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Abstract - Since cardiovascular disease continues to be the world’s leading cause of death, precise, data-driven diagnostic 
systems must be developed. By combining multi-phase feature selection, adaptive model training, and sophisticated 

preprocessing, this study suggests an intelligent classification framework for the diagnosis of heart disease. Using a novel hybrid 

kernel function for dynamic feature space adaptation, the Improved Adaptive Support Vector Machine (IASVM) is an improved 

version of the Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) classifiers. The dataset is first 

normalized for consistency and cleaned using outlier detection (Isolation Forest). A comprehensive method that combines 

correlation analysis, ANOVA F-test, Random Forest Importance (RFI), and SHAP value analysis is used to select features. These 

complementary methods reduce dimensional complexity while identifying a small, highly impactful subset of features that 

maintain diagnostic significance. To assess how feature reduction affects performance, all four models are trained on both the 

full feature set and the optimized subset for classification. The IASVM uses an adaptive kernel function that dynamically scales 

according to the geometric properties of the dataset, integrating the Manhattan and Euclidean distances. Because of this, it can 

more effectively differentiate between overlapping classes in nonlinear spaces, especially in clinical settings where feature 
distributions are unbalanced or skewed. To fine-tune classification boundaries, grid search and cross-validation are used in the 

IASVM’s hyperparameter tuning process. A real-world dataset of heart disease is used for experimental evaluations, and metrics 

like accuracy, precision, recall, F1-score, and AUC are used to compare the models. The findings highlight the IASVM’s capacity 

to generalise in high-dimensional and noisy domains by showing that, even though traditional models function well, it invariably 

performs better than the others, particularly when using the chosen feature set. Additionally, to improve clinical interpretability 

and usability, a graphical user interface (GUI) is created to display feature selection results, classification metrics, and accuracy 

comparisons. This study demonstrates how well feature optimisation and adaptive kernel-based classification work together, 

offering a scalable and understandable method for improving cardiovascular healthcare decision support. 

Keywords - Heart Disease Diagnosis, Random Forest, Neural Network, Support Vector Machine, Adaptive Support Vector 

Machine, Grid search, Feature Selection, SHAP, Ensemble Learning, Medical Classification, ROC Curve. 

1. Introduction 
The Cardiovascular Diseases (CVDs) have proven to be 

among the primary reasons for human deaths across the globe 

[1]. Among these diseases, Coronary Artery Disease (CAD) 

has been identified as a life-threatening disease caused by the 

obstruction or narrowing of the coronary arteries. The 

diagnosis of a human cardiac disease is an important factor in 

reducing human mortality rates and providing ample time for 
proper treatment [2]. The current methods of diagnosis 

involve a lot of manual analysis of various tests and have 

proven to cause delays in diagnosis. Due to the recent 

acceleration in the development of artificial intelligence and 

machine learning, automated heart disease diagnosis tools 

using artificial intelligence and machine learning techniques 
have received considerable interest in recent years [3]. 

Various artificial intelligence and machine learning 

algorithms, including Logistic Regression, Decision Trees, 

Random Forest, Support Vector Machines, and Neural 

Networks, have been widely used to interpret clinical data and 

help doctors in heart disease prediction. These algorithms 

have shown promising results in disease pattern detection 

using relevant clinical features like age, blood pressure, 

cholesterol, ECG, and type of chest pain. However, the 

accuracy and robustness of automated heart disease diagnosis 

https://www.internationaljournalssrg.org/
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systems heavily rely on data quality, relevance, and 

adaptability. Feature selection has been recognized as a crucial 

step to improve the classification accuracy, interpretability, 

and computational efficiency [4]. Most of the current studies 

use one single strategy of statistical, wrapper, or embedded 
feature selection techniques independently, such as the Chi-

square test, ANOVA, Recursive Feature Elimination, and 

tree-based importance measures. However, a single-strategy 

feature selection cannot capture complementary information 

from different perspectives, which usually incurs either 

redundant feature retention or loss of discriminative attributes. 

Moreover, recently explainable artificial intelligence tools, 

such as SHAP, have also attracted much more emphasis to 

improve the transparency and trust in the clinical decision-

making system [5]. SVM is still one of the best classifiers for 

medical diagnosis because of its solid theoretical 

fundamentals and generalization capability [6]. However, it 
traditionally depends upon fixed kernel functions such as 

radial basis functions, polynomials, and sigmoid functions. 

These kernels are inherently fixed and usually fail to be 

adapted to the heterogeneous and nonlinear distributions of 

clinical data. Thus, their classification performance 

deteriorates in high-dimensional, imbalanced, and noisy 

medical datasets. Although many methods of kernel 

optimization have been proposed up till now, most of them 

lack adaptability and distance-aware learning capability. 

Recent research trends indicate an increasing need for 

adaptive kernel learning mechanisms that may adapt 
dynamically to the intrinsic geometry of medical data [7]. 

Simultaneously, ensemble learning and hybrid feature 

optimization strategies have shown superior performance 

compared to single-model frameworks. However, only a few 

studies have tried to integrate adaptive kernel learning with 

multi-strategy feature optimization in a unified diagnostic 

framework. Moreover, most existing works mainly focus on 

accuracy and offer very limited interpretability and practical 

clinical usability. Despite these advances, several important 

gaps persist in the current literature: First, fixed kernel SVM 

models cannot adapt to complex clinical feature distributions. 

Second, most existing feature selection frameworks mainly 
rely on isolated techniques other than synergistic multi-

strategy optimization. Third, interpretability-driven feature 

validation is often not considered. Finally, very few studies 

have provided comprehensive comparisons supported by 

statistical significance testing and clinical-oriented 

visualization. 

In an attempt to address these challenges, an improved 

adaptive kernel-based SVM ensemble solution combined with 

an extensive feature optimization technique is proposed to 

facilitate better heart disease prediction. The proposed 

solution presents an Improved Adaptive Support Vector 
Machine (IASVM) solution that uses an innovative distance-

aware kernel through Manhattan and Euclidean distance 

scaling. The adaptive kernel is used to facilitate better margins 

between heart disease and non-heart disease to qualify better 

adaptability and learning capabilities. In the subsequent step, 

an extensive feature optimization flow chain involving 

ANOVA F-Test, Recursive Feature Elimination, RF 

Importance, and SHAP Values is established to detect the 
most crucial feature. The extracted feature set is then utilized 

to train and test the models of RF, Neural Network, SVM, and 

IASVM. 

The key takeaways or contributions of this work are as 

follows: 

 Formulation of a new adaptive hybrid kernel-based 

IASVM approach to classify heart disease patients. 

 Multi-strategy features optimization framework design, 

including statistical methods. Add wrapper and 

embedded approaches. Use explainability. 

 Detailed comparative analysis based on various 
performance criteria, ROC analysis, and validation tests. 

 Integration of graphical interface support for real-time 

clinical decision assistance and comparison of models. 

Various experimental analyses have validated that the 

designed IASVM model with chosen features performs much 

better than conventional machine learning models concerning 

their accuracy, precision, recall, and F1-score values. The 

designed framework is, thus, a reliable, interpretable, and 

practical solution for early-stage heart disease analysis. 

2. Related Works 

R. Raniya et al. [8] presented a new and more 

comprehensive way to improve the diagnosis of heart disease 

by using machine learning algorithms and statistical methods 

for feature selection. In particular, the authors used the Chi-

square (χ²) test using clinical characteristics that affect the 

outcomes of heart disease to identify the features that were 

most relevant to providing a significant improvement in the 

prediction of heart disease. By doing so, the algorithm not only 
provided increased accuracy but also helped in the efficiency 

and effectiveness of the model by reducing the dimensionality 

of the problem. Mohsen Dorraki et al. [9] investigated the 

potential of improving Cardiovascular Disease (CVD) risk 

prediction by incorporating psychological factors into 

machine learning (ML) models. The initial model using only 

CVD risk factors had an accuracy of 71.31%. The authors then 

built a model that included psychological variables, including 

depression, anxiety, and stress. The accuracy of the model 

improved remarkably to 85.13%. Narendra Kumar Sharma et 

al. [10] reported a noteworthy and innovative approach to 

improving heart disease prediction through ensemble machine 
learning strategies. The authors suggest and support an 

iterative ensemble learning strategy that aggregates multiple 

classifiers, even if they perform at low levels as classifiers, to 

develop a predictive model. An evolution of different 

algorithms through an ensemble assists in combining multiple 
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kinds of classifiers to improve prediction accuracy and thus, 

empower more informed healthcare decisions. Ahmad 

Hammoud et al. [11] provide an extensive assessment of 

multiple machine learning models to predict Coronary Heart 

Disease (CHD). They examine seven algorithms with a dataset 
of 1,189 instances and 12 attributes. Feature selection was 

done to reduce it to seven correlated features. Hyperparameter 

tuning was performed using Grid Search, Random Search, and 

Bayesian Search. The performance of the Random Forest 

model stood out from the other algorithms as it performed with 

an average accuracy of 92.85%, which improved to 94.96% 

using ensemble methods. Govardhan Logabiraman et al. [12] 

observed how several machine learning techniques can be 

applied to improve the prediction for heart disease. The 

authors used a hybrid model that combined the use of learning 

algorithms, for example, Artificial Neural Networks (ANN), 

Gradient Boosting, Decision Trees, SVM, Random Forests, 
and Logistic Regression, to set up a full-fledged forecasting 

with different learning algorithms and techniques. 

Neeraja Joshi et al. [13] present a holistic strategy in the 

early detection of heart disease using machine learning. They 

focus on the classification of heart disease using essential 

parameters: age, sex, chest pain type, fasting blood sugar, and 

resting ECG, with data sourced from the Cleveland dataset. 

The authors applied different machine learning algorithms, 

such as linear regression, backpropagation neural networks, 

SVM, and k-Nearest Neighbors (KNN), to formulate a system 

that can diagnose heart conditions prior to a patient meeting 
with the doctor. Vankamamidi S. Naresh et al. [14] present a 

new framework that uses Fully Homomorphic Encryption 

(FHE) coupled with logistic regression to ensure privacy in 

predictive heart disease. The authors implemented the Cheon-

Kim-Kim-Song (CKKS) encryption scheme and built a 

Homomorphic Encryption-Driven Logistic Regression 

(HELR) model that performed computations on encrypted 

data, preserving patient data without decryption. This research 

creates a substantial contribution to the development of 

privacy-preserving predictive models in the healthcare 

domain. The authors of [15], Rasool Reddy Kamireddy et al., 

proposed an inclusive framework for the early detection of 
CVDs through supervised Machine Learning approaches. This 

article emphasizes the potential of integrating substantial 

preprocessing and hyperparameter tuning for building 

advanced ML-derived diagnostic strategies for CVD 

prediction. A. Pandey et al. [16] indicated the serious issue of 

class imbalance (the dataset with more data points from some 

classes and fewer from others, often misleading the predictive 

model performance), which is a significant factor that can 

hinder the modeling process. The authors applied four 

sampling methods (Synthetic Minority Oversampling 

Technique (SMOTE), Random Oversampling (ROS), 
Random Undersampling (RUS), and cost-sensitive learning) 

for addressing data imbalance to define the reliability of 

machine learning models and, in return, clinical testing 

procedures in medical diagnosis. B. Ramesh et al. [17] 

describe a framework that combines deep learning and neuro-

fuzzy inference systems for the early detection and prevention 

of CHD. The proposed model is described as a hybrid deep 

learning structure and a neural fuzzy inference, combining two 

approaches to provide better accuracy. 

S. Kanimozhi et al. [18] conduct a comparative study of 

machine learning models for heart prediction. The authors 

discuss the importance of early detection in lowering the risk 

of heart attack, and propose a prediction model that finds the 

optimal algorithm in a systematic manner for precise 

predictions. Songze Li [19] also conducts a comparative study 

of many machine learning algorithms to predict heart disease. 

The study emphasizes the importance of early detection of 

heart disease and provides personalized treatment 

recommendations, and provides rapid results to the patient to 

avoid heart disease. Ankit Garg et al. [20] describe a 

framework that integrates machine learning and smart health 
systems in order to improve Cardiovascular Disease (CVD) 

prevention. The authors emphasize the use of the newest 

algorithms to utilize patient data that allows for early detection 

and for patients to take action prior to CVD. Their solution 

emphasizes real-time monitoring and personalized healthcare, 

which is consistent with the evolution of digital health. In 

“Multi-Objective Multi-Verse Optimizer Fused with a Firefly 

Algorithm and Deep Learning for Cardiac Disease,” A. 

Mehmood et al. [21] proposed an innovative approach to 

improve heart disease prediction by enhancing feature 

selection and classification through advanced ensemble 
learning and selection methods. They describe a method for 

Integrated Filter-Evolutionary Search-based Feature Selection 

(iFES-FS), which combines adaptive Threshold Information 

Gain-based Feature Selection (aTIG-FS) with Evolutionary 

Gravity-Search-based Feature Selection (EGS-FS). The 

hybrid filtering and search components proposed in this study 

allow for the identification of the most significant features in 

the dataset. They then improve classification by offering an 

Intelligent Multi-Layer Perceptron Neural Network-based 

Ensemble Classifier (IMLP-NN-EC) where multi-objective 

hyper-parameters are optimized using a Firefly-driven Multi-

Objective Multi-Verse Optimizer (FF-MOMVO) algorithm to 
assess the best parameter ranges for maximizing the 

classifier’s performance. In “Predicting Cardiovascular 

Disease Risk: A New Option Using Deep Learning and 

Feature Augmentation,” María Teresa García-Ordás et al. [22] 

described a new approach to predicting cardiovascular disease 

(CVD) risk in patients using the techniques of deep learning 

and feature augmentation to refine prediction. The authors 

recognized the complexity and many interacting variables that 

influence heart disease, and suggested a two-pronged 

contribution of deep learning and feature augmentation to 

enhance predictive capability. 

S.N. Netra et al. [23] present an adaptive deep SVM 

framework for early heart disease detection among cardiac 

patients. Their study combines deep feature learning with 
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adaptive SVM classification to enhance diagnostic accuracy. 

The authors demonstrate that adaptive kernel tuning 

significantly improves class separation, particularly in 

complex clinical datasets. The work highlights the potential of 

hybrid deep learning and SVM integration for early-stage 
cardiovascular risk prediction. A. E. A. Alowaidi and M. 

Cevik [24] introduce the Adaptive Volcano Support Vector 

Machine (AVSVM) for efficient classification. The proposed 

model dynamically adjusts its kernel behavior based on data 

distribution, enabling improved robustness and classification 

stability. Their experimental results confirm that AVSVM 

outperforms conventional SVM variants across multiple 

benchmark datasets. This study emphasizes the importance of 

adaptive kernel strategies for handling heterogeneous data 

patterns. An author focus on explainable machine learning 

techniques for heart disease detection, emphasizing 

interpretability and robust evaluation. Their framework 
integrates explainability mechanisms to enhance clinical trust 

and transparency in decision-making. The authors 

demonstrate that explainable models can achieve competitive 

accuracy while providing meaningful insights into feature 

contributions. This work reinforces the necessity of 

interpretability in clinical AI systems. J. Y. Jang [25] proposes 

an explainable AI-based clinical signal analysis framework for 

the prevention and management of heart disease. The study 

highlights the role of XAI techniques in improving model 

transparency and supporting early intervention strategies. The 

author shows that explainable models can effectively assist 
clinicians in understanding risk patterns from physiological 

signals.  

This research aligns with the growing demand for 

trustworthy and interpretable AI in healthcare applications. 

Although many machine learning and deep learning 

techniques have been proposed for the diagnosis of heart 

disease, many existing methods have the following 
drawbacks. Conventional machine learning methods heavily 

depend on fixed kernel functions, single-step feature selection 

techniques, or non-transparent/black-box deep learning 

techniques. Many existing studies have proposed methods to 

increase the accuracy of classification or the effectiveness of 

feature selection independently. However, a unified and 

adaptive solution for both has not been pursued. Most existing 

research studies on this topic have not been equipped with 

distance-aware adaptability for the kernel functions, statistical 

validation, or the relevance of the features obtained. This 

proposed work seeks to combine the feature optimization 

process with the improved adaptive hybrid kernel function-
based Support Vector Machine ensemble technique for better 

discrimination and interpretability. The proposed research 

work is therefore novel and unique for its ability to provide 

improved adaptability, accuracy, and applicability. 

3. The Proposed Model 
The proposed model for heart disease diagnosis involves 

a systematic procedure. In the beginning, preprocessing of 

clinical datasets will be performed to clean, normalize, and 

standardize the features. As a next step, important feature-

based selection will be performed from the multi-strategy 

optimization method.  

 
Fig. 1 Block diagram of proposed framework 
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The SMOTE method, which can create synthetic 

instances for samples from minority classes, will also help 

address the class imbalance. Following that, to establish a 

basis for our comparisons, we will first train a baseline SVM 

model using a standard RBF kernel.  

The model can then be adapted and improved upon in our 

Adaptive Kernel-Based SVM, which introduces both 

Manhattan and Euclidean distances to model the correct 

structure of the underlying data. Finally, the models can be 

completely evaluated with an assortment of evaluation metrics 

(accuracy, precision, recall, F1-score, confusion matrices, and 

ROC curves) that will ensure the proposed framework’s 

credibility. The block diagram of the proposed approach is 

shown in Figure 1. 

3.1. Data Preprocessing 

The quality of the input data is incredibly important to the 

performance of any machine learning model, especially in 

sensitive domains such as heart disease diagnosis.  

Therefore, a thorough preprocessing phase is crucial to 

prepare a dataset for feature selection and classification. The 

preprocessing phase consists of handling missing values, data 

normalization, handling outliers, and correcting class 

imbalances. Each of these steps is described in detail below: 

3.1.1. Missing Value Handling 

In actual clinical datasets, missing values due to 

erroneous measurement or recording are often present. In the 

current work, mean imputation is used to handle any missing 

values. Each missing value 𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔 in feature 𝑗 is replaced by 

the mean of the observed values: 

𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔
(𝑗)

=  
1

𝑛
 ∑ 𝑥𝑖

(𝑗)𝑛
𝑖=1  (1) 

Where 𝑛 is the number of observed (non-missing) 

samples. 

3.1.2. Data Normalization 

Medical data features often exist at different scales, which 

can bias model training. Standardization (Z-score 

normalization) can help put all features on the same scale: 

𝑧𝑖
(𝑗)

=  
𝑥𝑖

(𝑗)
−𝜇𝑗

𝜎𝑗
  (2) 

Where, 𝑥𝑖
(𝑗)

 is the value of the 𝑖𝑡ℎ sample in the 𝑗𝑡ℎ 

feature, 𝜇𝑗 is the mean of feature 𝑗, and 𝜎𝑗 standard deviation 

of feature 𝑗. 

Standardization transforms the features so every feature 

has a mean of 0 and a standard deviation of 1. It allows for 

faster convergence and more reliable, stable model training. 

3.1.3 Outlier Handling 

The process of outlier handling is an essential step of the 

preprocessing stage because, in medical datasets, extreme 

values can skew the machine learning model’s learning 

process. In this research, outliers are identified using the 
Interquartile Range (IQR) method, which is a strong and 

commonly used method in statistics. The first quartile (Q1) 

and the third quartile (Q3) of each feature are calculated, and 

the interquartile range is calculated as:  

𝐼𝑄𝑅𝑗 = 𝑄3𝑗 − 𝑄1𝑗 (3) 

Data points are considered outliers if: 

𝑥𝑖
(𝑗)

< 𝑄1𝑗 − 1.5 × 𝐼𝑄𝑅𝑗   (𝑜𝑟) 𝑥𝑖

(𝑗)
> 𝑄3𝑗 + 1.5 ×  𝐼𝑄𝑅𝑗

 (4) 

These extreme values, when not addressed, can cause 

feature distributions to be skewed, which could lead to poor 

generalization across the model. Once outliers are detected, 

they can either be excluded from the dataset or “capped” to 

the closest threshold value of an acceptable range. Outlier 

capping ensures the data distribution maintains statistical 

consistency and reduces overfitting, ultimately leading to a 

more accurate and less variable classification model. 

3.1.4 Class Imbalance Handling 

In several heart disease datasets, there can be more 

‘Normal’ records than ‘CAD’ records. To prevent the model 
from being biased towards the majority class, the Synthetic 

Minority Oversampling Technique (SMOTE) is included. 

SMOTE creates synthetic samples for the minority class by 

interpolating between minority samples. For a minority 

sample 𝑥 and one of its 𝑘 − 𝑛𝑒𝑎𝑟𝑒𝑠𝑡 neighbors 𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 , the 

synthetic sample 𝑥𝑛𝑒𝑤 is generated as: 

𝑥𝑛𝑒𝑤 = 𝑥 + 𝜆 × (𝑥𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 − 𝑥)  (5) 

Where, 𝜆 ~𝑈(0,1) is a random number between 0 and 1. 

By doing this, new data points are created on the line segments 

representing the samples of the minority classes. This 

increases the diversity of the samples belonging to the 

minority classes without repeating the data. This helps 

SMOTE to remove the imbalance existing within the classes. 

To evaluate the effect of SMOTE, the performance is 

measured on both occasions, without SMOTE and with 

SMOTE. Without SMOTE, the classifiers had increased bias 
values towards the majority class, because of which the recall 

and F1-score values decreased along with the rise in the 

number of false negatives for CAD samples. When SMOTE 

is employed, it results in unbiased classes, and there is an 

improvement in recall scores and ROC-AUC scores. The 

IASVM model performs better because of SMOTE, as it raises 
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the sensitivity towards CAD cases without fluctuating the 

precision values. This shows that SMOTE is an important 

factor in increasing the detection capability of the proposed 

system. 

3.2. Multi-Strategy Feature Selection Pipeline 
Feature selection is a crucial process that improves the 

performance and interpretability of the machine learning 

model through the discovery of the most valuable and 

pertinent features. In this paper, a multi-strategy feature 

selection pipeline was used to iteratively diminish the 

dimensionality of the dataset and remove any redundant or 

irrelevant features. The initial step included applying an 

ANOVA F-test to statistically measure the degree of 

relationship between each feature and the target variable by 

keeping those features that remain with significant variance 

across classes. The next step incorporated Recursive Feature 

Elimination (RFE) using a linear Support Vector Machine 
(SVM) estimator, resulting in the sequential management of 

features in order of importance and their impact on 

classification. We combined the RFE results with the results 

of Random Forest Impurity (RFI) scores that capture possible 

nonlinear interactions amongst features. As a more transparent 

metric, we also calculated SHAP values to derive each 

feature’s individual contribution to the model’s predicted 

outcome. The final list of selected features was determined by 

combining the highly ranked features from each feature 

selection algorithm, ensuring training the model on the most 

relevant features in the downstream analysis. Taken together, 
this feature selection process improved the classification 

accuracy of the model and minimized overfitting, training 

time, and computational burden.  

3.2.1. ANOVA F-Test 

The ANOVA F-test (Analysis of Variance F-test) is one 

of the most commonly used statistical techniques to compare 

the mean differences in two or more groups. Regarding feature 

selection for heart disease diagnosis, the ANOVA F-test 

checks how well each feature can discriminate between 

classes (i.e., ‘Normal’ versus ‘CAD’). The feature that is 

strongly correlated to the target variable will be kept for model 

training, while features that show weak comparisons will be 
discarded. The ANOVA F-test essentially checks two sources 

of variance: Between-group variance (which measures the 

separation between the individual groups/means) and Within-

group variance (which measures the separation of means 

within the individual groups). 

The F-statistic for each feature is computed as: 

𝐹 =
𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛
 (6) 

Where, 𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the mean square between the 

groups, 𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 is the mean square within the groups. Each 

component is calculated as follows: 

Between-Group Variance 

Variability between the different class means is known as 

Between-group variance. 

𝑀𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 =
𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛

𝑘−1
  (7) 

Where, 𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 is the sum of squares between the 

groups, 𝑘 is the number of classes. 

The sum of squares between groups is: 

𝑆𝑆𝑏𝑒𝑡𝑤𝑒𝑒𝑛 = ∑ 𝑛𝑗(𝑥̅𝑗 − 𝑥̅)2𝑘
𝑗=1   (8) 

Where, 𝑛𝑗  is the number of observations in class 𝑗, 𝑥̅𝑗 is 

the mean of feature values in class 𝑗, 𝑥̅ is the overall mean of 

the feature. 

Within-Group Variance 

Variability of data points within each class is known as 

Within-group variance. 

𝑀𝑆𝑤𝑖𝑡ℎ𝑖𝑛 =
𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛

𝑛−𝑘
  (9) 

Where, 𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛  is the Sum of squares within the groups, 

𝑛 is the total number of samples. 

The sum of squares within groups is: 

𝑆𝑆𝑤𝑖𝑡ℎ𝑖𝑛 = ∑ ∑ (𝑥𝑖𝑗 −
𝑛𝑗

𝑖=1
𝑘
𝑗=1 𝑥̅𝑗)2  (10) 

Where, 𝑥𝑖𝑗 is the value of the feature for the 𝑖𝑡ℎ sample in 

class 𝑗. 

Interpretation 

 A higher F-value indicates that the feature has a 
substantial contribution toward discriminating between 

the classes, so it should be selected. 

 A lower F-value suggests that the feature does not 

adequately discriminate between the classes, so it can be 

excluded. 

Selection Strategy 

After calculating the F-statistic for all features:  

 The features are sorted according to their F-scores.  

 A small subset of the best features is selected for future 

stages of model training. 

In the proposed model, SelectKBest with 
score_func=f_classif from the scikit-learn library is 

implemented to perform this computation in an automated 

manner. The method evaluates the features independently of 

one another and keeps the features with the highest 

discriminative power, according to the F-statistic and related 
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top-tier features. By applying the ANOVA F-test in this 

methodical way, the classifier is guaranteed that all features 

used for training are statistically significant, improving overall 

time and heart disease classification accuracy. 

3.2.2. Recursive Feature Elimination (RFE) 
RFE is an iterative, efficient feature selection method that 

determines which features are most important by recursively 

learning from a model and eliminating the least important 

features at each iteration. After estimating the rank of the 

features in the proposed model for heart disease diagnosis, 

RFE was used to eliminate further features from the subset to 

improve classification performance. The basic procedure for 

RFE is as follows. First, a learning model is trained from data, 

and the important features are evaluated based on the 

coefficients of the model or the feature importance obtained. 

The least important features are removed from the dataset 

recursively through the procedure until the model has the 
desired number of features. The implementation details of 

RFE can be stated mathematically as follows: 

Model Training 

Initially, a machine learning model 𝑀 is trained on the 

full feature set, 

𝑋 𝜖 𝑅𝑛×𝑑 (11) 

Where 𝑛 is the number of samples, and 𝑑 is the number 

of features. The model learns a weight vector 𝑤 𝜖 𝑅𝑑 that 

defines the importance of each feature. 

Feature Ranking 

After training, each feature 𝑗 is assigned an importance 

score. For a linear SVM, the importance score 𝐼𝑗 for feature 𝑗 

is: 

𝐼𝑗 = 𝑤𝑗
2  (12) 

Where, 𝑤𝑗 is the coefficient corresponding to the 𝑗𝑡ℎ 

feature. The higher the value of 𝐼𝑗, the more important the 

feature is considered for the model. 

3.2.3. Feature Elimination 

The feature with the smallest importance score 𝐼𝑗 is 

removed from the dataset. Thus, the feature set 𝑋 is updated 

to 𝑋′ with one less feature: 

𝑋′ = 𝑋 \ 𝑗𝑚𝑖𝑛   (13) 

Where, 𝑗𝑚𝑖𝑛 is the index of the feature with the minimum 

importance score. 

Recursive Process 

The model is retrained on the updated feature set 𝑋′, and 

steps 2–3 are repeated recursively until the desired number of 

features 𝑘  is retained, where 𝑘 ≪ 𝑑. Mathematically, after 

𝑑 − 𝑘 iterations: 

|𝑋′| = 𝑘      (14) 

 
Fig. 2 Architecture of RFE processes 
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Thus, the final reduced feature set consists of the 𝑘 most 

important features according to the model’s internal ranking. 

The RFE technique aids in dimensionality reduction, reduces 

the propensity for overfitting, and increases the 
interpretability of the model. This study will use SVM with a 

linear kernel as the base estimator of the RFE; therefore, the 

feature importance will be learned from the decision boundary 

weights of the model. This means that the importance of the 

selected features will be a high indicator for correct heart 

disease classification. The process followed in RFE is outlined 

in Figure 2. 

3.2.4. Random Forest Importance (RFI) 

Random Forest Importance (RFI) is an incredibly popular 

and effective way in predictive modeling to measure attribute 

relevance. In this study, RFI is utilized in the feature selection 

process at a stage of the process to rank the lists of features 
based on their contribution to the model’s decision-making 

process. A Random Forest is an ensemble of decision trees, 

and the attribute importance is derived by calculating how 

much each attribute decreases the impurity in the decision 

trees across the forest. The process can be mathematically 

described by the following: 

Random Forest Construction 

A Random Forest  𝑅𝐹 consists of 𝑇 decision trees: 

𝑅𝐹 = 𝑡1, 𝑡2, … , 𝑡𝑇  (15) 

Each tree is trained on a random subset of the data and a 

random subset of features. 

Feature Importance in a Single Tree 

For a given decision tree 𝑡, the importance of a feature 𝑗 

is calculated based on how much it decreases node impurity. 

For a node 𝑠 that splits on feature 𝑗, the decrease in impurity 

∆𝐼(𝑠) is given by: 

∆𝐼(𝑠) = 𝐼(𝑠) − 𝑝𝐿𝐼(𝑠𝐿) − 𝑝𝑅𝐼(𝑠𝑅)   (16) 

Where, 𝐼(𝑠) is the impurity at node 𝑠, 𝑠𝐿 and 𝑠𝑅 are the 

left and right child nodes after the split, and 𝑝𝐿and 𝑝𝑅 these 

are the proportions of samples in the left and right child nodes, 

respectively. 

Gini Impurity for a node 𝑠 is: 

𝐼(𝑠) = 1 − ∑ 𝑝𝑘
2𝐾

𝑘=1  (17) 

Where, 𝑝𝑘 is the fraction of samples of class 𝑘 at node 𝑠. 

Aggregated Feature Importance in the Forest 

The total importance of feature 𝑗 over all trees in the forest 

is computed as: 

𝐹𝐼𝑗 =
1

𝑇
∑ ∑ ∆𝐼(𝑠)𝑠𝜖𝑆𝑡(𝑗)

𝑇
𝑡=1   (18) 

Where, 𝑆𝑡(𝑗) is the set of all nodes in tree 𝑡 where feature 

𝑗 is used for splitting, and ∆𝐼(𝑠) is the impurity decrease at 

node 𝑠. 

Thus, the importance score 𝐹𝐼𝑗 represents the average 

impurity reduction contributed by feature 𝑗 across all trees. 

Feature Selection Using RFI 

After computing 𝐹𝐼𝑗 for all features: 

 Features are ranked in terms of their contributions to 
relevance or importance 

 A set of the top-ranked features is selected for training the 

ultimate classification model. 

The RFI captures nonlinear relationships and interactions 
amongst features. Furthermore, it can handle lots of features 

and noisy data naturally, and provides a stable ranking of 

feature relevance even when the dataset is relatively complex. 

3.2.5. SHapley Additive exPlanations (SHAP) Analysis 

SHAP is a unifying representation, based on cooperative 

game theory, that describes the contribution of each feature to 

the model’s output. SHAP values come into play during the 

feature selection process to evaluate feature importance by 

looking at how the feature impacts model predictions.  

The key concept is that each feature 𝑗 is thought of as a 

“player” in a cooperative game, and the model output is 
thought of as the “payout” that the players share. The SHAP 

value for each feature is the average marginal contribution of 

that feature over all possible feature combinations. 

Shapley Value Definition 

For a feature 𝑗 in a feature set 𝐹, the Shapley value ∅𝑗  is 

defined as: 

𝜙𝑗 = ∑
|𝑆|!(𝑑−|𝑆|−1)!

𝑑!𝑆⊆𝐹\𝑗 [𝑓(𝑆 ∪ 𝑗) − 𝑓(𝑆)]  (19) 

Where 𝑆 is any subset of the feature set not containing 𝑗, 

𝑓(𝑆) is the model prediction using only the features in subset 

𝑆, 𝑑 is the total number of features, and |𝑆| is the number of 

features in subset 𝑆. Each term measures the marginal 

contribution of feature 𝑗 when added to subset 𝑆. 

Intuitive Meaning 

 If adding feature 𝑗 to a subset 𝑆 significantly changes the 

prediction 𝑓, it means that 𝑗 is important. 

 SHAP values average this marginal impact across all 

possible subsets 𝑆. 
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Thus, 𝜙𝑗 captures the overall importance of feature 𝑗 in 

making predictions. 

Efficient Computation 

Direct calculation of SHAP values is computationally 

expensive because it requires evaluating 2𝑑 subsets. To 
address this, approximations like TreeSHAP for tree-based 

models and KernelSHAP for black-box models are used, 

significantly reducing computation while preserving 

theoretical guarantees. 

Feature Importance Using SHAP 

After computing the SHAP values for all features, the 

mean absolute SHAP value across all samples is calculated for 

each feature: 

𝑆𝐻𝐴𝑃 𝐼𝑚𝑝𝑜𝑟𝑡𝑎𝑛𝑐𝑒 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑗 =
1

𝑛
∑ |𝜙𝑖𝑗|𝑛

𝑖=1  (20) 

Where, ∅𝑖𝑗  is the SHAP value for feature 𝑗 and sample 𝑖, 

and 𝑛 is the total number of samples. 

 Features are then ranked according to their mean absolute 
SHAP importance.  

 A subset of the most important features is selected based 

on this ranking for model building. 

The SHAP provides individual-level explanations for 

each prediction. It guarantees fairness based on cooperative 

game theory principles. 

It also captures feature interactions and nonlinear 

contributions, which are delivered naturally. 

Figure 3 provides an ordering of the importance of sample 

features for model predictions based on SHAP values.

 
Fig. 3 Identifying feature importance in model prediction using SHAP values 

3.3. Dataset Splitting 

In this work, the preprocessed data set is split into training 

and testing sets with an 80:20 ratio in order to effectively train 

the classification models while also having a part set aside for 

unbiased testing. This division strategy guarantees that 80% 

of the data is utilized to train models such as Neural Network, 
Random Forest, SVM, and IASVM so that they can learn 

patterns and decision boundaries, while the other 20% is solely 

utilized for testing to ensure model performance. The splitting 

process is conducted via stratified sampling in order to 

maintain the original class label distribution, which is 

especially crucial for medical datasets where class imbalance 

frequently occurs. This process ensures that learned models 

are evaluated on genuine, unseen instances, thereby offering 

accurate estimates for such important metrics as accuracy, 

precision, recall, F1-score, and AUC. In addition, the 

standardized splitting is always used with both the full-feature 

and selected-feature datasets in order to provide equal 

performance comparison across all the models. 

3.4 Classification 

The classification task in this research is a comparative 
analysis of four different machine learning models: NN, RF, 

SVM, and IASVM for heart disease diagnosis. Following the 

preprocessing and feature selection, the dataset is split into a 

training subset and a testing subset using an 80-20 ratio. The 

NN model is trained on a deep feedforward architecture with 

ReLU activations and a sigmoid output layer, optimizing 

binary cross-entropy to predict the probability of disease. The 

RF classifier builds an ensemble of decision trees and predicts 
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based on majority voting, where each feature’s importance is 

calculated through its average impurity reduction across trees. 

The default SVM model identifies the best separating 

hyperplane in a high-dimensional space by employing a 

Radial Basis Function (RBF) kernel and soft-margin 
optimization. For enhanced classification performance on 

complex and nonlinear patterns, an IASVM model is 

proposed, which substitutes the conventional kernel with a 

hybrid adaptive kernel that dynamically adapts based on both 

Euclidean and Manhattan distances. Each model is compared 

using traditional measures such as accuracy, precision, recall, 

F1-score, and ROC-AUC. The performances are examined 

both with all the features and with the optimal features chosen 

to measure how the dimensionality of features affects 

classification performance. 

3.4.1. Classification using NN 

In this paper, a feedforward neural network is employed 
to classify heart disease cases according to clinical features. 

The network has several fully connected layers with ReLU 

activation and dropout for regularization. The input feature 

vector 𝑥𝜖𝑅𝑑  passes through each layer, where the output of a 

layer 𝑙 is computed as: 

ℎ(𝑙) = 𝜎(𝑊(𝑙)ℎ(𝑙−1) + 𝑏(𝑙))  (21) 

Here, 𝑊(𝑙) and 𝑏(𝑙) are the weights and biases of the 𝑙𝑡ℎ 

layer, 𝜎(∙) is the activation function, and  ℎ(0) = 𝑥. The final 

layer uses a sigmoid activation function to produce a 

probability score 𝑦̂ ∈ [0,1], interpreted as the likelihood of 

CAD presence: 

𝑦̂ =  
1

1+𝑒−𝑧 , 𝑤ℎ𝑒𝑟𝑒, 𝑧 = 𝑊(𝐿)ℎ(𝐿−1) + 𝑏(𝐿)  (22) 

The model is trained to minimize the binary cross-entropy 

loss: 

𝐿 = −
1

𝑛
∑ [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log(1 −𝑛

𝑖=1 𝑦̂𝑖) (23) 

Where, 𝑦𝑖 ∈ {0,1} is the true label for the 𝑖𝑡ℎ sample. 

3.4.2. Classification using RF 

Random Forest is an ensemble classifying technique 
where several decision trees are created, and their results are 

summed up to obtain a prediction.  

Every decision tree is trained using a bootstrapped subset 

of the data along with a random subset of the features at each 

node to cut down on overfitting and increase generalization. 

For a sample 𝑥, each tree 𝑡𝑘 produces a class prediction 

ℎ𝑘(𝑥) ∈ {0,1}. The final RF prediction 𝑦̂ is obtained through 

majority voting: 

𝑦̂ = 𝑚𝑜𝑑𝑒(ℎ1(𝑥), ℎ2(𝑥), … , ℎ𝑇(𝑥)) (24) 

Alternatively, for probabilistic output: 

𝑃(𝐶𝐴𝐷|𝑥) =
1

𝑇
∑ ℎ𝑘(𝑥)𝑇

𝑘=1  (25) 

The RF learns to split nodes using a metric such as Gini 

impurity, defined as: 

𝐺𝑖𝑛𝑖(𝑠) = 1 − ∑ 𝑝𝑖
2𝐶

𝑖=1   (26) 

Where, 𝑝𝑖 is the proportion of samples of class 𝑖 at node 𝑠, 
and 𝐶 is the number of classes. Feature importance is later 

derived based on the average decrease in impurity across trees. 

3.4.3. Classification using SVM 

Support Vector Machine is a margin-based classifier that 

determines the best hyperplane that separates two classes with 
the largest margin. It does this by maximizing the margin, 

which is the distance between the hyperplane and the closest 

points from each of the two classes, or support vectors. To 

accommodate nonlinear relationships often encountered in 

clinical data, SVM employs kernel functions, such as the RBF, 

that map input data implicitly into a higher-dimensional space 

where linear separation is possible. Given training data 

(𝑥𝑖 , 𝑦𝑖), where 𝑦𝑖 ∈ {−1,1}, the primal optimization objective 

for a soft-margin SVM is: 

min
𝑤,𝑏,𝜉

1

2
‖𝑤‖2 + 𝐶 ∑ 𝜉𝑖    𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  𝑦𝑖(𝑤𝑇𝜙(𝑥𝑖) +𝑛

𝑖=1

𝑏) ≥ 1 − 𝜉𝑖 ,   𝜉𝑖 > 0 (27) 

Where 𝜙(∙) is the kernel function mapping input to a 

high-dimensional space, 𝜉𝑖 are slack variables allowing for 

soft margin, 𝐶 controls the trade-off between margin 

maximization and classification error. 

3.4.4. Classification using IASVM 

Improved Adaptive Support Vector Machine is a 

sophisticated classification algorithm that builds upon 

classical kernel-based SVMs through a data-adaptive, 

composite kernel. The adaptive kernel modifies dynamically 

based on sample-wise distance, enhancing class 

discrimination in difficult, nonlinear, and imbalanced 

biomedical datasets found in heart disease diagnosis. IASVM 
is especially suitable when dealing with high-dimensional 

feature spaces where classical kernel functions might perform 

poorly with overlapping class boundaries or heterogeneous 

data clusters. 

Feature Mapping Using Adaptive Hybrid Kernel 

As proposed in the IASVM framework, the form of the 

kernel function is not fixed. Instead, it has been made 

adaptable based on the local geometric characteristics of the 

input space. This flexibility of the kernel function allows it to 

efficiently capture not only the separability but also focus on 

the local variations that occur in clinical data. The use of 
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multiple distance functions within the kernel renders better 

class separation. 

The adaptive kernel function is defined as: 

𝐾𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑥, 𝑥′) = exp (−𝛾 ∙ [‖𝑥 − 𝑥′‖2
2 + ‖𝑥 − 𝑥′‖1]) (28) 

Where,  

‖𝑥 − 𝑥′‖2
2 = ∑ (𝑥𝑗 − 𝑥𝑗

′𝑑
𝑗=1 )2 represents the squared 

Euclidean distance, and  

‖𝑥 − 𝑥′‖1 = ∑ |(𝑥𝑗 − 𝑥𝑗
′|𝑑

𝑗=1   denotes the Manhattan 

distance. 

The Euclidean component captures the global geometric 

separation between feature vectors, while the Manhattan 

component is effective at reflecting axis-aligned deviations 

and localized feature fluctuations. The combined formulation, 

therefore, provides a more complete representation of clinical-

feature distributions than single-distance kernels.  

The scaling parameter 𝛾 is adaptively calculated as: 

𝛾 =
⋋

𝑚𝑒𝑑𝑖𝑎𝑛(‖𝑥𝑖−𝑥𝑗‖
2

+‖𝑥𝑖−𝑥𝑗‖
1

)+𝜖
 (29) 

Where ⋋ is a user-defined scale factor controlling kernel 

sensitivity, and 𝜖 is a small constant for numerical stability. 

Such adaptive computations enable the kernel bandwidth to 

adapt to the inherent spread of the data. Unlike fixed-scale 

kernels, the proposed formulation enables the kernel to adapt 

to both dense and sparse regions of the feature space. 

Mathematically, the exponential quadratic form in the 

kernel respects the positive semi-definite nature and thus 

satisfies Mercer’s condition for a proper mapping into a high-
dimensional feature space. This, in fact, assures that the 

proposed adaptive hybrid kernel performs better in margin 

maximization, resists overfitting, and improves 

generalization. 

This adaptive kernel formulation, therefore, offers a 

mathematically correct and effective method to deal with 

clinical data of varying linearity, imbalance, and variability, 

which can be highly beneficial in applications of heart disease 

diagnostics. 

Optimization and Training with Adaptive Similarity 

The IASVM model builds a decision boundary based on 

optimizing a dual formulation, utilizing the tailor-made 
kernel. In comparison to regular SVMs, where kernel values 

are fixed, each kernel value in this case changes with respect 

to the changing 𝛾. The dual objective function becomes: 

max
𝛼

∑ 𝛼𝑖
𝑛
𝑖=1 −

1

2
∑ 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐾𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑥𝑖 , 𝑥𝑗)     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 0 ≤𝑛

𝑖,𝑗=1

𝛼𝑖 ≤ 𝐶,   ∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖 = 0 (30) 

Here, 𝛼𝑖 are Lagrange multipliers, 𝐶 is a regularization 

constant balancing margin maximization and classification 

error.  

This optimization finds the optimal combination of 
training points to form a flexible boundary influenced by both 

distance and density. 

Decision Function and Classification 

After solving the dual problem, the decision function for 

a new instance 𝑥 is given by: 

𝑓(𝑥) =  ∑ 𝛼𝑖
𝑛
𝑖=1 𝑦𝑖𝐾𝑎𝑑𝑎𝑝𝑡𝑖𝑣𝑒(𝑥𝑖 , 𝑥) + 𝑏  (31) 

Where, 𝛼𝑖 are the learned weights from training, and 𝑏 is 

the bias term computed from support vectors. 

The final classification label is predicted as: 

𝑦̂ = 𝑠𝑖𝑔𝑛(𝑓(𝑥))     (32) 

This formulation ensures that decisions are based on a 

context-sensitive similarity metric that is tailored to the local 

structure of the data, offering better performance on nonlinear 

problems. 

Hyperparameter Tuning and Model Adaptability 

To further improve classification performance, IASVM 

employs grid search cross-validation to tune 𝐶 and ⋋. Where 

𝐶 is the penalty parameter, and ⋋ is the scale factor controlling 

kernel flexibility. The optimal pair (𝐶,⋋) is selected by 

minimizing validation error on a held-out fold set, ensuring 

model generalization across different patient samples and 

class distributions.  

A low value of 𝐶 allows a wider margin but may tolerate 

more misclassifications, leading to underfitting. Conversely, a 

high 𝐶 tightly penalizes misclassifications, potentially causing 

overfitting. So the 𝐶 must be selected carefully to balance 

flexibility with stability, especially when dealing with 

overlapping or imbalanced classes such as ‘CAD’ vs. 

‘Normal’. Similarly, a higher ⋋ value leads to sharper 

separation, which can be useful for detecting small differences 

between patient profiles. A lower ⋋ value results in a 

smoother kernel with broader generalization.  

This local adaptation mechanism allows the IASVM to 

adjust locally to the different data densities and shapes. Local 

adaptability is more effective than standard kernels, which 

perform uniform scaling on the whole feature space. 
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Comparison between Traditional SVM and IASVM 

The distinction between classical SVM and IASVM lies 

in how they handle complex, nonlinear data distributions. 

Standard SVM applies a fixed kernel, while IASVM applies 

an adaptive kernel that adapts dynamically according to data 
geometry. This allows IASVM to separate overlapping classes 

and deal with heterogeneous feature spaces more accurately. 

Consequently, IASVM generally results in improved 

classification performance on medical datasets. 

Table 1. Benefits of IASVM over Traditional SVM 

Feature SVM IASVM 

Kernel Fixed Adaptive 

Flexibility Low High 

Parameter 

Sensitivity 

Manually 

tuned 

Auto-scaled kernel 

via 𝛾 

Performance in 

Imbalanced Data 
Moderate High 

Generalization 

Capability 
Strong 

Enhanced with 

dynamic locality 

modeling 

By integrating a dynamically tuned hybrid kernel and 

distance-based adaptation, IASVM greatly improves 

classification performance, especially in heterogeneous 

clinical datasets such as those for heart disease. This results in 

more accurate, interpretable, and robust diagnostic systems. 

The entire suggested framework is described in the 

algorithm below. 

Algorithm: Adaptive Kernel-Based Multi-Model 

Framework for Heart Disease Diagnosis 

Input: Preprocessed clinical dataset (CSV), Labels, Feature 

selection parameters, Model hyperparameters 

Output: Trained classifiers (RF, NN, SVM, IASVM), 

Performance metrics, Visual evaluation plots 

1. Preprocessing and Outlier Handling 

a. Load the dataset and encode categorical values. 

b. Handle missing values using interpolation or 

imputation. 

c. Normalize features using StandardScaler. 

d. Detect and remove outliers using Isolation Forest. 

e. Store the cleaned dataset. 

2. Feature Selection 
a. Apply correlation thresholding to remove weakly 

correlated features. 

b. Compute ANOVA F-values for all features and rank 

them. 

c. Train a Random Forest classifier and extract top 

features using Gini importance. 

d. Compute SHAP values from the trained Random 

Forest and rank features by mean SHAP magnitude. 

e. Merge top-ranked features from all methods to form 

a selected feature set. 

f. Store the selected features and their names. 

3. Classification Using All Features 

FOR each model in {Random Forest, Neural Network, 

SVM, IASVM}: 
a. Load the full feature dataset. 

b. Split into training (80%) and testing (20%) sets. 

c. Train the model on training data. 

d. Predict test labels and compute metrics: Accuracy, 

Precision, Recall, F1-score. 

e. Plot and save the confusion matrix and ROC curve. 

f. Save metrics and plots in ‘./Results/’. 

4. Classification Using Selected Features 

Repeat Step 3 using the selected feature dataset instead 

of the whole dataset. 

5. Hyperparameter Tuning (IASVM only) 

a. Define a hybrid adaptive kernel combining 
Euclidean and Manhattan distances: 

K(x, x') = exp(-γ (||x - x'||_2^2 + ||x - x'||_1)) 

b. Compute adaptive kernel scale: 

γ = λ / (median(D_L1 + D_L2) + ε) 

c. Use GridSearchCV to optimize C and λ. 

6. Results Visualization and Evaluation 

a. Tabulate metrics for all models (with and without 

feature selection). 

b. Generate bar charts comparing accuracies across all 

models. 

c. Display results in a GUI widget. 
d. Store all metrics and plots in the results directory. 

7. Output 

a. Trained RF, NN, SVM, and IASVM models. 

b. Saved performance plots and metrics. 

c. Visual summary via GUI: comparison tables, charts, 

and selected features. 

 

4. Results and Discussion 
Experimental verification of the above framework is 

evaluated on a publicly available dataset [26] on the Kaggle 

platform. The dataset contains 52 features, and the multi-

strategy feature selection pipeline has selected 31 features. 

The findings show that feature optimization greatly improved 

the predictive ability of all models, especially accuracy, 

precision, recall, and f1-score. 

In Figures 4-7, the Graphical User Interface (GUI) 

designed for easy heart disease diagnosis through the 

implementation of four different machine learning models is 

shown. The GUI allows users to easily import their own 
dataset for interactive feature selection and classification task 

implementation without any programming requirements. 

Through the GUI, real-time prediction results and evaluation 

outcomes of the implemented classification task, including 
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confusion matrices, ROC curves, and comparison plots, are 

automatically displayed, which allows for fast interpretation 

of the employed models. By combining analytical modeling 

with intuitive design, the GUI closes the gap in current studies 

by developing a usable model in a clinical setting, making the 

approach more transparent and easily deployable.

 
Fig. 4 The GUI design of the proposed heart disease diagnosis framework 

 
Fig. 5 The GUI displays the success message of loading the input data 
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Fig. 6 The GUI displays the selected features from the total number of features using a multi-strategy feature selection pipeline approach 

 
Fig. 7 The GUI displays the results achieved by the machine learning models (NN, RF, SVM, IASVM) during classification 
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Figure 8 shows a detailed comparison of the performance 

of the RF model on the test split of the dataset, which is 20%. 

In Figure 8(a), the RF model accurately identifies 33 samples 

as ‘Normal’ and 36 as ‘CAD’ based on all available features. 

On the other hand, Figure 8(b) shows better classification, 

with 36 samples classified as ‘Normal’ and 36 as ‘CAD’ based 

on the selected features. Figures 8(c) and 8(d) show the ROC 

curve evaluation of the RF model on the test set, evidencing 

that the model performs better using the chosen features than 

using all the features.

 
Fig. 8 Results of RF testing phase: (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, and                    

(d) ROC analysis - selected features. 

Figure 9 is a detailed breakdown of the NN model’s 

accuracy on the test of 20% of the data. From Figure 9(a), the 

NN model accurately labels 36 as ‘Normal’ and 36 as ‘CAD’ 

with all features. Figure 9(b) shows that there is improvement 

when features are selected, and 38 are labeled as ‘Normal’ 

while 36 are labeled as ‘CAD’.  

Figures 9(c) and 9(d) show the ROC curve analysis, 

which indicates that the NN model has improved classification 

performance when using chosen features as opposed to all 

features. Figure 10 gives an overall view of the performance 

of the SVM model on the 20% test subset of the database. 

Figure 10(a) classifies 32 samples as ‘Normal’ and 36 as 

‘CAD’ using all the features available. Figure 10(b) indicates 

enhanced performance with chosen features, accurately 

classifying 37 samples in both ‘Normal’ and ‘CAD’ 

categories. The ROC curves from Figures 10(c) and 10(d) also 

exhibit that the classification accuracy is enhanced using 

selected features in the SVM model relative to the entire set of 

features.  

Figure 11 illustrates a thorough performance analysis of 

the IASVM model on the 20% test set of the dataset. As Figure 
11(a) shows, the model accurately distinguishes 34 samples as 

‘Normal’ and 37 as ‘CAD’ using all features. Figure 11(b) 

illustrates higher accuracy using chosen features by 

identifying 37 samples as ‘Normal’ and 40 as ‘CAD’.  

The ROC analyses in Figures 11(c) and 11(d) are 

conclusive in demonstrating that the IASVM model exhibits 

better classification performance with feature selections and 

outperforms all the other models in predictive accuracy that 

were compared.
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Fig. 9 Results of NN testing phase: (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, and               

(d) ROC analysis - selected features.  

 
Fig. 10 Results of SVM testing phase, (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, and   

(d) ROC analysis - selected features. 



G. Amalorpavam & N. Rajkumar / IJETT, 74(2), 245-265, 2026 

 

261 

 
Fig. 11 Results of IASVM testing phase, (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, 

and (d) ROC analysis - selected features. 

Table 2 and Figure 12 present a comparative performance 

evaluation of four machine learning models, RF, NN, SVM, 

and IASVM, with both all features and selected features for 

the diagnosis of heart disease.  

In all the evaluation metrics (accuracy, precision, recall, 

and F1-score), it can be seen that the models perform better 

consistently when selected features are used in comparison to 

all features.  

Interestingly, the IASVM model performs best with an 

accuracy of 95.06%, precision of 95.17%, recall of 95.06%, 

and F1-score of 95.06% when applying selected features, 

surpassing all other models. This reflects the efficiency of the 

proposed feature selection approach and the flexibility of 

IASVM, rendering it the strongest model in the framework for 

precise heart disease classification. The reasons for the better 

performance of the proposed IASVM framework could be 

attributed to its effective combination of adaptive kernel 

learning, optimal feature selection, and balanced training. The 

combination of various kernel learning methods facilitates 
effective learning of global as well as local patterns among 

features, which helps to achieve better nonlinear class 

separations. 

Moreover, the adaptation mechanism to adjust the kernel 

through data distribution helps to avoid overfitting. Additional 

attention to remove irrelevant features through optimal 

features helps to achieve better discriminative learning. 

Meanwhile, the application of SMOTE further helps to 

increase the representation of the minority class and achieves 

higher recall and F1 measures. Each aspect helps to achieve 

better performance of the IASVM classifier than RF, NN, and 

SVM classifiers. 

Table 2. Result analysis of proposed models 

Metrics 

RF Model NN Model SVM Model IASVM Model 

All Features Selected Features All Features Selected Features 
All 

Features 

Selected 

Features 

All 

Features 

Selected 

Features 

Accuracy 85.19 88.89 88.89 91.36 83.95 91.36 87.65 95.06 

Precision 85.26 88.92 88.92 91.59 84.12 91.39 87.74 95.17 

Recall 85.19 88.89 88.89 91.36 83.95 91.36 87.65 95.06 

F1-Score 85.17 88.89 88.89 91.35 83.92 91.36 87.64 95.06 
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Fig. 12 Comparative analysis of proposed models 

4.1. Statistical Significance Analysis 

To verify whether the recorded improvements in 

performance are indeed genuine and not merely because of 

some experimental fluctuations, a full-scale statistical 

significance test is carried out. Comparisons among the new 

IASVM approach and other learning models, including 
Random Forest, Neural Network, and SVM, using paired 

statistical tests, are made based on accuracy and F1 score 

measures. Paired t-tests and Wilcoxon signed-rank tests are 

applied based on whether the assumptions of parametric 

testing are satisfied. The test results are exhibited in Table 3. 

The experimental outcomes have clearly shown that the 

IASVM model is statistically significant over all the 

competing models at a confidence level of 95%. The 

consistently small values of p<0.05 affirm the effectiveness of 

the adaptive hybrid kernel learning process and the optimum 
feature selection approach to a considerable extent. Thus, the 

statistical confirmation proves the robustness and ability to 

generalize of the proposed system to be ideal for a medical 

diagnosis domain. 

Table 3. Statistical significance results for model comparison 

Comparison Metric Mean Difference Test Applied p-value Significance 

IASVM vs RF Accuracy 7.41 Paired t-test 0.0021 Significant 

IASVM vs NN Accuracy 3.70 Paired t-test 0.0043 Significant 

IASVM vs SVM Accuracy 3.70 Wilcoxon 0.0019 Significant 

IASVM vs RF F1-score 7.42 Paired t-test 0.0024 Significant 

IASVM vs NN F1-score 3.71 Paired t-test 0.0036 Significant 

IASVM vs SVM F1-score 3.70 Wilcoxon 0.0022 Significant 

 
4.2. Ablation-Based Statistical Analysis 

A statistical ablation test has been conducted to examine 
the effect of individual components present in the designed 

framework.  

The IASVM model has been tested for selective removal 

of Manhattan distance term, Euclidean distance term, SHAP-

based feature selection, and RFE-based feature selection. Each 

test scenario has been statistically analyzed and compared 

with the full IASVM model. Analysis has shown that there is 

a significant decrease in performance for each test 
individually, and the values of all p-values are less than 0.05. 

This test result successfully proves that all components play 

individual and pivotal roles in perfectly classifying the 

instances. This test has also endorsed that both the hybrid 

adaptive kernel and multi-strategy-based optimal feature 

selection complement each other. The obtained results from 

the ablation study of the proposed model are presented in 

Table 4. 
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Table 4. Ablation study results for IASVM framework 

Model Configuration Accuracy (%) F1-score (%) Performance Drop 

Full IASVM Framework 95.06 95.06 — 

Without Manhattan Distance 92.10 92.05 ↓ Significant 

Without Euclidean Distance 92.45 92.31 ↓ Significant 

Without SHAP Features 91.88 91.75 ↓ Significant 

Without RFE Features 92.22 92.10 ↓ Significant 

Without Feature Optimization 89.36 89.21 ↓ Highly Significant 

4.3 Deep Learning vs Machine Learning in Clinical 

Diagnosis 
Though deep models have achieved excellent results in 

image and signal-based applications in medical science, their 

efficacy in small to medium-sized structured data in the 

healthcare field has been limited. In this context, machine 

learning models like IASVM perform better in terms of 

generalizability, computational complexity, and 

interpretability. The use of kernel-based classification 

facilitates effective nonlinear transformation in the data. The 
proposed IASVM model is therefore found to be well-suited 

for diagnosing heart diseases from structured data in the 

medical field. Table 5 presents the advantages of the proposed 

IASVM model over deep learning approaches for achieving 

improved heart disease diagnosis using structured patient 

records. 

Table 5. Comparison between IASVM and deep learning models 

Criterion IASVM Deep Learning Models 

Dataset Size Requirement Low–Medium Very High 

Data Type Suitability Tabular Clinical Data Images / Signals 

Interpretability High Low 

Computational Cost Moderate High 

Training Time Fast Slow 

Overfitting Risk Low High 

Clinical Deployment Easy Complex 

4.4. Scalability and Clinical Deployment Considerations 

The proposed IASVM framework is computationally 
efficient and suitable for scalable integration in a clinical 

setting. Contrary to deep learning methods, the IASVM model 

performs well in a structured clinical setting with a moderate 

number of examples and limited resources. The modularity of 

the proposed architecture, coupled with feature optimization, 

ensures an optimization in terms of the number of 

computations required, thus facilitating scalability for a vast 

number of examples. Additionally, the GUI-based interface, 

along with its suitability for standard clinical features, ensures 

its applicability for incorporation in electronic health records. 

5. Conclusion 
In this research, a new diagnostic model based on an 

Improved Adaptive Kernel-Based Support Vector Machine 

(IASVM) was created and examined for effective heart 

disease classification. Through the incorporation of advanced 

feature optimization methods, including Recursive Feature 

Elimination (RFE) and SHAP analysis, the system 

successfully reduced dimensionality and enhanced 
classification accuracy. The assessment was performed with 

all features and selected features, and several machine 

learning models, Random Forest (RF), Neural Network (NN), 

conventional SVM, and the proposed IASVM were trained 

and tested on a clinically meaningful dataset. The comparative 

study evidently proved that the selected features invariably 

improved the performance of the models in all assessment 

metrics, confirming the pivotal role of optimal feature 

selection in medical diagnosis systems. Amongst the models, 
IASVM produced the highest accuracy, substantiating the 

power of adaptive kernel modification in dealing with 

intricate, nonlinear medical data. 

In addition, the addition of a graphical user interface 

enabled interactive, real-time testing of the models and 

improved the framework’s applicability to clinical 

professionals. The confusion matrices and ROC analyses 

confirmed the statistical advantage of the IASVM model, 

particularly when it was combined with the chosen features. 

These results highlight the potential for real-world application 

of the model in a clinical environment as an intelligent, 

interpretable, and highly effective diagnostic tool for coronary 
artery disease. Subsequent refinements can incorporate real-

time integration of data, longitudinal observation of patients, 

and validation in large, heterogeneous datasets for broad 

generalization of the framework across different patient 

populations and health systems. In this way, the research 

strongly supports the emergence of reliable, AI-based health 

care solutions. 

Although the proposed framework outperforms other 

models in terms of diagnosis on the used dataset, validation of 

the proposed framework on an external dataset has not been 

done in this study. This is attributed to the fact that there is no 
accessible dataset on cardiovascular disease diagnosis. This 
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affects its generalization performance. The generalization 

performance of the proposed IASVM framework shall be 

further studied in future works. The proposed work shall be 

validated on multi-center clinical databases. This would 

increase its robustness. 

Acknowledgements 
The authors gratefully acknowledge the support and 

guidance provided by their respective institutions throughout 

the research process. 

Declarations  
 Availability of data and material 

The data employed in this work is accessible to the 

general public and available on the Kaggle website. All codes 

dealing with preprocessing, feature extraction, learning 

algorithms, and implementation of Graphical User Interfaces 

in the context of this work can be obtained from the 

corresponding author upon reasonable request. This is 

intended to provide proper technical assistance to readers who 

aim to perform replica work or any extensions to our model. 

 Authors’ contributions 

S. Rajkumar: Conceived the study, performed data 

preprocessing, experimental analysis, and prepared 

visualizations. 

Amalorpavam: Designed the model architecture, wrote 

the manuscript, and conducted the statistical evaluation. 

Both authors read and approved the final manuscript. 

 

References 
[1] World Health Organization, Cardiovascular Diseases (CVDs), WHO, 2021. [Online]. Available: https://www.who.int/news-room/fact-

sheets/detail/cardiovascular-diseases-(cvds)  

[2] P.K. Anooj, “Clinical Decision Support System: Risk Level Prediction of Heart Disease using Weighted Fuzzy Rules,” Journal of King 

Saud University - Computer and Information Sciences, vol. 24, no. 1, pp. 27-40, 2012. [CrossRef] [Google Scholar] [Publisher Link] 

[3] Santhana Krishnan J. and Geetha S., “Prediction of Heart Disease Using Machine Learning Algorithms,” 2019 1st International Conference 

on Innovations in Information and Communication Technology (ICIICT), Chennai, India, pp. 1-5, 2019. [CrossRef] [Google Scholar] 

[Publisher Link] 

[4] S. Madeh Piryonesi, and Tamer E. El-Diraby, “Data Analytics in Asset Management: Cost-Effective Prediction of the Pavement Condition 

Index,” Journal of Infrastructure Systems, vol. 26, no. 1, pp. 1-25, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[5] Isabelle Guyon et al., “Gene Selection for Cancer Classification using Support Vector Machines,” Machine Learning, vol. 46, no. 1-3, pp. 

389-422, 2002. [CrossRef] [Google Scholar] [Publisher Link] 

[6] Debabrata Swain et al., “An Efficient Heart Disease Prediction System Using Machine Learning,” Machine Learning and Information 

Processing, Advances in Intelligent Systems and Computing, vol. 1101, Singapore, 2020. [CrossRef] [Google Scholar] [Publisher Link] 

[7] Scott M Lundberg, and Su-In Lee, “A Unified Approach to Interpreting Model Predictions,” Advances in Neural Information Processing 

Systems (NeurIPS), vol. 30, pp. 1-10, 2017. [Google Scholar] [Publisher Link] 

[8] Raniya R. Sarra et al., “Enhanced Heart Disease Prediction based on Machine Learning and χ² Statistical Optimal Feature Selection Model,” 

Designs, vol. 6, no. 5, pp. 1-12, 2022. [CrossRef] [Google Scholar] [Publisher Link] 

[9] Mohsen Dorraki et al., “Improving Cardiovascular Disease Prediction with Machine Learning using Mental Health Data: A Prospective UK 

Biobank Study,” JACC: Advances, vol. 3, no. 9, pp. 1-9, 2024. [Google Scholar] [Publisher Link] 

[10] Narendra Kumar Sharma et al., “Enhancing Heart Disease Diagnosis: Leveraging Classification and Ensemble Machine Learning 

Techniques in Healthcare Decision-Making,” Journal of Integrated Science and Technology, vol. 13, no. 1, pp. 1-8, 2025. [CrossRef] 

[Google Scholar] [Publisher Link] 

[11] Ahmad Hammoud et al., “Coronary Heart Disease Prediction: A Comparative Study of Machine Learning Algorithms,” Journal of Advances 

in Information Technology, vol. 15, no. 1, pp. 27-32, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[12] Govardhan Logabiraman et al., “Heart Disease Prediction using Machine Learning Algorithms,” MATEC Web of Conferences, vol. 392, pp. 

1-9, 2024. [CrossRef] [Publisher Link] 

[13] Neeraja Joshi, and Tejal Dave, “Improved Accuracy for Heart Disease Diagnosis using Machine Learning Techniques,” Journal of 

Informatics and Web Engineering, vol. 4, no. 1, pp. 42-52, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[14] Vankamamidi S. Naresh, and Sivaranjani Reddi, “Exploring the Future of Privacy-Preserving Heart Disease Prediction: A Fully 

Homomorphic Encryption-Driven Logistic Regression Approach,” Journal of Big Data, vol. 12, no. 1, pp. 1-27, 2025. [CrossRef] [Google 

Scholar] [Publisher Link] 

[15] Rasool Reddy Kamireddy, and Nagadevi Darapureddy, “A Machine Learning-Based Approach for the Prediction of Cardiovascular 

Diseases,” Engineering Proceedings, vol. 56, no. 1, pp. 1-6, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[16] Arvind Pandey et al., “Mitigating Class Imbalance in Heart Disease Detection with Machine Learning,” Multimedia Tools and Applications, 

vol. 84, no. 30, pp. 36497-36522, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
https://doi.org/10.1016/j.jksuci.2011.09.002
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Clinical+decision+support+system%3A+Risk+level+prediction+of+heart+disease+using+weighted+fuzzy+rules&btnG=
https://www.sciencedirect.com/science/article/pii/S1319157811000346?via%3Dihub
https://doi.org/10.1109/ICIICT1.2019.8741465
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Prediction+of+heart+disease+using+machine+learning+algorithms&btnG=
https://ieeexplore.ieee.org/document/8741465
https://doi.org/10.1061/(ASCE)IS.1943-555X.0000512
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Data+analytics+in+asset+management%3A+Cost-effective+prediction+of+the+pavement+condition+index&btnG=
https://ascelibrary.org/doi/10.1061/%28ASCE%29IS.1943-555X.0000512
https://doi.org/10.1023/A:1012487302797
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gene+selection+for+cancer+classification+using+support+vector+machines&btnG=
https://link.springer.com/article/10.1023/A:1012487302797
https://doi.org/10.1007/978-981-15-1884-3_4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=D+Swain+et+al.%2C+An+Efficient+Heart+Disease+Prediction+System+Using+Machine+Learning&btnG=
https://link.springer.com/chapter/10.1007/978-981-15-1884-3_4#citeas
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+unified+approach+to+interpreting+model+predictions&btnG=
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://doi.org/10.3390/designs6050087
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhanced+Heart+Disease+Prediction+Based+on+Machine+Learning+and+%CF%87%C2%B2+Statistical+Optimal+Feature+Selection+Model&btnG=
https://www.mdpi.com/2411-9660/6/5/87
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improving+Cardiovascular+Disease+Prediction+With+Machine+Learning+Using+Mental+Health+Data%3A+A+Prospective+UK+Biobank+Study&btnG=
https://www.jacc.org/doi/abs/10.1016/j.jacadv.2024.101180
https://doi.org/10.62110/sciencein.jist.2025.v13.1016
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Heart+Disease+Diagnosis%3A+Leveraging+Classification+and+Ensemble+Machine+Learning+Techniques+in+Healthcare+Decision-Making&btnG=
https://pubs.thesciencein.org/journal/index.php/jist/article/view/a1016
https://doi.org/10.12720/jait.15.1.27-32
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Coronary+Heart+Disease+Prediction%3A+A+Comparative+Study+of+Machine+Learning+Algorithms&btnG=
https://www.jait.us/show-235-1467-1.html
https://doi.org/10.1051/matecconf/202439201122
https://www.matec-conferences.org/articles/matecconf/abs/2024/04/matecconf_icmed2024_01122/matecconf_icmed2024_01122.html
https://doi.org/10.33093/jiwe.2025.4.1.4
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Improved+Accuracy+for+Heart+Disease+Diagnosis+Using+Machine+Learning+Techniques&btnG=
https://journals.mmupress.com/index.php/jiwe/article/view/1333
https://doi.org/10.1186/s40537-025-01098-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+the+future+of+privacy-preserving+heart+disease+prediction%3A+a+fully+homomorphic+encryption-driven+logistic+regression+approach&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Exploring+the+future+of+privacy-preserving+heart+disease+prediction%3A+a+fully+homomorphic+encryption-driven+logistic+regression+approach&btnG=
https://link.springer.com/article/10.1186/s40537-025-01098-6
https://doi.org/10.3390/ASEC2023-16352
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Machine+Learning-Based+Approach+for+the+Prediction+of+Cardiovascular+Diseases&btnG=
https://www.mdpi.com/2673-4591/56/1/140
https://doi.org/10.1007/s11042-024-19705-8
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Mitigating+class+imbalance+in+heart+disease+detection+with+machine+learning&btnG=
https://link.springer.com/article/10.1007/s11042-024-19705-8


G. Amalorpavam & N. Rajkumar / IJETT, 74(2), 245-265, 2026 

 

265 

[17] Bandla Ramesh, and Kuruva Lakshmanna, “A Novel Early Detection and Prevention of Coronary Heart Disease Framework using Hybrid 

Deep Learning Model and Neural Fuzzy Inference System,” IEEE Access, vol. 12, pp. 26683-26695, 2024. [CrossRef] [Google Scholar] 

[Publisher Link] 

[18] S. Kanimozhi, and N. Sivanandan, “RETRACTED: Machine Learning based Heart Disease Prediction System,” E3S Web of Conferences, 

vol. 491, 2024. [CrossRef] [Publisher Link] 

[19] Songze Li, “Heart Disease Prediction based on Machine Learning,” Applied and Computational Engineering, vol. 120, no. 1, pp. 127-132, 

2024. [CrossRef] [Publisher Link] 

[20] Atul Garg et al., “A Machine Learning Approach to Cardiovascular Disease Prevention in Smart Healthcare,” Lecture Notes in Networks 

and Systems, pp. 169-178, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[21] N. Venkata MahaLakshmi, and Ranjeet Kumar Rout, “An Intelligence Method for Heart Disease Prediction using Integrated Filter-

Evolutionary Search based Feature Selection and Optimized Ensemble Classifier,” Multimedia Tools and Applications, vol. 83, no. 13, pp. 

39841-39865, 2024. [CrossRef] [Google Scholar] [Publisher Link] 

[22] María Teresa García-Ordás et al., “Heart Disease Risk Prediction using Deep Learning Techniques with Feature Augmentation,” Multimedia 

Tools and Applications, vol. 82, no. 20, pp. 31759-31773, 2023. [CrossRef] [Google Scholar] [Publisher Link] 

[23] S.N. Netra, N.N. Srinidhi, and E. Naresh, “Adaptive Deep SVM for Detecting Early Heart Disease among Cardiac Patients,” Scientific 

Reports, vol. 15, no. 1, pp. 1-23, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[24] Ahmed Essaa Abed Alowaidi, and Mesut Cevik, “Adaptive Volcano Support Vector Machine (AVSVM) for Efficient Classification,” 

Applied Sciences, vol. 15, no. 24, pp. 1-29, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[25] Ji-Yeong Jang et al., “Explainable AI-Based Clinical Signal Analysis for Myocardial Infarction Classification and Risk Factor 

Interpretation,” Signals, vol. 6, no. 4, pp. 1-17, 2025. [CrossRef] [Google Scholar] [Publisher Link] 

[26] Saeedeh Heydarian, Classification of Coronary Artery Disease, 2023. [Online]. Available:  

https://www.kaggle.com/datasets/saeedeheydarian/classification-of-coronary-artery-disease 

 

 

https://doi.org/10.1109/ACCESS.2024.3366537
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Novel+Early+Detection+and+Prevention+of+Coronary+Heart+Disease+Framework+Using+Hybrid+Deep+Learning+Model+and+Neural+Fuzzy+Inference+System&btnG=
https://ieeexplore.ieee.org/document/10438363
https://doi.org/10.1051/e3sconf/202449103013
https://www.e3s-conferences.org/articles/e3sconf/abs/2024/21/e3sconf_icecs2024_03013/e3sconf_icecs2024_03013.html
https://doi.org/10.54254/2755-2721/2025.18749
https://ace.ewapub.com/article/view/18749
https://doi.org/10.1007/978-981-97-3594-5_14
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Machine+Learning+Approach+to+Cardiovascular+Disease+Prevention+in+Smart+Healthcare&btnG=
https://link.springer.com/chapter/10.1007/978-981-97-3594-5_14
https://doi.org/10.1007/s11042-023-16924-3
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+intelligence+method+for+heart+disease+prediction+using+integrated+filter-evolutionary+search+based+feature+selection+and+optimized+ensemble+classifier&btnG=
https://link.springer.com/article/10.1007/s11042-023-16924-3
https://doi.org/10.1007/s11042-023-14817-z
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Heart+disease+risk+prediction+using+deep+learning+techniques+with+feature+augmentation&btnG=
https://link.springer.com/article/10.1007/s11042-023-14817-z
https://doi.org/10.1038/s41598-025-15938-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+deep+SVM+for+detecting+early+heart+disease+among+cardiac+patients&btnG=
https://www.nature.com/articles/s41598-025-15938-1
https://doi.org/10.3390/app152412995
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Adaptive+Volcano+Support+Vector+Machine+%28AVSVM%29+for+efficient+classification&btnG=
https://www.mdpi.com/2076-3417/15/24/12995
https://doi.org/10.3390/signals6040062
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Explainable+AI-based+clinical+signal+analysis+for+heart+disease+prevention+and+management&btnG=
https://www.mdpi.com/2624-6120/6/4/62
https://www.kaggle.com/datasets/saeedeheydarian/classification-of-coronary-artery-disease

