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Abstract - With the growth of reliance on the internet and the transfer of most businesses to present remote services, the problems
in protecting the network and identifying attacks rapidly become more prominent, as the attack surface and cyberattacks improve
in response. The current Wireless Sensor Networks (WSNs) intrusion detection methods that utilize Machine Learning (ML)
techniques to detect previously known attacks use single layers of recognition, which means an expensive algorithm must be
performed before identifying any suspicious action. Network Intrusion Detection Systems (IDS) present a type of service to the
system, and it becomes unavoidable for some communication systems. ML methods are extensively applied in IDS; still, the
performance of ML methods is less adequate while processing unbalanced attacks. This paper presents an Advanced Ensemble
Deep Learning Model Integrated with Metaheuristic Optimization for Secure and Reliable Intrusion Detection (AEDL-MORID)
methodology. The main objective of the AEDL-MORID methodology presents strong potential for real-time deployment in
resource-constrained WSN environments, strengthening network resilience against sophisticated cyber threats. The AEDL-
MORID method starts with data pre-processing techniques involving the handling of missing values and min-max normalization
to ensure clean and consistent input for the learning models. For dimensionality reduction, the dung beetle optimization (DBO)
method is utilized to detect the most informative features effectively. In addition, an ensemble classification method integrating
Bidirectional Long Short-Term Memory (BiLSTM), Graph Convolutional Network (GCN), and Stacked Denoising Autoencoder
(SDAE) is employed for attack detection. To further improve ensemble classification performance, the model parameters are
fine-tuned using the Improved Crow Search Algorithm (ICSA) method. The experimentation of the AEDL-MORID model is
conducted on the WSN-DS dataset. The experimental validation of the AEDL-MORID system indicated a better accuracy of
99.81% compared to recent techniques.

Keywords - Intrusion Detection, Dung Beetle Optimization, Wireless Sensor Network, Attack Detection, Resource Constrained,
Deep Learning.

1. Introduction

The WSN leverages numerous low-cost, wirelessly
connected sensor nodes to enable a diverse range of
applications. The nodes in WSNs are resource-constrained in
terms of storing, communicating, and computing abilities [1].
Like other networks, WSNs are also prone to safety threats
due to their wireless and distributed features [2]. The
constrained battery power requires low computations to boost
the network lifetime. Malicious actors can easily misuse those
susceptible networks, gain access, and pose a crucial security
threat in WSNs [3]. While WSNs present diverse critical
applications, intrusion detection stands out as particularly
vital. It allows the monitoring of sensitive areas like borders,
remote locations, and infrastructure [4]. Normally, intrusions
are malicious activities that breach security protocols to access

systems and carry out unauthorized activities. As a reasonable
complement to the firewall, IDS detects malicious behaviour
and secures the network [5]. It is essential to develop an
efficient IDS for the WSN. Several IDSs are proposed, where
the data-mining-driven techniques are proven to be highly
efficient. The development of advanced devices and network
technologies creates extensive data, progressively reducing
the IDS's detection rates [6]. Detection of intruders with
higher detection precision has become intricate due to the
network's constantly evolving nature and resource demands
for processing extensive data from distributed environments.
Also, IDSs are crucial for user authorization, authentication,
and managing suspicious activities [7]. IDSs employ dual
primary methods. Rule- and signature-based IDS. While these
can precisely identify established attacks, they are ineffective
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against zero-day attacks due to the shortage of pre-existing
attack patterns. Anomaly-based IDSs identify intrusions by
flagging deviations from normal resource utilization or
network traffic patterns [8]. Though these systems can identify
zero-day as well as known attacks, they are associated with an
elevated rate of misclassification. Furthermore, by

incorporating Deep Learning (DL), a subfield of ML, WSNs
can attain a high level of security, defend sensitive data, and
ensure the reliable operation of critical applications in the face
of continual and advanced attacks [9]. Figure 1 depicts the
general infrastructure of IDS in WSN.
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Fig. 1 General infrastructure of IDS in WSN

This paper presents an Advanced Ensemble Deep
Learning Model Integrated with Metaheuristic Optimization
for Secure and Reliable Intrusion Detection (AEDL-MORID)
methodology.

Initially, missing values are handled via min-max
normalization to ensure clean and consistent input.

The Dung Beetle Optimization (DBO) method is adopted
for detecting the most informative features.

Furthermore, an ensemble of Bidirectional Long Short-
Term Memory (BiLSTM), Graph Convolutional Network
(GCN), and Stacked Denoising Autoencoder (SDAE) is
implemented for classification.

The Improved Crow Search Algorithm (ICSA) method is
used for fine-tuning.

The novelty is in the integration of BIiLSTM, GCN,
SDAE, and metaheuristic techniques such as DBO and
ICSA. The AEDL-MORID model efficiency under the
WSN-DS dataset.

2. Literature Survey on Secure and Reliable
Intrusion Detection in WSN

Srivastava and Prakash [10] presented a method for
analyzing the addressing scheme of RBMs, a kind of Neural
Network (NN). This method focuses on a two-part approach.
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The goal is attained using the Chaotic Ant Optimizer (CAO)
model. The authors created a technique utilizing RBMs to
define the optimum confidence level for all sensor nodes. This
study presents an improved multimodal method employing
DL to solve difficulties in ID and energy optimization using
WSNs. Alhusseini et al. [11] proposed a Hybrid IDS (HyIDS)
method by integrating Energy Valley Optimizer (EVO) for
Feature Selection (FS) with ML classifiers.

Sakthimohan et al. [12] proposed a Secure DL-driven
Energy-Efficient Routing (SDLEER) module for WSNs with
an IDS for identifying attacks within the network. This module
addresses the current application’s disadvantages by
integrating energy-efficient IDPS in a single network. In [13],
a Hybrid Optimized DNN (HODNN) is developed utilizing
DNNs to enhance its recognition precision. The source node
identifies the shortest path to the destination, subsequently
identifying malicious nodes and performing secure routing
without them. An improved energy-efficient centralized
clustering routing protocol finds the optimal route for routing
data. Pande et al. [14] explored the HIDS and NIDS, which
are the two primary kinds of IDS. The IDS functions by
incessantly monitoring network traffic or specific hosts'
activity, examining trends, and detecting suspicious or
abnormal behaviour.



M. Pradeepa & R. Ponnusamy / IJETT, 74(2), 280-292, 2026

Sharma et al. [15] presented a novel ID technique that
combines operational and developmental frameworks,
concentrating particularly on WSNs. With the escalating
number of attacks, defending SNs becomes progressively
vital. Along with security violations, unauthorized access to
systems by attackers presents a threat to critical resources. The
research highlights the need for a unique ID technique and
strong feature extraction and classification approaches.

Karthic and Kumar [16] suggested a novel IDS to present
protection in statistical communications by detecting intruders
on WSNs. Then, a novel FS method named improved
conditional random field-based FS for selecting the most
contributing features, and an optimized hybrid DNN
(OHDNN) is proposed to classify. The HDNN is a
hybridization of CNN and LSTM. Also, an adaptive golden
eagle optimizer is utilized for parameter optimization. Kumar,
Vijayan, and Karthik [17] developed an IDS system by
utilizing ML and DL methods with advanced extraction for
real-time smart manufacturing.

Shukla, Dwivedi, and Mishra [18] utilized Kernel
Principal Component Analysis (KPCA), Lévy flight-driven
FS, and an optimized Deep Neural Network with LSTM
(DNN LSTM) model. Also, the lévy flight Grasshopper
Optimizer Algorithm (GOA) is used for tuning.

Guru et al. [19] presented a transformer CNN BiGRU
with an Artificial Bee Optimizer (ABO) model. Mahato and
Dutta [20] integrated Grey Wolf Optimizer (GWO) based FS
with the Light Gradient Boosting Machine (LightGBM)
ensemble learning model.

Though the existing studies are efficient, they lack
optimization and adaptation techniques. Real-time
applicability of many models can be seen in resource-limited
systems, as they require high computational needs.

Various studies show an imbalance and are less novel.
Issues such as privacy and scalability are observed in diverse
studies. Hence, a research gap exists in developing a
lightweight, scalable, and privacy-aware IDS to incorporate
FS and performance, via which effective accuracy can be
achieved.

3. Methodological Frameworks

This study develops an AEDL-MORID method. The
main aim of the AEDL-MORID method presents greater
potential for real-time use in resource-constrained WSN, and
enhances network resilience against refined cyber threats.

It has four different types of processes involved: pre-
processing, feature reduction, ensemble classification, and
tuning. Figure 2 illustrates the flow of the AEDL-MORID
method.
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Fig. 2 Entire flow of the AEDL-MORID method

3.1. Data Pre-Processing Methods

To obtain that, the AEDL-MORID method starts with
data pre-processing methods, including handling of missing
values and min-max normalization to guarantee clean and
constant input for the learning methods. The cleaning,
converting, and arranging of primary data into an appropriate
entity for the computation and modeling process is called data
preprocessing [21]. It is an essential phase in the data search
procedure that improves the normality and effectiveness of
NN methods. There are two methods, such as handling
missing values and min-max normalization models, which are
utilized to pre-process the achieved data.

3.1.1. Handling Missing Values

It is a standard procedure to eliminate columns or rows
that have null values. In the same way, rows that have various
columns recognized as null are eliminated. Established the
averages or mid-points by utilizing the mode, median, or mean
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to fix values in the columns. After being associated with the
accounting expert for the data applied to performance, this
model is efficient.

3.1.2. Min-Max Normalization
A linear transformation is used on the new data by min-
max normalization, scaling accounting features using
matrices, and standardizing the data to the range—1. Over the
application of min-max normalization, the relation among the
new account information values is preserved.
X/ _ _ X—XMin

B XMax ~XMin (1)

The maximum values of data and low values of data are
gained, and each value is substituted into Eq. (1). The variable
X represents feature information. Xy;, and Xy, Characterize
X's minimum and maximum values as integers. X' signifies
the upgraded value of every input of data.

Min-max normalization and handling missing values are
two data pre-processing methods that give a clean, well-scaled
dataset. The wholeness of the data is guaranteed by presenting
suitable statistical measures for missing values in the setting.

To increase the presented convergence of the model and
precision in analysis and processing, min-max normalization
transforms every transaction-related variable into a
normalized range (0-1) in the developed performance.

3.2. DBO-based Dimensionality Reduction Process

For FS, the DBO model is used to identify the most
informative attributes successfully. The DBO model has the
merits of greater processing ability and is suited to manage
optimization concerns with fewer than three parameters
optimized [22].

3.2.1. Rolling Behaviour
yile + 1 =yi(p) + arky;(p — 1) + b Ay

(2)

Ay = ly;(p) =y

Now, y(p) implies the position of i;; DB in p,,, iteration;
f depicts the existing iteration number; k signifies the
defection co-efficient with value of (0,0.2]; b, signifies
constant with an interval of (0,1), «,; denotes natural
coefficients with a range of 1 or —1, 1 refers to non-deviation,
and —1 embodies deviation from unique directions; A4y is
employed to represent the modification in intensity of light
and y"orst represents the global poor location of DB. The
dancing behaviour and location of DB are upgraded based on

Eq. (3).

yi(p+1) = y;(p) + tan(8:)|y: (@) —y;(p — D|  (3)
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Now, 6, shows the angle of defection, while 6, = 0, /2,
or 1, the DB’s site is not progressed.

Lowy- = maxi(Y* X (1 — R), Low,,)

Up_b* = mini(Y* X (1 + R), Up_b) 4)
Here, Y™ depicts existing local best locations; Low_b* and

Up_b* refer to lower as well as upper boundaries of egg-laying

zone; R =1 ——2— p,_._ denotes higher iteration amounts;

max

Up_b and Low_b, depict upper as well as lower boundaries,
correspondingly. The position modification of the egg is
defined by the succeeding Eq. (5):

Bi(p+1) =Y"+py(B;(p) — Low_b")
+b,(B;(p) — Up_b") (5)
Now, D, indicates the dimension, b; and b, depict dual
independent arbitrary vectors of dimension 1 x D;, and B(p)
implies the location of i;; egg ball at p,;, choice.

According to the searching behaviour of DB, the optimum
searching region of DBs and the position of modifications in
searching are determined.

3.2.2. Searching Behaviour
Low_b? = maxi(Y?(1 — R), Low_b)

Up_b? = mini(Y?(1 + R), Up_b) (6)
yip +1) = y;(p) + C; (i (p) — Low_b") + C,(y;(p) —
Up_b") ™

Now, Up_b® and Low_b” refers to the higher and lower
limits of the optimum searching region; Y? depicts the global
optimum position; €, stands for an arbitrary number
succeeding the standard distribution; C, specifies an arbitrary
vector in (0,1) and y(p) implies i, location of DB in iteration
t.

3.2.3. Stealing Behaviour
Yip + 1) =Y +eg([Yipy —Y'[+ [Yiy = Y?[)  (8)

Now, g refers to an arbitrary vector of dimension 1xD that
follows the normal distribution, e signifies a constant value,
and y(p) implies the place of the i,, thief DB at pue ¢in
iteration.

In this method, the objectives are incorporated into a
single objective equation where a current weight detects the
relative significance of each objective.

The fitness function (FF) is accepted as integrating either
the motives of FS.
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Fitness(Y) = a-E(Y) + B * (1 _ﬂ)

™ C)]

Now, Fitness(Y) exemplifies subset Y's fitness value,
E(Y) indicates classifier error rates through applying the
picked out attributes within the subset Y, |R| and |N|
symbolize chosen feature amounts and the new feature
amounts in the dataset consistently, a« and g indicate weights
of the reduction ratio and the classification error.

3.3. Ensemble Attack Detection Methods

In addition, an ensemble classification model
incorporating BiLSTM, GCN, and SDAE is used for attack
detection. The ensemble provides higher robustness and
accuracy in detecting intrinsic and growing attacks compared
to individual models.

3.3.1. Bi-LSTM Model

LSTM is a version of recurrent NN (RNN) broadly
employed for single-variable time series data. Particularly
intended to overcome the issue of vanishing gradient
experienced by conventional RNNs [23].

Forget Gate

Forget gates regulate whether to hold or reject data from
cell states. It utilizes the function of a sigmoid to create a value
between zero and one that reflects how much past data must
be retained.

fe = 0(Vi[heorze] + dy)

Input Gate

The input gate is responsible for establishing the novel
data to be stored in the cell state. A function of the sigmoid is
also employed to classify the values that need to be upgraded,
whereas tanh creates probable novel data.

(10)

iy = o(Vi[heoy, 2] + d;) (11)

(12)

Here, c¢; matches the novel candidate memory value; i,
depicts the output of the input gate. V; and V. refer to the
weight that needs to be determined, d; and d refer to biases,
and tanh represents the hyperbolic tangent function.

C_t = tanh(VC [ht—l’ Zt] + dc)

Update the Memory Cell

The value of the memory cell is upgraded under the
forgetting, input gates, and the newly chosen candidate
memory value.

Co=fe X Cooy + i X Cp (13)
Now, C; denotes the value of the novel memory cell,

whereas C;_, signifies the value of the memory cell from the
preceding time step.
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Output Gate

It requlates data transmission from the memory cell to the
Hidden Layer (HL). It employs either the sigmoid function or
the tanh function to generate the HL and the equivalent
prediction.

0, = o(Vplhe—1, 2] + d,) (14)

h: = 0, X tanh(C) (15)

Now, [, signifies the HL at the present step, O, depicts the
output gate’s output, d,, denotes the bias, and W,, refers to the
weight. The final predictions can endure additional processing
depending on HL h,, with the nature of this processing reliant
on the particular task.

The LSTM effectually models long-term dependency in
time-series data; it is specifically appropriate for sequential
data. Nevertheless, this method incurs computation costs and
requires meticulous tuning of hyperparameters.

A Bi-LSTM network is an extended version of the
conventional LSTM framework, substantially improving its
capability to understand patterns with sequential data by
processing the sequence in either direction, from past to future
and from future to past. In standard LSTM, the method
depends on preceding time-steps for predictive analytics,
which induces missing beneficial data from upcoming values
in the sequence. The Bi-LSTM framework tackles this
limitation by utilizing dual distinct LSTM layers, one of which
processes the sequence of input in forward as well as
backward direction. The outputs from either direction are then
integrated, presenting a more comprehensive context at every
time step. To employ either direction, Bi-LSTM can
frequently acquire more intricate temporal patterns and
improve predictive performance compared with unidirectional
models.

GCN Method

Particularly, GCN signifies a convolutional NN (CNN)
intended for graph-structured data [24]. Although traditional
CNNs outshine in removing spatial aspects from Euclidean
structures, various non-Euclidean frameworks occur in
systems.

GCN presents an innovative method for processing this
data and has found massive applications and relevant fields.
The X and Y denote input and output signals, G indicates the
graph, and the GCN processing approach is specified.

fX,A) =Y (16)

Now A signifies the graph’s adjacency matrix, with

components in matrix A depicting the connectivity relations
among nodes in graph G.
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1 1
HOD = o (D72 AD2H'W") (17)
While 4 = A+ 1 signifies the adjacency matrix with
additional self-connection, H' and W' signify the output and
parameter layer values [; D implies diagonal degree matrices,
and o () denotes the activation function.

SDAE Technique

In addition, the SDAE model is utilized for the
classification technique [25]. It is selected for its ability to
learn and higher-level feature representation from incomplete
or noisy input data. In training, SDAE influences the method
to remove significant patterns, enhancing generalizability and
decreasing overfitting. Its deeper, hierarchical framework
allows it to acquire inherent spatial and context relations with
scenes more effectually than shallow techniques.

To strengthen the AE and its utilization, add a random
noise to produce enhanced data x'. The noise data acts as input
for DAE. A novel model capably attains both degraded and
original features resulting from noise, considerably increasing
the sturdiness of AE and execution. This model effectually
tackles the issue of overfitting. Two conventional models
occur by adding noise in DAE: At present, the input data x
undergoes random O based on a specific map function;
subsequently, noise is directly integrated with the data.
Consequently, the upgrades and transformation of the
decoding and encoding maps are required.

h=SWx'+b,) (18)

z=SW'h+by) (19)

Here, b; and b, refers to the bias vector and the activation
function, S means the sigmoid function, and W' and W depict
the weight matrices.

The loss of DAE is specified:

1 1, -
Lpar = - Xj=1(G 1% — ¥;11%) (20)
Now n depicts the number of input instances, y; denotes
the j., input instance, x; represents the reconstructed output
for the i,;, instance, and || - || refers to the norm operation.

Numerous DAE elements were linked to advance the
SDAE model to increase the removal of feature ability in
particular DAE models.

3.4. Parameter Fine-Tuning Techniques

To further improve the ensemble classification outcomes,
the parameters of the models are adjusted utilizing the ICSA
[26]. This efficiently alters parameters and improves
convergence speed and performance. It also averts local
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minima and efficiently balances exploration and exploitation,
resulting in more accurate and reliable IDS outcomes. Crows
are considered the best intellectual bird species. Crow hides
food and recovers it if needed. Crows stay closer to each other,
monitor and explore, whereas another crow has preserved
their meal, and then picks it up once the owner has just gone.

The model includes four core rules, all of which originate
from the behavioural models of crows. They have a propensity
to collect in larger quantities. They have good memories and
can recall accurately where the meal was concealed. They are
well-known to stay together to snatch nutrition. They have the
talent to observe their surroundings. The CSA is a new kind
of swarm intelligence optimizer model that was created by
demonstrating the intellectual activities that it performs while
looking for and finding nutrition. The reality is that only two
aspects need to be modified, which makes it direct and
interesting for use in technical fields. The conventional CSA
model presents a poor optimizer solution due to its lower
solution diversity, poor exploitation and exploration, and poor
optimizer outcomes.

The CSA mimics the crow's behaviour by storing extra
food and retrieving it if needed. Based on the optimizer
concept, they perform the search, the surroundings near it act
as the searching region, and storing the place of diet in a
completely arbitrary manner is a viable choice.

The CSA sticks to the succeeding principles that originate
from the behaviour of crows: (1) They are gregarious species;
(2) they can recollect the place of a hidden meal; (3) they will
emulate one another and take food for one another; and (4)
they try their best to stop others from robbing their meal.

Step 1: Set the parameters and problem statement of the
algorithm.
N: Group size

Ft: Flight length

Iter_max: Maximal iteration

AP: Awareness probability

Step 2: Set the crow memory and location.

The group consists of N crows, which are randomly
distributed through a d-dimensional searching region, where

d represents the overall promising channels. The primary row
locations are characterized by Eq. (21):

7t 7 Z
2 2 2
z z
crows ={%1 %2 d (21
2y zj zg
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It is assumed that they have secreted their meal in their
initial locations since they are considered to have small
involvement at this time. The crow’s memories are explained
below.

mi  m; mg
2 2 2

crows = { ™M M2 My (22)
my  my my

Step 3: Calculate the fitness of every crow.

By entering the decision variables' values into the goal
function for all crows, the excellence of its place was
computed. The goal function for channel selection reflects the
covariance (CV) and entropy (EN) of the channels, which aids
in choosing main channels with high data. Channel selection
helps in reducing the computing cost of the detection method.
Now, w, and w, are chosen so that w; + w, = 1.

fitness =w; * EN +w, x CV (23)

Step 4: Create a new crow location.

To upgrade, they randomly choose group members, like
Crow J, and emulate it to discover the place of the hidden
meal. Here, the novel place of the crow is upgraded.

Zi,iter+1 —
{Zi,iter +7 % fliter X (mj,iter

_ Sliter 3 Jj,iter
ZUer)  forr = AP (
A random number

24)
or else

The conventional CSA upgrades the at random
population, resulting in weak solution convergence and
diversity. Therefore, the ICSA presents two competitive
learning systems to improve the solution's diversity:
exploration-exploitation and convergence searching region.
The LFEL tactic upgrades the top object utilizing the Lévy
step to enhance the exploration area of the model. It
deliberates the top 2 solutions ( zpes:1 @nd zpe5:2) USING the
maximum fitness values, as provided in Eq. (25).

ZHEL = 7,00 + 2 %11 — 1) * levy(B) * (Zpeser —

(25)

Zbestz)
Now, zFEL specifies the upgraded object gained utilizing
the LFEL model, g signifies the index of distribution, and r1
represents a random index among (0,1).

Still, it utilizes the RWM tactic to improve exploitation of
the model. Their location is upgraded utilizing the RWM
approach as shown in Eq. (26).

ZL-RWM

(26)

= Zworst T T2 * (Zpest — Zworst)

Now, zF"M indicates the upgraded crow utilizing the

RWM model, r2 means a number generated at random
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between 0 and 1, and z,,,,s; represents solutions with poor
fitness.

Step 5: Possibility inspection of novel crow locations.

The novel location in all crows was inspected for the
possibility. They change location if a novel place is possible.
Or else, they do not move to the new place and remain in their
current place.

Step 6: Calculate the fitness value for different places.

Step 7: Upgrade the crow memory utilizing Eq. (27).

mbiter+1 —
{m"‘te”l if fitness of mbeT+1 > fitness of mhtte" @27)
mbtiter otherwise

Step 8: Check the end condition. Steps 4-7 were reiterated
till iter_ max was attained. Once the end prerequisite is
fulfilled, the best memory location concerning the objective
function value is presented as an optimizer problem solution.
The ICSA model initiates an FF to reach an improved
classifier outcome. It establishes an optimistic number to
characterize the greater outcome of candidate solutions. The
reduction in classifier error rate is determined as the FF,
presented in Eq. (28).

fitness(z;) = ClassifierErrorRate(z;)
__ No.of misclassified samples % 100 (28)

Overall sample counts

4. Experimental Validation

In this part, the AEDL-MORID model is inspected
utilizing the WSN-DS dataset from the Kaggle repository
[27]. The dataset has 374661 samples with four classes as
outlined in Table 1. The overall features are 18, and the chosen
attributes are 15. The model runs on Python 3.6.5 with an i5-
8600k CPU, 4GB GPU, 16GB RAM, 250GB SSD, and 1TB
HDD, with 0.01 learning rates, ReLLU, 50 epochs, 0.5 dropout,
and batch size 5. The class imbalance and overfitting are
handled by using downsampling, data augmentation, and
regularization techniques. Figure 3 presents the classifier
outputs of the AEDL-MORID system on the test dataset.
Figures 3(a)-3(b) display the confusion matrices on a
70%TRAPA and 30%TESPA. Figures 3(c) and 3(d) show the
PR and ROC investigation, showing the maximal output for
diverse classes.

Table 1. Dataset description

Classes Samples
“Normal” “34006”
“Blackhole” “10049”
“Grayhole” “14596”
“Flooding” “3312”
“Scheduling Attacks” “6638”
Overall Samples 374661
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Training Phase (70%) - anfusion Matrix Testing Phase (30%) - Confusion Matrix
Normal 281 300 188 239 Normal 103 134 75 93
Blackhole| 80 7081 3 6 9 Blackhole 34 2827 2 3 4
;i Grayhole 83 T 10101 " 14 E:: Grayhole 22 8 4334 8 8
Flooding | 19 1 2 2279 0 Flooding 9 1 1 1000 0
Scheduling Attacks{ 68 7 6 2 | 4588 Scheduling Attacks © 35 3 3 1 1925
5} e > =] s =) - > =} =
Z 2 & =) < Z g & S <
| B B 2 m & = 2
Predicted § Predicted é
(a) (b)
Precision-Recall Curve ) ROC-Curve
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I Normal g Normal
| Blackhole = - Blackhole
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Fig. 3 (a-b) Confusion matrices, and (c-d) curves of PR and ROC.
Table 2. Classification results of the AEDL-MORID approach with TRAPA of 70% and TESPA of 30%
Classes | Accur,, | Sensi, | Speci, | Fpeasure MCC
TRAPA (70%)

Normal 99.52 99.58 98.97 99.74 97.21
Blackhole 99.85 98.63 99.88 97.29 97.23
Grayhole 99.84 98.87 99.88 97.93 97.86
Flooding 99.91 99.04 99.92 95.22 95.24

Scheduling Attacks 99.87 98.22 99.90 96.38 96.33

Average 99.80 98.87 99.71 97.31 96.77

TESPA (30%)

Normal 99.55 99.60 99.02 99.75 97.33
Blackhole 99.86 98.50 99.90 97.28 97.22
Grayhole 99.83 98.95 99.87 97.90 97.82
Flooding 99.91 98.91 99.92 95.33 95.35

Scheduling Attacks 99.87 97.86 99.90 96.32 96.27

Average 99.81 98.77 99.72 97.32 96.80

Table 2 and Figure 4 depict the overall classification method precisely recognized the sample attacks. On
outputs of the AEDL-MORID method on 70%TRAPA and 70%TRAPA, the AEDL-MORID method presents accur,,
30%TESPA. The outputs depict that the AEDL-MORID sensiy, speciy, Fpeqsure, and MCC of 99.80%, 98.87%,
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99.71%, 97.31%, and 96.77%, respectively. Additionally, on
30%TESPA, the AEDL-MORID model presents accur,
sensiy, speciy, Fpeqsure, and MCC of 99.81%, 98.77%,
99.72%, 97.32%, and 96.80%, respectively.

Figure 5 describes the training (TRAIN) accur, and
validation (VALID) accur, of the AEDL-MORID
framework. At the primary stage, either TRAIN or VALID

accur, rises quickly, indicating successful learning of designs
from the data. The VALID accur, somewhat outstrips the
training accur,, proposing excellent generalization without
overfitting. As training develops, imitate the maximum and
minimum performance gaps. The consistent overlap among
curves indicates effective generalization and regularization,
demonstrating the potential of the system in preserving key
attributes from noticed and unnoticed data.

~ —— Training

m Training Phase (70%)  ® Testing Phase (30%)
100

99 -
g
P 98 -
=
[
>
2
< 97

96 -

95 -

Accuracy Sensitivity Specificity F-Measure MCC
Fig. 4 Average of AEDL-MORID approach on 70%TRAPA and 30%TESPA
Training and Validation Accuracy Training and Validation T.oss
= Training 0.06
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/\/—\/
0990~ s

0.988-
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0.986-+

0.984-

0.982-
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Epochs
Fig. 5 Accur,, curve of the AEDL-MORID approach

Figure 6 explains the TRAIN and VALID losses of
AEDL-MORID. To begin with, either TRAIN or VALID
losses are greater, signifying the model initiates with an
incomplete data grasp.

As TRAIN progresses, both losses steadily decrease,
depicting effective learning. The consistent overlap between
both losses suggests good generalization and minimal
overfitting.
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Fig. 6 Loss curve of AEDL-MORID approach

To exhibit the improved outcome of the AEDL-MORID
method, a short comparison analysis is presented in Table 3
and Figure 7 [28]. The outputs represented that the KNN-PSO
method attained a lower outcome with accur, of 93.57%,
sensi, of 96.43%, speci, of 95.63%, and F,cqsure Of
93.75%. Meanwhile, the GOA-GS-IDNN method achieved an
accur, of 93.64%, sensi, of 96.49%, speci,, of 95.68%, and
Freasure OF 93.81%. Similarly, the GB, LSTM, AdaBoost,



M. Pradeepa & R. Ponnusamy / IJETT, 74(2), 280-292, 2026

XGBoost, KNN-AOA, DNN, GWO-LSTM, DNN+KAN, and E,.qsure Of 94.75%. However, the AEDL-MORID
RKOA-AETD, Knowledge-Improved DNN, and BCOA-  approach determines a promising outcome with accur, of
MLID methods outperformed moderate outcomes. Likewise, 99.81%, sensi,, of 98.77%, speci,, of 99.72%, and Fyeqsure
the FSBMOA-IDWSN approach depicts better performance 5 97.3204.

with accur, of 99.67%, sensi,, of 96.99%, speci,, of 99.63%,

Table 3. Comparison evaluation of the AEDL-MORID approach with existing models

Methods Accur, Sensi, Speci, F peasure
AEDL-MORID 99.81 98.77 99.72 97.32
FSBMOA-IDWSN 99.67 96.99 99.63 94.75
BCOA-MLID 99.47 96.31 99.22 94.11
RKOA-AETD 98.99 75.41 96.51 79.58
AdaBoost Model 96.30 96.56 95.76 90.90
Gradient Boosting 95.08 95.94 94.89 94.02
XGBoost Method 97.53 96.72 95.05 92.05
KNN-AOA 97.89 96.28 97.13 90.85
KNN-PSO 93.57 96.43 95.63 93.75
LSTM 95.13 96.01 94.95 94.08
DNN 97.58 96.78 95.11 92.12
GWO-LSTM 97.97 96.34 97.18 90.92
GOA-GS-IDNN 93.64 96.49 95.68 93.81
Knowledge-Improved DNN 99.20 99.18 99.15 99.12
DNN+KAN 98.75 98.60 98.70 98.65

Overall Performance (%)

AEDL-MORID
FSBMOA-IDWSN
BCOA-MLID
RKOA-AETD
AdaBoost Model
Gradient Boosting
XGBoost Method
KNN-AOA
KNN-PSO

LSTM

DNN
GWO-LSTM
GOA-GS-IDNN
Knowledge-Improved DNN
DNN+KAN |

Methods

Accuracy Sensiltivity Specificity F-Measure

Matrics
Fig. 7 Comparison evaluation of the AEDL-MORID approach with existing models

The processing time (PT) of the AEDL-MORID approach KNN-AOA, and GWO-LSTM methods have gained lower
is compared to recent techniques in Table 4 and Figure 8. performance with enhanced PT of 29.58min, 25.58min,
Outputs underline that KNN-PSO, AdaBoost, XGBoost, 24.55min, 21.53min, and 21.07min, correspondingly. In
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addition to that, the GOA-GS-IDNN, RKOA-AETD, DNN,
Gradient Boosting, and Knowledge-Improved DNN
techniques have informed adjacent PT values of 20.00min,
19.78min, 19.00min, 18.75min, and 18.67min, respectively.

In the meantime, the ICFSCN-MHOA, DNN+KAN,
BCOA-MLID, and LSTM techniques have managed to inform
considerable PT of 9.34min, 16.09min, 16.26min, and
16.99min. However, the AEDL-MORID model displayed
better performance with the least PT of 5.87 minutes.

Table 4. PT analysis of AEDL-MORID methodology with existing models

Methods PT (min)
AEDL-MORID 05.87
ICFSCN-MHOA 09.34

BCOA-MLID 16.26
RKOA-AETD 19.78
AdaBoost Model 25.58
Gradient Boosting 18.75
XGBoost Method 24.55
KNN-AOA 21.53
KNN-PSO 29.58
LSTM 16.99
DNN 19.00
GWO-LSTM 21.07
GOA-GS-IDNN 20.00
Knowledge-Improved DNN 18.67
DNN+KAN 16.09
Processing Time (min) = AEDL-MORID
5.879.34 ® ICFSCN-MHOA
16.09 uBCOA-MLID
18.67 RKOA-AETD
20 19.78 m AdaBoost Model
m Gradient Boosting
m XGBoost Method
= KNN-AOA
KNN-PSO
LSTM
= DNN
16.99 mGWO-LSTM
GOA-GS-IDNN
29.38 Knowledge-lmproved DNN
DNN+KAN

Fig. 8 PT analysis of AEDL-MORID methodology with existing models of 93.57%, sensi,, of 96.43%, speci, of 95.63%, and F,cqsure

Table 5 illustrates the ablation study analysis of the
AEDL-MORID model. The AEDL-MORID model illustrated
an accur, of 99.81%, sensi, of 98.77%, sensi, of 99.72%,
and Fpqsure OF 97.32%. By removing GCN and BiLSTM but
keeping SDAE with DBO, FS, and ICSA tuning resulted in an
accury, 0f 99.16%, sensi,, 0f 97.99%, speci, of 99.02%, and
Freasure Of 96.80%. Using SDAE with DBO, FS without
tuning, and without GCN and BiLSTM provided an accur, of
98.60%, sensi,, of 97.43%, speci,of 98.44%, and F,.qsyre
of 96.26%. With GCN, DBO, and ICSA tuning and without
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BiLSTM and SDAE, depicted an accuracy of 97.86%,
sensi, 0f 96.69%, speci,, 0f 97.77%, and F,.qsure Of 95.55%.
Also, using GCN with DBO without tuning and without
BILSTM and SDAE provided an accur, of 97.26%, sensi,
of 95.92%, speci, of 97.13%, and F,¢qeure OF 94.86%.

BiLSTM with DBO and ICSA tuning but without GCN
and SDAE depicted an accur, of 96.65%, sensi,, of 95.38%,
speci,, 0f 96.42%, and Fy,¢q 67 Of 94.23%, and BiLSTM with
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DBO without tuning and without GCN and SDAE achieved
an accur, of 96.14%, sensi, of 94.63%, speci, of 95.91%,
and E,,pqsur00f 93.60%. Table 6 embodies the computational
efficiency assessment of the AEDL-MORID model in terms
of Floating-Point Operations (FLOPSs), Graphics Processing
Unit (GPU), and inference time [29]. The DCNN model
required 100.130 M GLOPs, 2493 M GPU, and 5.07 ms
inference time, while GIDS used 1.590 M GLOPs, 2381 M

GPU, and 3.64 ms. NovelADS needed 36.460 M GLOPs,
3126 M GPU, and 2.69 ms, and iForest took 5.470 M GLOPs,
3221 M GPU, and 8.16 ms. AAIDS-STCANN achieved
efficiency with 0.300 M GLOPs, 2533 M GPU, and 3.55 ms.
The AEDL-MORID approach outperformed all with only
0.084 M GLOPs, 934 M GPU, and the fastest inference time
of 1.05 ms, illustrating superior computational efficiency and
suitability for real-time applications.

Table 5. Ablation study evaluation of the AEDL-MORID model

Methods Accury Sensiy Speciy F yteasure
AEDL-MORID (Ensemble classifier with DBO FS and ICSA tuning) 99.81 98.77 99.72 97.32
SDAE+DBO+ICSA (With FS and tuning without GCN and BiLSTM) 99.16 97.99 99.02 96.80
SDAE+DBO (With FS without tuning and GCN and BiLSTM) 98.60 97.43 98.44 96.26
GCN+DBO+ICSA (With FS and tuning without BiLSTM and SDAE) 97.86 96.69 97.77 95.55
GCN+DBO (With FS without tuning and BiLSTM and SDAE) 97.26 95.92 97.13 94.86
BiLSTM+DBO+ICSA (With FS and tuning without GCN and SDAE) 96.65 95.38 96.42 94.23
BiLSTM+DBO (With FS without tuning and GCN and SDAE) 96.14 94.63 95.91 93.60

Table 6. Evaluation of the AEDL-MORID model based on FLOPs,
GPU, and inference time

Models GLOPs GPU Inference Time
(M) M) (ms)
DCNN 100.130 2493 5.07
GIDS 1.590 2381 3.64
NovelADS 36.460 3126 2.69
iForest 5.470 3221 8.16
AAIDS-
STCANN 0.300 2533 3.55
AEDL-
MORID 0.084 934 1.05

5. Conclusion

In this article, the AEDL-MORID model has been
presented. The aim of the AEDL-MORID system provides a
more substantial potential for real-time utilization in resource-

constrained WSN atmospheres to support network resilience
against refined cyber threats. To obtain that, the AEDL-
MORID framework employs min-max normalization for data
pre-processing. For FS, the DBO model is used to detect the
most informative attributes successfully. In addition, an
ensemble classification model incorporating BiLSTM, GCN,
and SDAE is used for attack detection. To further improve the
ensemble classification outcomes, the parameters of the
models are adjusted utilizing the ICSA. The AEDL-MORID
model was evaluated on the WSN-DS dataset, attaining an
improved accuracy of 99.81% over other approaches. The
limitations include reliance on labelled datasets. The model
also exhibits restricted adaptability and scalability in
extremely large or diverse WSN environments. The research
gap is in developing unsupervised or semi-supervised IDS,
lightweight real-time frameworks, and adaptive mechanisms
for growing attack patterns.
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