow & 
Load Prediction)

Smart Microgrid (Consumers, 
Storage, Grid Connection)

AI Dispatch Optimisation 

(Real-time Control)

Small Hydropower Plant 

(Turbine + Generator)



Mohd Farriz Basar et al. / IJETT, 74(2), 293-307, 2026 

 

299 

 
Fig. 5 PRISMA flow diagram for the study selection process 

5. Critical Review and Comparative Analysis  
In the critical review part, the results were put together by 

comparing how AI is used in solar, wind, and SHP. It was 

pointed out that SHP is behind because it does not have as 

much data and digital infrastructure. The tables showed how 

different sectors used the models and how well they worked, 

while the discussion focused on the technical, economic, 

environmental, and social effects.  

5.1. Comparison of AI Applications across Renewable 

Energy Sectors  

AI is now used in a lot of different types of green energy, 

but they are all at very different stages of development and can 

be used in very different ways. A lot of AI is used in solar 

energy to figure out how much sun will hit a panel, keep track 

of the MPPT (Maximum Power Point Tracking), and find 

panels that are not working right. Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) are 

two advanced deep learning models that are the best at 

predicting the short term and usually do better than standard 

statistical methods [43].  

In the wind business, Reinforcement Learning (RL) has 

also been used to improve yaw and blade pitch control. The 

wind can then change the speed and direction of the mills. 

These methods not only help get more energy, but they also 

ease the stress on buildings, which makes equipment last 

longer [16].  

Solar and wind energy systems, on the other hand, have 

access to larger datasets, more advanced tracking 

infrastructure, and well-established AI planning tools, while 

SHP is still not as digitally stable. Table 2 shows a comparison 

of how AI is being used in solar, wind, and SHP to show how 

SHP fits into the bigger picture of digitalising green energy.  

This comparison shows how differences between sectors 

affect data access, AI model growth, practical limits, and 

research gaps. It also shows how lessons learnt from solar and 

wind can help shape future progress in SHP. The comparison 

is important because it makes this review even more unique, 

as it is the first organised, cross-sector study that is specially 

designed for SHP. 

Table 2. Comparison of AI adoption in solar, wind, and small hydropower 

Aspects Solar Wind Small Hydropower (SHP) 

Data availability High High Low-Moderate 

Common AI 

applications 

 Irradiance forecasting 

 MPPT control 

 PV fault detection 

 Wind speed 

prediction 

 Yaw/pitch control 

 Predictive 

maintenance 

 Inflow forecasting 

 Fault detection 

 Turbine performance estimation 

Model maturity 
Very mature and 

commercially deployed 

Mature and widely 

validated 
Emerging and experimental 

Operational 

constraints 
 Weather variability 

 Turbulence 

 Wake effects 

 Sedimentation 

 Low-head variability 

Technical 

challenges 

 Cloud cover 

 Rapid fluctuations 

 Real-time adaptive 

control 

 Limited sensing 

 Ecological constraints 

Research gaps Enhanced hybrid forecasting 
Multi-turbine 

optimisation 

 Lifecycle modelling 

 Hybrid AI-hydrology models 

 SHP specific datasets 

Review 

contributions 
- - 

 First integrated synthesis of AI across 

the SHP lifecycle 

 Systematic cross-sector comparison 

with solar/wind 

 Identification of multidimensional SHP 

research gaps 

Identification: 

Records identified through database searching 

(n = 432) 

Screening: 

Records after duplicates removed 

(n = 289) 

Eligibility: 

Full-text articles assessed 

(n = 74) 

Included: 

Studies included in review 

(n = 42) 
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SHP, on the other hand, has been slow to adopt AI. The 

uses that have been talked about mostly have to do with 

guessing what will be put in and making repairs ahead of time. 

This is still not possible to fully connect to smart grids or tune 

in more complex ways [17]. AI has a lot of data to work with 

because solar and wind farms usually have complicated 

supervisory control and data acquisition (SCADA) systems. 

This is one reason for the difference. However, a lot of SHP 

plants, especially those in new places, do not have as much 

digital tracking gear. For deep learning and other difficult AI 

systems, this means that the data that can be used to build 

models is rarely enough.  In the past, policies and funding 

goals have also favoured solar and wind, which made the 

imbalance even worse [44]. 

Thus, while SHP currently trails behind solar and wind in 

terms of AI implementation, comparative analysis 

demonstrates that cross-sectoral knowledge transfer can 

accelerate adoption. Tailoring AI models to the unique 

technical and environmental realities of SHP remains the 

central challenge moving forward. 

5.2. Comparative Performance of AI Models in SHP  

There are many methods for SHP that use AI, and each 

has its own pros and cons that change based on the case. 

Artificial Neural Networks (ANN) are the most common type 

of network and are great at predicting the input/output of a 

turbine. Furthermore, people say they are hard to understand, 

but they are praised for being able to fake complicated 

systems. It has been shown that using ANNs instead of regular 

autoregressive models can cut the Root Mean Square Error 

(RMSE) by up to 25% when it comes to predicting floods. To 

find flaws and vibrations in turbines, Support Vector 

Machines (SVMs) and Support Vector Regression (SVR) are 

often used. They can handle small datasets well, which makes 

them good for SHP sites that do not get a lot of tracking [15]. 

But they need to be carefully tuned, which can make them less 

useful in real time. Random Forests (RF) can handle noisy or 

overfitted data well, which makes them good at finding 

outliers. However, when working with big datasets, they 

might not work as well as deep learning methods [45]. 

Long Short-Term Memory (LSTM) networks are about 

25% more accurate than ARIMA baselines in places where 

rain falls a lot [48]. More than 95% of the time, Convolutional 

Neural Networks (CNNs) can find problems from shaking and 

sound data, which is a lot better than traditional signal 

processing methods [10]. Reinforcement Learning (RL) has a 

lot of promise for real-time dispatch improvement by 

changing how the rotor works as the water level changes. 

Many individuals are looking at hybrid methods as a good 

middle ground. For example, ANN combined with Genetic 

Algorithms (GA) or Particle Swarm Optimisation (PSO). 

These models keep the good things about machine learning for 

making predictions while using optimization methods to make 

them more accurate and consistent. The classification 

accuracy of mixed systems is usually the best (92% to 97%), 

as in Table 3. These systems strike a good balance between 

performance and processing efficiency. 

Table 3. Comparative performance of AI models in SHP applications 

AI Model Details 

Artificial Neural Network 

(ANN) 

Typical Application in SHP: Inflow forecasting; Turbine efficiency prediction 

Strengths: Captures nonlinear relationships; Widely used; Flexible 

Limitations: Requires large datasets; “Black box” nature reduces interpretability 

Reported Accuracy: RMSE reduction of 20%-25% compared to ARIMA [45] 

Support Vector Machine 

(SVM) / Support Vector 

Regression (SVR) 

Typical Application in SHP: Turbine fault detection; Vibration pattern classification 

Strengths: Performs well with small datasets; Good generalisation. 

Limitations: Sensitive to kernel choice; Computationally intensive for large datasets 

Reported Accuracy: Fault detection accuracy 88%-94% [46] 

Random Forest (RF) 

Typical Application in SHP: Sensor anomaly detection; Classification of operational states 

Strengths: Robust against overfitting; Works with noisy data 

Limitations: Less accurate than deep learning for large datasets 

Reported Accuracy: Classification accuracy 84%-90% [47] 

Long Short-Term Memory 

(LSTM) Networks 

Typical Application in SHP: River inflow and load forecasting 

Strengths: Handles sequential and seasonal data; Outperforms ANN in time-series tasks 

Limitations: Requires long training times and large datasets 

Reported Accuracy: 25% lower forecasting error than ARIMA [48] 

Convolutional Neural 

Network (CNN) 

Typical Application in SHP: Vibration and acoustic-based fault detection 

Strengths: Automatically extracts features; High accuracy in condition monitoring 

Limitations: Requires large, labelled datasets; High computational demand 

Reported Accuracy: Fault detection accuracy above 95% [49] 
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Hybrid Models (e.g., 

ANN+GA, ANN+PSO) 

Typical Application in SHP: Efficiency prediction; Fault classification; Optimisation tasks 

Strengths: Combines predictive modelling with optimisation; Improved accuracy 

Limitations: Higher complexity; May require fine-tuning for convergence 

Reported Accuracy: 92%-97% [50] 

To support clearer comparison across the reviewed 

literature, the following summary Table 4 consolidates key 

patterns related to AI models, application domains, dataset 

characteristics, and methodological limitations in SHP 

research. This table provides a consolidated view of the 

methodological landscape in SHP-AI research and highlights 

recurring patterns that inform the critical analysis presented in 

the subsequent sections. 

This comparative evidence indicates that no single AI 

model is universally superior. Instead, model selection must 

balance accuracy, interpretability, data availability, and 

computational resources. For SHP plants in rural or resource-

constrained settings, hybrid and ensemble methods may 

currently provide the most practical solutions. 

Table 4. Summary of SHP tasks addressed in the literature  

Task 
Common 

AI models 
Limitations 

Inflow 

forecasting 

ANN, 

LSTM 

Small datasets, short 

time series, missing 

data 

Turbine 

optimisation 

GA, PSO, 

hybrid 

methods 

Often based on 

simulated conditions; 

limited real-site 

validation 

Fault detection 
SVM, 

ANN 

Lack of standard 

performance metrics; 

minimal testing on real 

devices 

Sedimentation 

modelling 
ANN 

Few studies; high 

sensitivity to data 

quality 

5.3. Economic and Technical Feasibility of AI Adoption in 

SHP  

Both economic and technical factors affect how likely it 

is that SHP will be able to use AI. When it comes to the 

economy, SHP projects often have trouble because they have 

a limited budget. This is especially true for rural electricity 

projects that depend on small energy sales to cover their costs 

[46]. To add AI, you need to buy sensors, data storage 

systems, and computing power, which could make the initial 

costs higher [47]. But these costs can be recovered over time 

by making operations more efficient, lowering the need for 

upkeep, and making tools last longer. For instance, using AI 

for fault detection in predictive maintenance has been shown 

to cut down on unplanned plant breakdowns by up to 30%, 

which saves a lot of money in the long run [7]. The amount 

and quality of data provided determine how useful AI is in 

SHP. Most solar and wind farms use high-tech SCADA 

systems, but many SHP sites, especially those in low-income 

areas, lack them. As a result, it is not always possible to obtain 

the large datasets required to train deep learning models [17]. 

As an alternative, mixed methods such as physics-informed 

models or transfer learning can be used. These approaches 

work well with smaller datasets and require fewer large 

training samples [48]. Cloud and edge AI tools also help get 

around problems with data and hardware. Cloud platforms can 

process data without having strong computers on-site, and 

small edge devices put in place at SHP plants can help with 

making decisions in real time [49].  

In the end, it is up to each SHP site to decide if adopting 

AI is worth it based on its own technology needs and budget. 

Larger SHP plants that get more money from revenue and the 

government are more likely to invest in advanced AI systems. 

Smaller community-based projects, on the other hand, might 

like low-cost blend types that balance efficiency and cost [50]. 

While adding AI to SHP can be hard at first, the long-term 

benefits make it an investment that is worth making. 

6. Discussion 

Beyond reviewing specific AI models, the discussion 

must consider how AI fits with SHP’s technical, economic, 

environmental, and social or policy realities. These four 

dimensions determine how effectively AI can support SHP. 

As shown in Figure 6, AI contributes through technical 

optimisation, economic benefits, environmental 

sustainability, policy, and social factors. 

 
Fig. 6 Conceptual framework: AI contributions to SHP 

6.1. Balancing Technical Feasibility with Economic 

Constraints 

AI in SHP should be judged on both how well it works 

and how much it costs. There are not many funds for SHP 

projects, especially in the country [51]. To add AI, companies 
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often need to buy new sensors, computer tools, and 

supervisory control and data acquisition (SCADA) systems 

[52]. This can make the cost of capital rise by 10% to 20% 

[47]. AI can still save money, as shown by predictive 

maintenance. Using AI to find faults can cut down on rapid 

turbine breaks by as much as 30% [7], which saves money on 

fixes and energy. It is easier to plan how to use energy, save 

water, and keep the grid safe when they know how much water 

will come in. These benefits come in slowly, but they cut 

down on the time it takes to get the money back. Though it 

takes longer to see results, ecological flow management is 

worth it because it helps people follow the rules and protect 

the environment more than it makes money. Table 5 shows 

that the costs and benefits of each AI application are different.   

Table 5. Cost-benefit considerations of AI in SHP 

AI Application Upfront Cost Long-Term Benefit Payback Horizon 

Inflow Forecasting Medium (sensors, data 

acquisition) 

 Improved load matching; 

  Reduced spillage 
2-3 years 

Predictive Maintenance High (sensors, vibration 

monitoring) 

 Reduced unplanned outages; 

  Extended equipment life 
3-5 years 

Ecological Flow Optimisation 
Medium (environmental 

sensors, modelling) 

 Balanced electricity 

generation with ecosystem 

protection 

4-6 years 

Energy Management & Dispatch Low–Medium (software 

integration) 

 Higher plant efficiency; 

  Better grid integration 
2-4 years 

In several cases, AI models like ANNs paired with 

planning methods are a good compromise because they 

require less computer power while still making accurate 

predictions. Costs are also cut by cloud and edge AI platforms, 

which do not need as many expensive tools on-site [48]. 

Taking care of these technical and financial trade-offs is 

important for making AI use in SHP sustainable and scalable. 

6.2. AI and Environmental Sustainability in SHP 

SHP is often viewed as a more environmentally friendly 

option than large hydropower, yet it is not entirely free from 

environmental impacts. Even at smaller scales, SHP 

installations can influence river ecosystems, alter sediment 

movement, and affect how water is shared and used locally. In 

practice, many Environmental Impact Assessments (EIAs) 

still depend on simplified hydrological models and manual 

field surveys, which may overlook gradual or long-term 

changes. With the ability to support continuous monitoring 

and informed decision-making, AI offers a more adaptive 

approach to managing SHP systems in ways that better align 

with environmental sustainability. [37]. 

Controlling flow in the environment is a huge application. 

AI models can guess how different flow rates will affect fish 

and other species by using past biology and hydrological data. 

RNNs and LSTMs can predict how things will move during 

different times of the year, which helps operators change how 

much water they release [38]. Also, CNNs combined with 

drone images can easily find different types of fish and 

changes in the plants along the banks of rivers, which cuts 

down on the need for hard work in the field [39]. 

AI also makes it easier to handle sediment, which is 

especially helpful in rivers that have a lot of it. Based on 

weather and water conditions, machine learning can predict 

when sand will enter a system. This lets workers plan when to 

flush [40]. This keeps the rotor from wearing out and stops the 

release of dangerous sediment. 

In addition to making things more efficient, AI can also 

help people accept it by using tools that help them make 

decisions that take environmental, social, and economic issues 

into account. This helps SHP projects meet their 

environmental goals while still making money [41]. Overall, 

AI helps make things run more smoothly, protect the 

environment better, and be more in line with what the 

community wants. 

6.3. Institutional, Policy, and Social Dimensions 

Adoption of AI in SHP is also affected by how ready 

institutions are, how the government sets laws, and how well 

the community accepts AI. Institutionally, SHP does not 

always have clear rules about how to use technology. Large 

wind or hydropower farms use standard SCADA systems, but 

small SHP plants often use equipment from different 

manufacturers. This means that the data forms are not always 

the same, which makes it harder to integrate AI [50]. Setting 

clear rules for sharing data would help with tracking and make 

the adoption of AI go more smoothly. 

From a policy point of view, funding for green energy has 

mostly gone to solar and wind, leaving SHP with fewer 

reasons to make digital changes. Countries that include SHP 

in their national energy plans are more likely to use AI because 

digital tracking is required in order to get financial help [53].  

Cybersecurity must also be covered by regulations, as 

digital strikes can happen on SHP plants that use AI. Before 

AI can be used on a large scale safely, it needs to be protected 

by strong data safety and security rules [51]. Social acceptance 
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is equally important. People who live in rural areas may be 

afraid that technology will take away work or make it harder 

for them to control the power system. In order to fix this 

problem, AI plans should include communities in making 

choices and offer training to improve local skills [54]. Long-

term SHP success depends on making sure AI helps both 

scientific progress and balance in society. 

6.4. Future Outlook for AI in SHP 

The future of AI in SHP is closely tied to the need for 

scalable, sustainable, and context-specific solutions. While 

pilot projects have demonstrated AI’s technical feasibility, 

wider deployment will require approaches that address data 

scarcity, cost constraints, and environmental considerations. A 

great approach is to use hybrid models, such as Physics-

Informed Neural Networks (PINNs), which mix hydrology 

equations with data-driven learning. This makes them more 

accurate while cutting down on the need for big datasets. This 

means they can be used for SHP sites that are remote or not 

well watched [48].  

A big part is also likely to be played by collaborative 

learning methods. Transfer learning lets models that were 

learnt on big hydropower or green datasets be used on smaller 

SHP plants. Federated learning, on the other hand, lets many 

operators train the same models without sharing private data 

[52]. Edge AI can help remote SHP sites even more by running 

simple, real-time algorithms on nearby devices, so they do not 

have to rely on the expensive cloud [55].  

It is also important that AI in SHP fits in with bigger goals 

for sustainability. AI should not only improve technical 

performance and economic efficiency, but it should also help 

protect ecosystems and make communities stronger. It will be 

important to use multi-objective planning that takes into 

account things like ecology, the need to share water, and social 

acceptance. Inflow forecasting, predictive maintenance, 

ecological flow control, and energy management are some of 

the AI applications shown in Table 6. These directly help 

reach several UN Sustainable Development Goals, such as 

SDG 7 (Clean Energy), SDG 9 (Innovation and 

Infrastructure), SDG 13 (Climate Action), and SDG 15 (Life 

on Land) [56]. Connecting the use of AI to these global goals 

can help SHP projects get more support from policymakers 

and get money for growth.   

Table 6. Alignment of AI applications with Sustainable Development Goals (SDGs) 

AI Application Related SDG Impact Pathway 

Inflow Forecasting 
SDG 7 (Affordable and Clean 

Energy) 

 Improves the reliability of the electricity supply 

for rural communities;  

 Reducing reliance on fossil fuels. 

Predictive Maintenance 
SDG 9 (Industry, Innovation, 

and Infrastructure) 

 Enhances infrastructure resilience and reduces 

downtime.  

 Enabling sustainable energy access. 

Ecological Flow Optimisation SDG 15 (Life on Land) 
 Protects river ecosystems and biodiversity 

while maintaining energy production. 

Energy Management & Dispatch SDG 13 (Climate Action) 

 Enables efficient integration of SHP into grids.  

 Reducing carbon emissions and supporting 

decarbonization. 

The chosen studies were very different in terms of 

datasets, water sources, model design, and evaluation 

methods, even though a thorough review method was used. A 

meta-analysis could not be done because of this difference. 

Instead, an organised story method was used, which is often 

used in reviews of engineering and AI, where the data is not 

all the same.  

6.5. Ethical and Socio-Environmental Considerations 

When AI is used in SHP, there are also important moral, 

social, and environmental issues to think about. Strong data 

control and privacy rights are needed for AI systems because 

they use operating and environmental data gathered from 

whole communities. On a social level, AI may make rural SHP 

systems more reliable by reducing the need for constant 

human control. However, this could lead to job loss, 

overdependence on technology, and less local preparation. To 

ensure fair acceptance and community trust, planning must be 

open, the community must be involved, and efforts must be 

made to build people's skills all the time. In terms of the 

environment, methods that are not well thought out could hurt 

ecosystems without meaning to, for example, by messing up 

biological flows or making sediment stress higher.  

For responsible implementation, AI needs to be used with 

expert knowledge, clear biological boundaries, and rules about 

protecting the environment. Closer consideration must be 

given to the quality of the examined research, in addition to 

the more general insights already stated. Many SHP-AI works 

use small or very site-specific datasets, which makes it hard 

for their models to be used in other situations. It is common 

for cross-validation and stability tests to be missing, which 

raises the risk of overfitting. Different performance measures 

and not enough information about trial sets are also used in 

different ways when reporting. Even though this review was 

organised in a way that made sense, the studies that were 
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looked at were very different from one another in terms of the 

datasets, water inputs, model designs, performance measures, 

and validation methods. It was not possible to do a formal 

summary or meta-analysis because the data were so different. 

An organised story synthesis was used instead, which is good 

for reviews in engineering and AI, where data uniformity is 

not great. A quick look at possible bias was also done, and 

common issues were found, such as small datasets, poor cross-

validation, uneven reporting, and the heavy use of generated 

flow data. These problems show that future SHP-AI research 

needs to use more uniform datasets and better ways to 

compare results. 

7. Conclusion 

In conclusion, this review looked at the role that AI plays 

in SHP and pointed out both its pros and cons. A lot of people 

in solar and wind have used AI for forecasts, predictive repair, 

and energy management, but not many people in SHP have 

done the same. Because of problems like sediments, changing 

low-head conditions, and the need for natural flow, SHP 

cannot just copy methods from other sources. Instead, AI 

needs to be mixed with water models based on physics to 

make sure that they work well in all places. 

There are three main reasons why this review goes into 

more detail about the analysis than other state-of-the-art 

studies. First, it combines AI applications from several areas, 

such as hydrology, optimising turbines, predictive 

maintenance, environmental tracking, and connecting to the 

smart grid. Most earlier SHP reviews were limited to 

predicting input or finding faults. Second, the study shows 

how AI techniques can be used in different fields by 

comparing SHP to solar and wind energy. It also explains why 

some methods work better than standard SHP models when 

there isn't enough data. Third, it combines scientific, 

economic, environmental, and policy views into a single 

framework. This gives us a fuller picture than studies that only 

focus on model correctness or computational performance. 

This review highlights several overarching insights:  

 AI offers strong potential for improving inflow 

forecasting, predictive maintenance, and environmental 

monitoring in SHP.  

 Hybrid physics-AI approaches are the most promising for 

data-scarce environments, and  

 Technical progress must be paired with digital 

infrastructure, policy support, and community acceptance 

to achieve meaningful impact.  

A number of important problems are also brought up by 

the study. Because each study used different datasets, 

modelling techniques, and review methods, it is not possible 

to do a full meta-analysis. A lot of studies used fake data or 

weak validation, which raised the risk of bias. Because of this, 

uniform data, consistent reporting, and better review methods 

should be at the top of the list for future study. It is also 

important for researchers to keep working on mixed physics-

AI models, transfer and shared learning, and edge-AI tools for 

SHP sites that are far away. 

Supporting technologies that watch the climate, setting 

clear rules for sharing data, and spending in digital 

infrastructure are all important steps that policymakers need 

to take. Giving people reasons to update their SHP systems 

and making institutional support stronger will help make sure 

that AI not only improves technical performance. It also helps 

achieve bigger goals, such as giving people in rural areas 

access to energy and protecting the environment. Overall, this 

review emphasised that AI in SHP must be evaluated within a 

framework.  

It must consider scientific, economic, environmental, and 

social factors. If AI solutions are too expensive, do not care 

about the environment, or are socially unacceptable, technical 

feasibility alone does not mean they will work. Cost-benefit 

studies show that some applications pay for themselves 

quickly, while others provide long-term benefits that make the 

investment worthwhile.  

In the same way, AI can be very helpful in taking care of 

the environment by helping to improve biological flow and 

control silt, which makes SHP projects more in line with larger 

conservation goals. For building trust and allowing the growth 

of AI-enabled SHP systems, it is important that institutions are 

ready, that policies are clear, and that the community is 

involved. 
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