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Abstract - With the growth of reliance on the internet and the transfer of most businesses to present remote services, the problems 

in protecting the network and identifying attacks rapidly become more prominent, as the attack surface and cyberattacks improve 

in response. The current Wireless Sensor Networks (WSNs) intrusion detection methods that utilize Machine Learning (ML) 

techniques to detect previously known attacks use single layers of recognition, which means an expensive algorithm must be 

performed before identifying any suspicious action. Network Intrusion Detection Systems (IDS) present a type of service to the 

system, and it becomes unavoidable for some communication systems. ML methods are extensively applied in IDS; still, the 

performance of ML methods is less adequate while processing unbalanced attacks. This paper presents an Advanced Ensemble 

Deep Learning Model Integrated with Metaheuristic Optimization for Secure and Reliable Intrusion Detection (AEDL-MORID) 

methodology. The main objective of the AEDL-MORID methodology presents strong potential for real-time deployment in 

resource-constrained WSN environments, strengthening network resilience against sophisticated cyber threats. The AEDL-

MORID method starts with data pre-processing techniques involving the handling of missing values and min-max normalization 

to ensure clean and consistent input for the learning models. For dimensionality reduction, the dung beetle optimization (DBO) 

method is utilized to detect the most informative features effectively. In addition, an ensemble classification method integrating 

Bidirectional Long Short-Term Memory (BiLSTM), Graph Convolutional Network (GCN), and Stacked Denoising Autoencoder 

(SDAE) is employed for attack detection. To further improve ensemble classification performance, the model parameters are 

fine-tuned using the Improved Crow Search Algorithm (ICSA) method. The experimentation of the AEDL-MORID model is 

conducted on the WSN-DS dataset. The experimental validation of the AEDL-MORID system indicated a better accuracy of 

99.81% compared to recent techniques. 

Keywords - Intrusion Detection, Dung Beetle Optimization, Wireless Sensor Network, Attack Detection, Resource Constrained, 

Deep Learning. 

1. Introduction 
The WSN leverages numerous low-cost, wirelessly 

connected sensor nodes to enable a diverse range of 

applications. The nodes in WSNs are resource-constrained in 

terms of storing, communicating, and computing abilities [1]. 

Like other networks, WSNs are also prone to safety threats 

due to their wireless and distributed features [2]. The 

constrained battery power requires low computations to boost 

the network lifetime. Malicious actors can easily misuse those 

susceptible networks, gain access, and pose a crucial security 

threat in WSNs [3]. While WSNs present diverse critical 

applications, intrusion detection stands out as particularly 

vital. It allows the monitoring of sensitive areas like borders, 

remote locations, and infrastructure [4]. Normally, intrusions 

are malicious activities that breach security protocols to access 

systems and carry out unauthorized activities. As a reasonable 

complement to the firewall, IDS detects malicious behaviour 

and secures the network [5]. It is essential to develop an 

efficient IDS for the WSN. Several IDSs are proposed, where 

the data-mining-driven techniques are proven to be highly 

efficient. The development of advanced devices and network 

technologies creates extensive data, progressively reducing 

the IDS's detection rates [6]. Detection of intruders with 

higher detection precision has become intricate due to the 

network's constantly evolving nature and resource demands 

for processing extensive data from distributed environments. 

Also, IDSs are crucial for user authorization, authentication, 

and managing suspicious activities [7]. IDSs employ dual 

primary methods. Rule- and signature-based IDS. While these 

can precisely identify established attacks, they are ineffective 
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against zero-day attacks due to the shortage of pre-existing 

attack patterns. Anomaly-based IDSs identify intrusions by 

flagging deviations from normal resource utilization or 

network traffic patterns [8]. Though these systems can identify 

zero-day as well as known attacks, they are associated with an 

elevated rate of misclassification. Furthermore, by 

incorporating Deep Learning (DL), a subfield of ML, WSNs 

can attain a high level of security, defend sensitive data, and 

ensure the reliable operation of critical applications in the face 

of continual and advanced attacks [9]. Figure 1 depicts the 

general infrastructure of IDS in WSN.

 

 
Fig. 1 General infrastructure of IDS in WSN

This paper presents an Advanced Ensemble Deep 

Learning Model Integrated with Metaheuristic Optimization 

for Secure and Reliable Intrusion Detection (AEDL-MORID) 

methodology. 

 Initially, missing values are handled via min-max 

normalization to ensure clean and consistent input. 

 The Dung Beetle Optimization (DBO) method is adopted 

for detecting the most informative features. 

 Furthermore, an ensemble of Bidirectional Long Short-

Term Memory (BiLSTM), Graph Convolutional Network 

(GCN), and Stacked Denoising Autoencoder (SDAE) is 

implemented for classification. 

 The Improved Crow Search Algorithm (ICSA) method is 

used for fine-tuning. 

 The novelty is in the integration of BiLSTM, GCN, 

SDAE, and metaheuristic techniques such as DBO and 

ICSA. The AEDL-MORID model efficiency under the 

WSN-DS dataset. 

2. Literature Survey on Secure and Reliable 

Intrusion Detection in WSN 
Srivastava and Prakash [10] presented a method for 

analyzing the addressing scheme of RBMs, a kind of Neural 

Network (NN). This method focuses on a two-part approach. 

The goal is attained using the Chaotic Ant Optimizer (CAO) 

model. The authors created a technique utilizing RBMs to 

define the optimum confidence level for all sensor nodes. This 

study presents an improved multimodal method employing 

DL to solve difficulties in ID and energy optimization using 

WSNs. Alhusseini et al. [11] proposed a Hybrid IDS (HyIDS) 

method by integrating Energy Valley Optimizer (EVO) for 

Feature Selection (FS) with ML classifiers.  

Sakthimohan et al. [12] proposed a Secure DL-driven 

Energy-Efficient Routing (SDLEER) module for WSNs with 

an IDS for identifying attacks within the network. This module 

addresses the current application’s disadvantages by 

integrating energy-efficient IDPS in a single network. In [13], 

a Hybrid Optimized DNN (HODNN) is developed utilizing 

DNNs to enhance its recognition precision. The source node 

identifies the shortest path to the destination, subsequently 

identifying malicious nodes and performing secure routing 

without them. An improved energy-efficient centralized 

clustering routing protocol finds the optimal route for routing 

data. Pande et al. [14] explored the HIDS and NIDS, which 

are the two primary kinds of IDS. The IDS functions by 

incessantly monitoring network traffic or specific hosts' 

activity, examining trends, and detecting suspicious or 

abnormal behaviour. 
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Sharma et al. [15] presented a novel ID technique that 

combines operational and developmental frameworks, 

concentrating particularly on WSNs. With the escalating 

number of attacks, defending SNs becomes progressively 

vital. Along with security violations, unauthorized access to 

systems by attackers presents a threat to critical resources. The 

research highlights the need for a unique ID technique and 

strong feature extraction and classification approaches.  

Karthic and Kumar [16] suggested a novel IDS to present 

protection in statistical communications by detecting intruders 

on WSNs. Then, a novel FS method named improved 

conditional random field-based FS for selecting the most 

contributing features, and an optimized hybrid DNN 

(OHDNN) is proposed to classify. The HDNN is a 

hybridization of CNN and LSTM. Also, an adaptive golden 

eagle optimizer is utilized for parameter optimization. Kumar, 

Vijayan, and Karthik [17] developed an IDS system by 

utilizing ML and DL methods with advanced extraction for 

real-time smart manufacturing.  

Shukla, Dwivedi, and Mishra [18] utilized Kernel 

Principal Component Analysis (KPCA), Lévy flight-driven 

FS, and an optimized Deep Neural Network with LSTM 

(DNN LSTM) model. Also, the lévy flight Grasshopper 

Optimizer Algorithm (GOA) is used for tuning. 

Guru et al. [19] presented a transformer CNN BiGRU 

with an Artificial Bee Optimizer (ABO) model. Mahato and 

Dutta [20] integrated Grey Wolf Optimizer (GWO) based FS 

with the Light Gradient Boosting Machine (LightGBM) 

ensemble learning model. 

Though the existing studies are efficient, they lack 

optimization and adaptation techniques. Real-time 

applicability of many models can be seen in resource-limited 

systems, as they require high computational needs. 

Various studies show an imbalance and are less novel. 

Issues such as privacy and scalability are observed in diverse 

studies. Hence, a research gap exists in developing a 

lightweight, scalable, and privacy-aware IDS to incorporate 

FS and performance, via which effective accuracy can be 

achieved. 

3. Methodological Frameworks 
This study develops an AEDL-MORID method. The 

main aim of the AEDL-MORID method presents greater 

potential for real-time use in resource-constrained WSN, and 

enhances network resilience against refined cyber threats.  

It has four different types of processes involved: pre-

processing, feature reduction, ensemble classification, and 

tuning. Figure 2 illustrates the flow of the AEDL-MORID 

method. 

 
Fig. 2 Entire flow of the AEDL-MORID method 

3.1. Data Pre-Processing Methods 

To obtain that, the AEDL-MORID method starts with 

data pre-processing methods, including handling of missing 

values and min-max normalization to guarantee clean and 

constant input for the learning methods. The cleaning, 

converting, and arranging of primary data into an appropriate 

entity for the computation and modeling process is called data 

preprocessing [21]. It is an essential phase in the data search 

procedure that improves the normality and effectiveness of 

NN methods. There are two methods, such as handling 

missing values and min-max normalization models, which are 

utilized to pre-process the achieved data.  

3.1.1. Handling Missing Values 

It is a standard procedure to eliminate columns or rows 

that have null values. In the same way, rows that have various 

columns recognized as null are eliminated. Established the 

averages or mid-points by utilizing the mode, median, or mean 
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to fix values in the columns. After being associated with the 

accounting expert for the data applied to performance, this 

model is efficient. 

3.1.2. Min-Max Normalization 

A linear transformation is used on the new data by min-

max normalization, scaling accounting features using 

matrices, and standardizing the data to the range−1. Over the 

application of min‐max normalization, the relation among the 

new account information values is preserved. 

𝑋′ =
𝑋−𝑋Min 

𝑋Max −𝑋Min 
                                       (1)    

The maximum values of data and low values of data are 

gained, and each value is substituted into Eq. (1). The variable 

𝑋 represents feature information. 𝑋Min and 𝑋Max characterize 

𝑋's minimum and maximum values as integers. 𝑋′ signifies 

the upgraded value of every input of data. 

Min-max normalization and handling missing values are 

two data pre-processing methods that give a clean, well‐scaled 

dataset. The wholeness of the data is guaranteed by presenting 

suitable statistical measures for missing values in the setting.  

To increase the presented convergence of the model and 

precision in analysis and processing, min-max normalization 

transforms every transaction‐related variable into a 

normalized range (0-1) in the developed performance. 

3.2. DBO-based Dimensionality Reduction Process 

For FS, the DBO model is used to identify the most 

informative attributes successfully. The DBO model has the 

merits of greater processing ability and is suited to manage 

optimization concerns with fewer than three parameters 

optimized [22]. 

3.2.1. Rolling Behaviour 

𝑦𝑖(𝑝 + 1) = 𝑦𝑖(𝑝) + 𝛼𝑙𝑘𝑦𝑖(𝑝 − 1) + 𝑏𝑙𝛥𝑦  

𝛥𝑦 = |𝑦𝑖(𝑝) − 𝑦
𝑤𝑜𝑟𝑠𝑡|                                 (2)  

Now, 𝑦(𝑝) implies the position of 𝑖𝑡ℎ DB in 𝑝𝑡ℎ iteration; 

𝑓 depicts the existing iteration number; 𝑘 signifies the 

defection co-efficient with value of (0,0.2]; 𝑏𝑙 signifies 

constant with an interval of (0,1),  𝛼1 denotes natural 

coefficients with a range of 1 or −1, 1 refers to non-deviation, 

and −1 embodies deviation from unique directions; 𝛥𝑦 is 

employed to represent the modification in intensity of light 

and 𝑦𝑤𝑜𝑟𝑠𝑡  represents the global poor location of DB. The 

dancing behaviour and location of DB are upgraded based on 

Eq. (3). 

𝑦𝑗(𝑝 + 1) = 𝑦𝑖(𝑝) + tan(𝜃𝑠)|𝑦𝑖(𝑝) − 𝑦𝑗(𝑝 − 1)|       (3)  

Now, 𝜃𝑠 shows the angle of defection, while 𝜃𝑠 = 0, 𝜋/2, 
or 𝜋, the DB’s site is not progressed. 

𝐿𝑜𝑤𝑏∗ = maxi(𝑌
∗ × (1 − 𝑅), 𝐿𝑜𝑤𝑏)  

𝑈𝑝_𝑏∗ = mini(𝑌∗ × (1 + 𝑅), 𝑈𝑝_𝑏)                    (4)     

Here, 𝑌∗ depicts existing local best locations; 𝐿𝑜𝑤_𝑏∗ and 

𝑈𝑝_𝑏∗ refer to lower as well as upper boundaries of egg‐laying 

zone; 𝑅 = 1 −
𝑝

𝑃max 
 𝑃max denotes higher iteration amounts; 

𝑈𝑝_𝑏 and 𝐿𝑜𝑤_𝑏, depict upper as well as lower boundaries, 

correspondingly. The position modification of the egg is 

defined by the succeeding Eq. (5): 

𝐵𝑖(𝑝 + 1) = 𝑌∗ + 𝑝1(𝐵𝑖(𝑝) − 𝐿𝑜𝑤_𝑏
∗)  

+𝑏2(𝐵𝑖(𝑝) − 𝑈𝑝_𝑏
∗)                        (5)     

Now, 𝐷𝑙  indicates the dimension, 𝑏1 and 𝑏2 depict dual 

independent arbitrary vectors of dimension 1 × 𝐷𝑙 , 𝑎𝑛𝑑 𝐵(𝑝) 
implies the location of 𝑖𝑡ℎ egg ball at 𝑝𝑡ℎ choice. 

According to the searching behaviour of DB, the optimum 

searching region of DBs and the position of modifications in 

searching are determined. 

3.2.2. Searching Behaviour 

𝐿𝑜𝑤_𝑏𝑏 = maxi(𝑌𝑏(1 − 𝑅), 𝐿𝑜𝑤_𝑏)  

𝑈𝑝_𝑏𝑏 = mini(𝑌𝑏(1 + 𝑅), 𝑈𝑝_𝑏)                       (6)  

𝑦𝑖(𝑝 + 1) = 𝑦𝑖(𝑝) + 𝐶1(𝑦𝑖(𝑝) − 𝐿𝑜𝑤_𝑏
𝑏) + 𝐶2(𝑦𝑖(𝑝) −

𝑈𝑝_𝑏𝑏)                                                     (7)    

Now, 𝑈𝑝_𝑏𝑏 and 𝐿𝑜𝑤_𝑏𝑏 refers to the higher and lower 

limits of the optimum searching region; 𝑌𝑏  depicts the global 

optimum position; 𝐶1 stands for an arbitrary number 

succeeding the standard distribution; 𝐶2 specifies an arbitrary 

vector in (0,1) and 𝑦(𝑝) implies 𝑖𝑡ℎlocation of DB in iteration 

𝑡. 

3.2.3. Stealing Behaviour 

𝑌𝑖(𝑝 + 1) = 𝑌𝑏 + 𝑒𝑔(|𝑌𝑖(𝑝) − 𝑌
∗| + |𝑌𝑖(𝑝) − 𝑌

𝑏|)     (8)    

Now, 𝑔 refers to an arbitrary vector of dimension 1xD that 

follows the normal distribution, 𝑒 signifies a constant value, 

and 𝑦(𝑝) implies the place of the 𝑖𝑡ℎ thief DB at 𝑝ℎ𝑒 𝑡𝑡ℎ 

iteration. 

In this method, the objectives are incorporated into a 

single objective equation where a current weight detects the 

relative significance of each objective.  

The fitness function (FF) is accepted as integrating either 

the motives of FS. 
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𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑌) = 𝛼 ⋅ 𝐸(𝑌) + 𝛽 ∗ (1 −
|𝑅|

|𝑁|
)              (9)  

Now, 𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑌) exemplifies subset 𝑌′𝑠 fitness value, 

𝐸(𝑌) indicates classifier error rates through applying the 

picked out attributes within the subset 𝑌, |𝑅| and |𝑁| 
symbolize chosen feature amounts and the new feature 

amounts in the dataset consistently, 𝛼 and 𝛽 indicate weights 

of the reduction ratio and the classification error. 

3.3. Ensemble Attack Detection Methods 

In addition, an ensemble classification model 

incorporating BiLSTM, GCN, and SDAE is used for attack 

detection. The ensemble provides higher robustness and 

accuracy in detecting intrinsic and growing attacks compared 

to individual models. 

3.3.1. Bi-LSTM Model 

LSTM is a version of recurrent NN (RNN) broadly 

employed for single‐variable time series data. Particularly 

intended to overcome the issue of vanishing gradient 

experienced by conventional RNNs [23].  

Forget Gate 

Forget gates regulate whether to hold or reject data from 

cell states. It utilizes the function of a sigmoid to create a value 

between zero and one that reflects how much past data must 

be retained.  

𝑓𝑡 = 𝜎(𝑉𝑓[ℎ𝑡−1𝑧𝑡] + 𝑑𝑓)                                               (10)     

Input Gate 

The input gate is responsible for establishing the novel 

data to be stored in the cell state. A function of the sigmoid is 

also employed to classify the values that need to be upgraded, 

whereas tanh creates probable novel data. 

𝑖𝑡 = 𝜎(𝑉𝑖[ℎ𝑡−1, 𝑧𝑡] + 𝑑𝑖)                                             (11)      

𝑐𝑡 = tanh(𝑉𝐶[ℎ𝑡−1, 𝑧𝑡] + 𝑑𝐶)                                    (12)      

Here, 𝑐𝑡 matches the novel candidate memory value; 𝑖𝑡 
depicts the output of the input gate. 𝑉𝑖 and 𝑉𝐶 refer to the 

weight that needs to be determined, 𝑑𝑖 and 𝑑𝐶  refer to biases, 

and 𝑡𝑎𝑛ℎ represents the hyperbolic tangent function. 

Update the Memory Cell 

The value of the memory cell is upgraded under the 

forgetting, input gates, and the newly chosen candidate 

memory value. 

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶𝑡                                            (13)      

Now, 𝐶𝑡 denotes the value of the novel memory cell, 

whereas 𝐶𝑡−1 signifies the value of the memory cell from the 

preceding time step. 

Output Gate 

It regulates data transmission from the memory cell to the 

Hidden Layer (HL). It employs either the sigmoid function or 

the tanh function to generate the HL and the equivalent 

prediction. 

𝑂𝑡 = 𝜎(𝑉𝑜[ℎ𝑡−1, 𝑧𝑡] + 𝑑𝑜)                          (14)      

ℎ𝑡 = 𝑂𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡)                                 (15)      

Now, 𝑙𝑡 signifies the HL at the present step, 𝑂𝑡 depicts the 

output gate’s output, 𝑑𝑂 denotes the bias, and 𝑊𝑂 refers to the 

weight. The final predictions can endure additional processing 

depending on HL ℎ𝑡, with the nature of this processing reliant 

on the particular task. 

The LSTM effectually models long-term dependency in 

time-series data; it is specifically appropriate for sequential 

data. Nevertheless, this method incurs computation costs and 

requires meticulous tuning of hyperparameters. 

A Bi‐LSTM network is an extended version of the 

conventional LSTM framework, substantially improving its 

capability to understand patterns with sequential data by 

processing the sequence in either direction, from past to future 

and from future to past. In standard LSTM, the method 

depends on preceding time-steps for predictive analytics, 

which induces missing beneficial data from upcoming values 

in the sequence. The Bi-LSTM framework tackles this 

limitation by utilizing dual distinct LSTM layers, one of which 

processes the sequence of input in forward as well as 

backward direction. The outputs from either direction are then 

integrated, presenting a more comprehensive context at every 

time step. To employ either direction, Bi-LSTM can 

frequently acquire more intricate temporal patterns and 

improve predictive performance compared with unidirectional 

models. 

GCN Method 

Particularly, GCN signifies a convolutional NN (CNN) 

intended for graph‐structured data [24]. Although traditional 

CNNs outshine in removing spatial aspects from Euclidean 

structures, various non‐Euclidean frameworks occur in 

systems. 

GCN presents an innovative method for processing this 

data and has found massive applications and relevant fields. 

The 𝑋 and 𝑌 denote input and output signals, 𝐺 indicates the 

graph, and the GCN processing approach is specified. 

𝑓(𝑋, 𝐴) = 𝑌                                         (16)    

Now 𝐴 signifies the graph’s adjacency matrix, with 

components in matrix 𝐴 depicting the connectivity relations 

among nodes in graph 𝐺. 
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𝐻(𝑙+1) = 𝜎 (𝐷̃−
1

2 𝐴̃𝐷̃−
1

2𝐻𝑙𝑊𝑙)                              (17)    

While 𝐴̃ = 𝐴 + 𝐼 signifies the adjacency matrix with 

additional self‐connection, 𝐻𝑙 and 𝑊𝑙 signify the output and 

parameter layer values 𝑙; 𝐷 implies diagonal degree matrices, 

and 𝜎(∙) denotes the activation function. 

SDAE Technique 

In addition, the SDAE model is utilized for the 

classification technique [25]. It is selected for its ability to 

learn and higher‐level feature representation from incomplete 

or noisy input data. In training, SDAE influences the method 

to remove significant patterns, enhancing generalizability and 

decreasing overfitting. Its deeper, hierarchical framework 

allows it to acquire inherent spatial and context relations with 

scenes more effectually than shallow techniques.  

To strengthen the AE and its utilization, add a random 

noise to produce enhanced data 𝑥′. The noise data acts as input 

for DAE. A novel model capably attains both degraded and 

original features resulting from noise, considerably increasing 

the sturdiness of AE and execution. This model effectually 

tackles the issue of overfitting. Two conventional models 

occur by adding noise in DAE: At present, the input data 𝑥 

undergoes random 0 based on a specific map function; 

subsequently, noise is directly integrated with the data. 

Consequently, the upgrades and transformation of the 

decoding and encoding maps are required. 

ℎ = 𝑆(𝑊𝑥′ + 𝑏1)                                     (18)       

𝑧 = 𝑆(𝑊′ℎ + 𝑏2)                                     (19)       

Here, 𝑏1 and 𝑏2 refers to the bias vector and the activation 

function, 𝑆 means the sigmoid function, and 𝑊′ and 𝑊 depict 

the weight matrices. 

The loss of DAE is specified: 

𝐿𝐷𝐴𝐸 =
1

𝑛
∑ (𝑛
𝑗=1

1

2
‖𝑥̂𝑖 − 𝑦𝑗||

2)                         (20)    

Now 𝑛 depicts the number of input instances, 𝑦𝑗 denotes 

the 𝑗𝑡ℎ input instance, 𝑥̂𝑖 represents the reconstructed output 

for the 𝑖𝑡ℎ instance, and ‖ ⋅ ‖ refers to the norm operation. 

Numerous DAE elements were linked to advance the 

SDAE model to increase the removal of feature ability in 

particular DAE models. 

3.4. Parameter Fine-Tuning Techniques 

To further improve the ensemble classification outcomes, 

the parameters of the models are adjusted utilizing the ICSA 

[26]. This efficiently alters parameters and improves 

convergence speed and performance. It also averts local 

minima and efficiently balances exploration and exploitation, 

resulting in more accurate and reliable IDS outcomes. Crows 

are considered the best intellectual bird species. Crow hides 

food and recovers it if needed. Crows stay closer to each other, 

monitor and explore, whereas another crow has preserved 

their meal, and then picks it up once the owner has just gone.  

The model includes four core rules, all of which originate 

from the behavioural models of crows. They have a propensity 

to collect in larger quantities. They have good memories and 

can recall accurately where the meal was concealed. They are 

well-known to stay together to snatch nutrition. They have the 

talent to observe their surroundings. The CSA is a new kind 

of swarm intelligence optimizer model that was created by 

demonstrating the intellectual activities that it performs while 

looking for and finding nutrition. The reality is that only two 

aspects need to be modified, which makes it direct and 

interesting for use in technical fields. The conventional CSA 

model presents a poor optimizer solution due to its lower 

solution diversity, poor exploitation and exploration, and poor 

optimizer outcomes.  

The CSA mimics the crow's behaviour by storing extra 

food and retrieving it if needed. Based on the optimizer 

concept, they perform the search, the surroundings near it act 

as the searching region, and storing the place of diet in a 

completely arbitrary manner is a viable choice.  

The CSA sticks to the succeeding principles that originate 

from the behaviour of crows: (1) They are gregarious species; 

(2) they can recollect the place of a hidden meal; (3) they will 

emulate one another and take food for one another; and (4) 

they try their best to stop others from robbing their meal.  

Step 1: Set the parameters and problem statement of the 

algorithm. 

𝑁: Group size  

𝐹𝑡: Flight length 

𝐼𝑡𝑒𝑟_𝑚𝑎𝑥: Maximal iteration  

𝐴𝑃: Awareness probability 

Step 2: Set the crow memory and location. 

The group consists of 𝑁 crows, which are randomly 

distributed through a 𝑑-dimensional searching region, where 

𝑑 represents the overall promising channels. The primary row 

locations are characterized by Eq. (21): 

 𝑐𝑟𝑜𝑤𝑠 =

{
 

 
𝑧1
1 𝑧2

1 ⋯ 𝑧𝑑
1

𝑧1
2 𝑧2

2 ⋯ 𝑧𝑑
2

  ⋮ ⋮ ⋮ ⋮
𝑧1
𝑁 𝑧2

𝑁 ⋯ 𝑧𝑑
𝑁}
 

 

                      (21)  
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It is assumed that they have secreted their meal in their 

initial locations since they are considered to have small 

involvement at this time. The crow’s memories are explained 

below.  

crows =

{
 

 
𝑚1
1 𝑚2

1 ⋯ 𝑚𝑑
1

𝑚1
2 𝑚2

2 ⋯ 𝑚𝑑
2

⋮ ⋮ ⋮ ⋮
𝑚1
𝑁 𝑚2

𝑁 ⋯ 𝑚𝑑
𝑁}
 

 

                     (22)  

Step 3: Calculate the fitness of every crow. 

By entering the decision variables' values into the goal 

function for all crows, the excellence of its place was 

computed. The goal function for channel selection reflects the 

covariance (𝐶𝑉) and entropy (𝐸𝑁) of the channels, which aids 

in choosing main channels with high data. Channel selection 

helps in reducing the computing cost of the detection method. 

Now, 𝑤1 and 𝑤2 are chosen so that 𝑤1 + 𝑤2 = 1. 

 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑤1 ∗ 𝐸𝑁 + 𝑤2 ∗ 𝐶𝑉                         (23)    

Step 4: Create a new crow location. 

To upgrade, they randomly choose group members, like 

Crow 𝐽, and emulate it to discover the place of the hidden 

meal. Here, the novel place of the crow is upgraded. 

𝑧𝑖,𝑖𝑡𝑒𝑟+1 =

{
𝑧𝑖,𝑖𝑡𝑒𝑟 + 𝑟𝑖 × 𝑓𝑙

𝑖𝑡𝑒𝑟 × (𝑚𝑗,𝑖𝑡𝑒𝑟 − 𝑧𝑖,𝑖𝑡𝑒𝑟)

𝐴 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑢𝑚𝑏𝑒𝑟
      
𝑓𝑜𝑟 𝑟𝑗 ≥ 𝐴𝑃

𝑗,𝑖𝑡𝑒𝑟   

𝑜𝑟 𝑒𝑙𝑠𝑒
(24)

 
  

The conventional CSA upgrades the at random 

population, resulting in weak solution convergence and 

diversity. Therefore, the ICSA presents two competitive 

learning systems to improve the solution's diversity: 

exploration-exploitation and convergence searching region. 

The LFEL tactic upgrades the top object utilizing the Lévy 

step to enhance the exploration area of the model. It 

deliberates the top 2 solutions ( 𝑧𝑏𝑒𝑠𝑡1 and 𝑧𝑏𝑒𝑠𝑡2) using the 

maximum fitness values, as provided in Eq. (25). 

𝑧𝑖
𝐿𝐹𝐸𝐿 = 𝑧𝑏𝑒𝑠𝑡 + (2 ∗ 𝑟1 − 1) ∗ 𝑙𝑒𝑣𝑦(𝛽) ∗ (𝑧𝑏𝑒𝑠𝑡1 −

𝑧𝑏𝑒𝑠𝑡2)                                              (25)   

Now, 𝑧𝑖
𝐿𝐹𝐸𝐿 specifies the upgraded object gained utilizing 

the LFEL model, 𝛽 signifies the index of distribution, and 𝑟1 

represents a random index among (0,1). 

Still, it utilizes the RWM tactic to improve exploitation of 

the model. Their location is upgraded utilizing the RWM 

approach as shown in Eq. (26). 

𝑧𝑖
𝑅𝑊𝑀 = 𝑧𝑤𝑜𝑟𝑠𝑡 + 𝑟2 ∗ (𝑧𝑏𝑒𝑠𝑡 − 𝑧𝑤𝑜𝑟𝑠𝑡)            (26)    

Now, 𝑧𝑖
𝑅𝑊𝑀 indicates the upgraded crow utilizing the 

RWM model, 𝑟2 means a number generated at random 

between 0 and 1, and 𝑧𝑤𝑜𝑟𝑠𝑡 represents solutions with poor 

fitness. 

Step 5: Possibility inspection of novel crow locations. 

The novel location in all crows was inspected for the 

possibility. They change location if a novel place is possible. 

Or else, they do not move to the new place and remain in their 

current place. 

Step 6: Calculate the fitness value for different places. 

Step 7: Upgrade the crow memory utilizing Eq. (27). 

 𝑚𝑖,𝑖𝑡𝑒𝑟+1 =

{𝑚
𝑖,𝑖𝑡𝑒𝑟+1 
𝑚𝑖,𝑖𝑡𝑒𝑟

𝑖𝑓 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑚𝑖,𝑖𝑡𝑒𝑟+1

 
> 𝑓𝑖𝑡𝑛𝑒𝑠𝑠 𝑜𝑓 𝑚𝑖,𝑖𝑡𝑒𝑟  

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(27) 

Step 8: Check the end condition. Steps 4-7 were reiterated 

till 𝑖𝑡𝑒𝑟− max was attained. Once the end prerequisite is 

fulfilled, the best memory location concerning the objective 

function value is presented as an optimizer problem solution. 

The ICSA model initiates an FF to reach an improved 

classifier outcome. It establishes an optimistic number to 

characterize the greater outcome of candidate solutions. The 

reduction in classifier error rate is determined as the FF, 

presented in Eq. (28).    

𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑧𝑖) = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝐸𝑟𝑟𝑜𝑟𝑅𝑎𝑡𝑒(𝑧𝑖) 

=
𝑁𝑜.𝑜𝑓 𝑚𝑖𝑠𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒 𝑐𝑜𝑢𝑛𝑡𝑠
× 100     (28)  

4. Experimental Validation 
In this part, the AEDL-MORID model is inspected 

utilizing the WSN-DS dataset from the Kaggle repository 

[27]. The dataset has 374661 samples with four classes as 

outlined in Table 1. The overall features are 18, and the chosen 

attributes are 15. The model runs on Python 3.6.5 with an i5-

8600k CPU, 4GB GPU, 16GB RAM, 250GB SSD, and 1TB 

HDD, with 0.01 learning rates, ReLU, 50 epochs, 0.5 dropout, 

and batch size 5. The class imbalance and overfitting are 

handled by using downsampling, data augmentation, and 

regularization techniques. Figure 3 presents the classifier 

outputs of the AEDL-MORID system on the test dataset. 

Figures 3(a)-3(b) display the confusion matrices on a 

70%TRAPA and 30%TESPA. Figures 3(c) and 3(d) show the 

PR and ROC investigation, showing the maximal output for 

diverse classes. 

Table 1. Dataset description 

Classes Samples 

“Normal” “34006” 

“Blackhole” “10049” 

“Grayhole” “14596” 

“Flooding” “3312” 

“Scheduling Attacks” “6638” 

Overall Samples 374661 
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Fig. 3 (a-b) Confusion matrices, and (c-d) curves of PR and ROC.  

Table 2. Classification results of the AEDL-MORID approach with TRAPA of 70% and TESPA of 30% 

Classes 𝑨𝒄𝒄𝒖𝒓𝒚 𝑺𝒆𝒏𝒔𝒊𝒚 𝑺𝒑𝒆𝒄𝒊𝒚 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆 MCC 

TRAPA (70%) 

Normal 99.52 99.58 98.97 99.74 97.21 

Blackhole 99.85 98.63 99.88 97.29 97.23 

Grayhole 99.84 98.87 99.88 97.93 97.86 

Flooding 99.91 99.04 99.92 95.22 95.24 

Scheduling Attacks 99.87 98.22 99.90 96.38 96.33 

Average 99.80 98.87 99.71 97.31 96.77 

TESPA (30%) 

Normal 99.55 99.60 99.02 99.75 97.33 

Blackhole 99.86 98.50 99.90 97.28 97.22 

Grayhole 99.83 98.95 99.87 97.90 97.82 

Flooding 99.91 98.91 99.92 95.33 95.35 

Scheduling Attacks 99.87 97.86 99.90 96.32 96.27 

Average 99.81 98.77 99.72 97.32 96.80 

Table 2 and Figure 4 depict the overall classification 

outputs of the AEDL-MORID method on 70%TRAPA and 

30%TESPA. The outputs depict that the AEDL-MORID 

method precisely recognized the sample attacks. On 

70%TRAPA, the AEDL-MORID method presents 𝑎𝑐𝑐𝑢𝑟𝑦, 

𝑠𝑒𝑛𝑠𝑖𝑦 , 𝑠𝑝𝑒𝑐𝑖𝑦, 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , and MCC of 99.80%, 98.87%, 
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99.71%, 97.31%, and 96.77%, respectively. Additionally, on 

30%TESPA, the AEDL-MORID model presents 𝑎𝑐𝑐𝑢𝑟𝑦, 

𝑠𝑒𝑛𝑠𝑖𝑦 , 𝑠𝑝𝑒𝑐𝑖𝑦, 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 , and MCC of 99.81%, 98.77%, 

99.72%, 97.32%, and 96.80%, respectively. 

Figure 5 describes the training (TRAIN) 𝑎𝑐𝑐𝑢𝑟𝑦 and 

validation (VALID) 𝑎𝑐𝑐𝑢𝑟𝑦  of the AEDL-MORID 

framework. At the primary stage, either TRAIN or VALID 

𝑎𝑐𝑐𝑢𝑟𝑦 rises quickly, indicating successful learning of designs 

from the data. The VALID 𝑎𝑐𝑐𝑢𝑟𝑦 somewhat outstrips the 

training 𝑎𝑐𝑐𝑢𝑟𝑦, proposing excellent generalization without 

overfitting. As training develops, imitate the maximum and 

minimum performance gaps. The consistent overlap among 

curves indicates effective generalization and regularization, 

demonstrating the potential of the system in preserving key 

attributes from noticed and unnoticed data. 

 
Fig. 4 Average of AEDL-MORID approach on 70%TRAPA and 30%TESPA 

 
Fig. 5 𝑨𝒄𝒄𝒖𝒓𝒚 curve of the AEDL-MORID approach 

Figure 6 explains the TRAIN and VALID losses of 

AEDL-MORID. To begin with, either TRAIN or VALID 

losses are greater, signifying the model initiates with an 

incomplete data grasp.  

As TRAIN progresses, both losses steadily decrease, 

depicting effective learning. The consistent overlap between 

both losses suggests good generalization and minimal 

overfitting. 

 
Fig. 6 Loss curve of AEDL-MORID approach 

To exhibit the improved outcome of the AEDL-MORID 

method, a short comparison analysis is presented in Table 3 

and Figure 7 [28]. The outputs represented that the KNN-PSO 

method attained a lower outcome with 𝑎𝑐𝑐𝑢𝑟𝑦  of 93.57%, 

𝑠𝑒𝑛𝑠𝑖𝑦 of 96.43%, 𝑠𝑝𝑒𝑐𝑖𝑦  of 95.63%, and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 

93.75%. Meanwhile, the GOA-GS-IDNN method achieved an 

𝑎𝑐𝑐𝑢𝑟𝑦  of 93.64%, 𝑠𝑒𝑛𝑠𝑖𝑦 of 96.49%, 𝑠𝑝𝑒𝑐𝑖𝑦  of 95.68%, and 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 93.81%. Similarly, the GB, LSTM, AdaBoost, 
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XGBoost, KNN-AOA, DNN, GWO-LSTM, DNN+KAN, 

RKOA-AETD, Knowledge-Improved DNN, and BCOA-

MLID methods outperformed moderate outcomes. Likewise, 

the FSBMOA-IDWSN approach depicts better performance 

with 𝑎𝑐𝑐𝑢𝑟𝑦  of 99.67%, 𝑠𝑒𝑛𝑠𝑖𝑦 of 96.99%, 𝑠𝑝𝑒𝑐𝑖𝑦  of 99.63%, 

and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 94.75%. However, the AEDL-MORID 

approach determines a promising outcome with 𝑎𝑐𝑐𝑢𝑟𝑦  of 

99.81%, 𝑠𝑒𝑛𝑠𝑖𝑦  of 98.77%, 𝑠𝑝𝑒𝑐𝑖𝑦 of 99.72%, and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  

of 97.32%. 

Table 3. Comparison evaluation of the AEDL-MORID approach with existing models  

Methods 𝑨𝒄𝒄𝒖𝒓𝒚 𝑺𝒆𝒏𝒔𝒊𝒚 𝑺𝒑𝒆𝒄𝒊𝒚 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

AEDL-MORID 99.81 98.77 99.72 97.32 

FSBMOA-IDWSN 99.67 96.99 99.63 94.75 

BCOA-MLID 99.47 96.31 99.22 94.11 

RKOA-AETD 98.99 75.41 96.51 79.58 

AdaBoost Model 96.30 96.56 95.76 90.90 

Gradient Boosting 95.08 95.94 94.89 94.02 

XGBoost Method 97.53 96.72 95.05 92.05 

KNN-AOA 97.89 96.28 97.13 90.85 

KNN-PSO 93.57 96.43 95.63 93.75 

LSTM 95.13 96.01 94.95 94.08 

DNN 97.58 96.78 95.11 92.12 

GWO-LSTM 97.97 96.34 97.18 90.92 

GOA-GS-IDNN 93.64 96.49 95.68 93.81 

Knowledge-Improved DNN 99.20 99.18 99.15 99.12 

DNN+KAN 98.75 98.60 98.70 98.65 

 
Fig. 7 Comparison evaluation of the AEDL-MORID approach with existing models 

The processing time (PT) of the AEDL-MORID approach 

is compared to recent techniques in Table 4 and Figure 8. 

Outputs underline that KNN-PSO, AdaBoost, XGBoost, 

KNN-AOA, and GWO-LSTM methods have gained lower 

performance with enhanced PT of 29.58min, 25.58min, 

24.55min, 21.53min, and 21.07min, correspondingly. In 
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addition to that, the GOA-GS-IDNN, RKOA-AETD, DNN, 

Gradient Boosting, and Knowledge-Improved DNN 

techniques have informed adjacent PT values of 20.00min, 

19.78min, 19.00min, 18.75min, and 18.67min, respectively.  

In the meantime, the ICFSCN-MHOA, DNN+KAN, 

BCOA-MLID, and LSTM techniques have managed to inform 

considerable PT of 9.34min, 16.09min, 16.26min, and 

16.99min. However, the AEDL-MORID model displayed 

better performance with the least PT of 5.87 minutes.  

Table 4. PT analysis of AEDL-MORID methodology with existing models 

Methods PT (min) 

AEDL-MORID 05.87 

ICFSCN-MHOA 09.34 

BCOA-MLID 16.26 

RKOA-AETD 19.78 

AdaBoost Model 25.58 

Gradient Boosting 18.75 

XGBoost Method 24.55 

KNN-AOA 21.53 

KNN-PSO 29.58 

LSTM 16.99 

DNN 19.00 

GWO-LSTM 21.07 

GOA-GS-IDNN 20.00 

Knowledge-Improved DNN 18.67 

DNN+KAN 16.09 

 
Fig. 8 PT analysis of AEDL-MORID methodology with existing models of 93.57%, 𝒔𝒆𝒏𝒔𝒊𝒚 of 96.43%, 𝒔𝒑𝒆𝒄𝒊𝒚 of 95.63%, and 𝑭𝒎𝒆𝒂𝒔𝒖𝒓𝒆  

Table 5 illustrates the ablation study analysis of the 

AEDL-MORID model. The AEDL-MORID model illustrated 

an 𝑎𝑐𝑐𝑢𝑟𝑦 of 99.81%, 𝑠𝑒𝑛𝑠𝑖𝑦  of 98.77%, 𝑠𝑒𝑛𝑠𝑖𝑦  of 99.72%, 

and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒 of 97.32%. By removing GCN and BiLSTM but 

keeping SDAE with DBO, FS, and ICSA tuning resulted in an 

𝑎𝑐𝑐𝑢𝑟𝑦  of 99.16%, 𝑠𝑒𝑛𝑠𝑖𝑦   of 97.99%, 𝑠𝑝𝑒𝑐𝑖𝑦of 99.02%, and 

𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 96.80%. Using SDAE with DBO, FS without 

tuning, and without GCN and BiLSTM provided an 𝑎𝑐𝑐𝑢𝑟𝑦  of 

98.60%, 𝑠𝑒𝑛𝑠𝑖𝑦  of 97.43%, 𝑠𝑝𝑒𝑐𝑖𝑦of 98.44%, and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  

of 96.26%. With GCN, DBO, and ICSA tuning and without 

BiLSTM and SDAE, depicted an accuracy of 97.86%, 

𝑠𝑒𝑛𝑠𝑖𝑦of 96.69%, 𝑠𝑝𝑒𝑐𝑖𝑦  of 97.77%, and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒  of 95.55%. 

Also, using GCN with DBO without tuning and without 

BiLSTM and SDAE provided an 𝑎𝑐𝑐𝑢𝑟𝑦  of 97.26%, 𝑠𝑒𝑛𝑠𝑖𝑦 

of 95.92%, 𝑠𝑝𝑒𝑐𝑖𝑦of 97.13%, and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒of 94.86%.  

BiLSTM with DBO and ICSA tuning but without GCN 

and SDAE depicted an 𝑎𝑐𝑐𝑢𝑟𝑦  of 96.65%, 𝑠𝑒𝑛𝑠𝑖𝑦  of 95.38%, 

𝑠𝑝𝑒𝑐𝑖𝑦  of 96.42%, and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒of 94.23%, and BiLSTM with 
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16.26

19.78

25.58

18.75

24.55

21.5329.58

16.99

19

21.07

20

18.67

16.09

Processing Time (min)
AEDL-MORID

ICFSCN-MHOA

BCOA-MLID

RKOA-AETD

AdaBoost Model

Gradient Boosting

XGBoost Method

KNN-AOA

KNN-PSO

LSTM

DNN

GWO-LSTM

GOA-GS-IDNN

Knowledge-Improved DNN

DNN+KAN



M. Pradeepa & R. Ponnusamy / IJETT, 74(2), 280-292, 2026 

 

291 

DBO without tuning and without GCN and SDAE achieved 

an 𝑎𝑐𝑐𝑢𝑟𝑦 of 96.14%, 𝑠𝑒𝑛𝑠𝑖𝑦 of 94.63%, 𝑠𝑝𝑒𝑐𝑖𝑦  of 95.91%, 

and 𝐹𝑚𝑒𝑎𝑠𝑢𝑟𝑒of 93.60%. Table 6 embodies the computational 

efficiency assessment of the AEDL-MORID model in terms 

of Floating-Point Operations (FLOPs), Graphics Processing 

Unit (GPU), and inference time [29]. The DCNN model 

required 100.130 M GLOPs, 2493 M GPU, and 5.07 ms 

inference time, while GIDS used 1.590 M GLOPs, 2381 M 

GPU, and 3.64 ms. NovelADS needed 36.460 M GLOPs, 

3126 M GPU, and 2.69 ms, and iForest took 5.470 M GLOPs, 

3221 M GPU, and 8.16 ms. AAIDS-STCANN achieved 

efficiency with 0.300 M GLOPs, 2533 M GPU, and 3.55 ms. 

The AEDL-MORID approach outperformed all with only 

0.084 M GLOPs, 934 M GPU, and the fastest inference time 

of 1.05 ms, illustrating superior computational efficiency and 

suitability for real-time applications. 

Table 5. Ablation study evaluation of the AEDL-MORID model 

Methods 𝑨𝒄𝒄𝒖𝒓𝒚 𝑺𝒆𝒏𝒔𝒊𝒚 𝑺𝒑𝒆𝒄𝒊𝒚 𝑭𝑴𝒆𝒂𝒔𝒖𝒓𝒆 

AEDL-MORID (Ensemble classifier with DBO FS and ICSA tuning) 99.81 98.77 99.72 97.32 

SDAE+DBO+ICSA (With FS and tuning without GCN and BiLSTM) 99.16 97.99 99.02 96.80 

SDAE+DBO (With FS without tuning and GCN and BiLSTM) 98.60 97.43 98.44 96.26 

GCN+DBO+ICSA (With FS and tuning without BiLSTM and SDAE) 97.86 96.69 97.77 95.55 

GCN+DBO (With FS without tuning and BiLSTM and SDAE) 97.26 95.92 97.13 94.86 

BiLSTM+DBO+ICSA (With FS and tuning without GCN and SDAE) 96.65 95.38 96.42 94.23 

BiLSTM+DBO (With FS without tuning and GCN and SDAE) 96.14 94.63 95.91 93.60 

Table 6. Evaluation of the AEDL-MORID model based on FLOPs, 

GPU, and inference time 

Models 
GLOPs 

(M) 

GPU 

(M) 

Inference Time 

(ms) 

DCNN 100.130 2493 5.07 

GIDS 1.590 2381 3.64 

NovelADS 36.460 3126 2.69 

iForest 5.470 3221 8.16 

AAIDS-

STCANN 
0.300 2533 3.55 

AEDL-

MORID 
0.084 934 1.05 

 

5. Conclusion 
In this article, the AEDL-MORID model has been 

presented. The aim of the AEDL-MORID system provides a 

more substantial potential for real-time utilization in resource-

constrained WSN atmospheres to support network resilience 

against refined cyber threats. To obtain that, the AEDL-

MORID framework employs min-max normalization for data 

pre-processing. For FS, the DBO model is used to detect the 

most informative attributes successfully. In addition, an 

ensemble classification model incorporating BiLSTM, GCN, 

and SDAE is used for attack detection. To further improve the 

ensemble classification outcomes, the parameters of the 

models are adjusted utilizing the ICSA. The AEDL-MORID 

model was evaluated on the WSN-DS dataset, attaining an 

improved accuracy of 99.81% over other approaches. The 

limitations include reliance on labelled datasets. The model 

also exhibits restricted adaptability and scalability in 

extremely large or diverse WSN environments. The research 

gap is in developing unsupervised or semi-supervised IDS, 

lightweight real-time frameworks, and adaptive mechanisms 

for growing attack patterns.
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