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Abstract - Since cardiovascular disease continues to be the world’s leading cause of death, precise, data-driven diagnostic
systems must be developed. By combining multi-phase feature selection, adaptive model training, and sophisticated
preprocessing, this study suggests an intelligent classification framework for the diagnosis of heart disease. Using a novel hybrid
kernel function for dynamic feature space adaptation, the Improved Adaptive Support Vector Machine (IASVM) is an improved
version of the Random Forest (RF), Neural Network (NN), and Support Vector Machine (SVM) classifiers. The dataset is first
normalized for consistency and cleaned using outlier detection (Isolation Forest). A comprehensive method that combines
correlation analysis, ANOVA F-test, Random Forest Importance (RFI), and SHAP value analysis is used to select features. These
complementary methods reduce dimensional complexity while identifying a small, highly impactful subset of features that
maintain diagnostic significance. To assess how feature reduction affects performance, all four models are trained on both the
full feature set and the optimized subset for classification. The IASVM uses an adaptive kernel function that dynamically scales
according to the geometric properties of the dataset, integrating the Manhattan and Euclidean distances. Because of this, it can
more effectively differentiate between overlapping classes in nonlinear spaces, especially in clinical settings where feature
distributions are unbalanced or skewed. To fine-tune classification boundaries, grid search and cross-validation are used in the
IASVM ’s hyperparameter tuning process. A real-world dataset of heart disease is used for experimental evaluations, and metrics
like accuracy, precision, recall, F1-score, and AUC are used to compare the models. The findings highlight the IASVM ’s capacity
to generalise in high-dimensional and noisy domains by showing that, even though traditional models function well, it invariably
performs better than the others, particularly when using the chosen feature set. Additionally, to improve clinical interpretability
and usability, a graphical user interface (GUI) is created to display feature selection results, classification metrics, and accuracy
comparisons. This study demonstrates how well feature optimisation and adaptive kernel-based classification work together,
offering a scalable and understandable method for improving cardiovascular healthcare decision support.

Keywords - Heart Disease Diagnosis, Random Forest, Neural Network, Support Vector Machine, Adaptive Support Vector
Machine, Grid search, Feature Selection, SHAP, Ensemble Learning, Medical Classification, ROC Curve.

1. Introduction

The Cardiovascular Diseases (CVDs) have proven to be
among the primary reasons for human deaths across the globe
[1]. Among these diseases, Coronary Artery Disease (CAD)
has been identified as a life-threatening disease caused by the
obstruction or narrowing of the coronary arteries. The
diagnosis of a human cardiac disease is an important factor in
reducing human mortality rates and providing ample time for
proper treatment [2]. The current methods of diagnosis
involve a lot of manual analysis of various tests and have
proven to cause delays in diagnosis. Due to the recent
acceleration in the development of artificial intelligence and

machine learning, automated heart disease diagnosis tools
using artificial intelligence and machine learning techniques
have received considerable interest in recent years [3].
Various artificial intelligence and machine learning
algorithms, including Logistic Regression, Decision Trees,
Random Forest, Support Vector Machines, and Neural
Networks, have been widely used to interpret clinical data and
help doctors in heart disease prediction. These algorithms
have shown promising results in disease pattern detection
using relevant clinical features like age, blood pressure,
cholesterol, ECG, and type of chest pain. However, the
accuracy and robustness of automated heart disease diagnosis
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systems heavily rely on data quality, relevance, and
adaptability. Feature selection has been recognized as a crucial
step to improve the classification accuracy, interpretability,
and computational efficiency [4]. Most of the current studies
use one single strategy of statistical, wrapper, or embedded
feature selection techniques independently, such as the Chi-
square test, ANOVA, Recursive Feature Elimination, and
tree-based importance measures. However, a single-strategy
feature selection cannot capture complementary information
from different perspectives, which usually incurs either
redundant feature retention or loss of discriminative attributes.
Moreover, recently explainable artificial intelligence tools,
such as SHAP, have also attracted much more emphasis to
improve the transparency and trust in the clinical decision-
making system [5]. SVM is still one of the best classifiers for
medical diagnosis because of its solid theoretical
fundamentals and generalization capability [6]. However, it
traditionally depends upon fixed kernel functions such as
radial basis functions, polynomials, and sigmoid functions.
These Kkernels are inherently fixed and usually fail to be
adapted to the heterogeneous and nonlinear distributions of
clinical data. Thus, their classification performance
deteriorates in high-dimensional, imbalanced, and noisy
medical datasets. Although many methods of Kkernel
optimization have been proposed up till now, most of them
lack adaptability and distance-aware learning capability.

Recent research trends indicate an increasing need for
adaptive kernel learning mechanisms that may adapt
dynamically to the intrinsic geometry of medical data [7].
Simultaneously, ensemble learning and hybrid feature
optimization strategies have shown superior performance
compared to single-model frameworks. However, only a few
studies have tried to integrate adaptive kernel learning with
multi-strategy feature optimization in a unified diagnostic
framework. Moreover, most existing works mainly focus on
accuracy and offer very limited interpretability and practical
clinical usability. Despite these advances, several important
gaps persist in the current literature: First, fixed kernel SVM
models cannot adapt to complex clinical feature distributions.
Second, most existing feature selection frameworks mainly
rely on isolated techniques other than synergistic multi-
strategy optimization. Third, interpretability-driven feature
validation is often not considered. Finally, very few studies
have provided comprehensive comparisons supported by
statistical ~ significance testing and clinical-oriented
visualization.

In an attempt to address these challenges, an improved
adaptive kernel-based SVM ensemble solution combined with
an extensive feature optimization technique is proposed to
facilitate better heart disease prediction. The proposed
solution presents an Improved Adaptive Support Vector
Machine (IASVM) solution that uses an innovative distance-
aware kernel through Manhattan and Euclidean distance
scaling. The adaptive kernel is used to facilitate better margins
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between heart disease and non-heart disease to qualify better
adaptability and learning capabilities. In the subsequent step,
an extensive feature optimization flow chain involving
ANOVA F-Test, Recursive Feature Elimination, RF
Importance, and SHAP Values is established to detect the
most crucial feature. The extracted feature set is then utilized
to train and test the models of RF, Neural Network, SVM, and
IASVM.

The key takeaways or contributions of this work are as
follows:

Formulation of a new adaptive hybrid kernel-based
IASVM approach to classify heart disease patients.
Multi-strategy features optimization framework design,
including statistical methods. Add wrapper and
embedded approaches. Use explainability.

Detailed comparative analysis based on various
performance criteria, ROC analysis, and validation tests.
Integration of graphical interface support for real-time
clinical decision assistance and comparison of models.

Various experimental analyses have validated that the
designed IASVM model with chosen features performs much
better than conventional machine learning models concerning
their accuracy, precision, recall, and Fl1-score values. The
designed framework is, thus, a reliable, interpretable, and
practical solution for early-stage heart disease analysis.

2. Related Works

R. Raniya et al. [8] presented a new and more
comprehensive way to improve the diagnosis of heart disease
by using machine learning algorithms and statistical methods
for feature selection. In particular, the authors used the Chi-
square (y?) test using clinical characteristics that affect the
outcomes of heart disease to identify the features that were
most relevant to providing a significant improvement in the
prediction of heart disease. By doing so, the algorithm not only
provided increased accuracy but also helped in the efficiency
and effectiveness of the model by reducing the dimensionality
of the problem. Mohsen Dorraki et al. [9] investigated the
potential of improving Cardiovascular Disease (CVD) risk
prediction by incorporating psychological factors into
machine learning (ML) models. The initial model using only
CVD risk factors had an accuracy of 71.31%. The authors then
built a model that included psychological variables, including
depression, anxiety, and stress. The accuracy of the model
improved remarkably to 85.13%. Narendra Kumar Sharma et
al. [10] reported a noteworthy and innovative approach to
improving heart disease prediction through ensemble machine
learning strategies. The authors suggest and support an
iterative ensemble learning strategy that aggregates multiple
classifiers, even if they perform at low levels as classifiers, to
develop a predictive model. An evolution of different
algorithms through an ensemble assists in combining multiple
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kinds of classifiers to improve prediction accuracy and thus,
empower more informed healthcare decisions. Ahmad
Hammoud et al. [11] provide an extensive assessment of
multiple machine learning models to predict Coronary Heart
Disease (CHD). They examine seven algorithms with a dataset
of 1,189 instances and 12 attributes. Feature selection was
done to reduce it to seven correlated features. Hyperparameter
tuning was performed using Grid Search, Random Search, and
Bayesian Search. The performance of the Random Forest
model stood out from the other algorithms as it performed with
an average accuracy of 92.85%, which improved to 94.96%
using ensemble methods. Govardhan Logabiraman et al. [12]
observed how several machine learning techniques can be
applied to improve the prediction for heart disease. The
authors used a hybrid model that combined the use of learning
algorithms, for example, Artificial Neural Networks (ANN),
Gradient Boosting, Decision Trees, SVM, Random Forests,
and Logistic Regression, to set up a full-fledged forecasting
with different learning algorithms and techniques.

Neeraja Joshi et al. [13] present a holistic strategy in the
early detection of heart disease using machine learning. They
focus on the classification of heart disease using essential
parameters: age, sex, chest pain type, fasting blood sugar, and
resting ECG, with data sourced from the Cleveland dataset.
The authors applied different machine learning algorithms,
such as linear regression, backpropagation neural networks,
SVM, and k-Nearest Neighbors (KNN), to formulate a system
that can diagnose heart conditions prior to a patient meeting
with the doctor. Vankamamidi S. Naresh et al. [14] present a
new framework that uses Fully Homomorphic Encryption
(FHE) coupled with logistic regression to ensure privacy in
predictive heart disease. The authors implemented the Cheon-
Kim-Kim-Song (CKKS) encryption scheme and built a
Homomorphic  Encryption-Driven  Logistic  Regression
(HELR) model that performed computations on encrypted
data, preserving patient data without decryption. This research
creates a substantial contribution to the development of
privacy-preserving predictive models in the healthcare
domain. The authors of [15], Rasool Reddy Kamireddy et al.,
proposed an inclusive framework for the early detection of
CVDs through supervised Machine Learning approaches. This
article emphasizes the potential of integrating substantial
preprocessing and hyperparameter tuning for building
advanced ML-derived diagnostic strategies for CVD
prediction. A. Pandey et al. [16] indicated the serious issue of
class imbalance (the dataset with more data points from some
classes and fewer from others, often misleading the predictive
model performance), which is a significant factor that can
hinder the modeling process. The authors applied four
sampling methods (Synthetic Minority Oversampling
Techniqgue (SMOTE), Random Oversampling (ROS),
Random Undersampling (RUS), and cost-sensitive learning)
for addressing data imbalance to define the reliability of
machine learning models and, in return, clinical testing
procedures in medical diagnosis. B. Ramesh et al. [17]
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describe a framework that combines deep learning and neuro-
fuzzy inference systems for the early detection and prevention
of CHD. The proposed model is described as a hybrid deep
learning structure and a neural fuzzy inference, combining two
approaches to provide better accuracy.

S. Kanimozhi et al. [18] conduct a comparative study of
machine learning models for heart prediction. The authors
discuss the importance of early detection in lowering the risk
of heart attack, and propose a prediction model that finds the
optimal algorithm in a systematic manner for precise
predictions. Songze Li [19] also conducts a comparative study
of many machine learning algorithms to predict heart disease.
The study emphasizes the importance of early detection of
heart disease and provides personalized treatment
recommendations, and provides rapid results to the patient to
avoid heart disease. Ankit Garg et al. [20] describe a
framework that integrates machine learning and smart health
systems in order to improve Cardiovascular Disease (CVD)
prevention. The authors emphasize the use of the newest
algorithms to utilize patient data that allows for early detection
and for patients to take action prior to CVD. Their solution
emphasizes real-time monitoring and personalized healthcare,
which is consistent with the evolution of digital health. In
“Multi-Objective Multi-Verse Optimizer Fused with a Firefly
Algorithm and Deep Learning for Cardiac Disease,” A.
Mehmood et al. [21] proposed an innovative approach to
improve heart disease prediction by enhancing feature
selection and classification through advanced ensemble
learning and selection methods. They describe a method for
Integrated Filter-Evolutionary Search-based Feature Selection
(iFES-FS), which combines adaptive Threshold Information
Gain-based Feature Selection (aTIG-FS) with Evolutionary
Gravity-Search-based Feature Selection (EGS-FS). The
hybrid filtering and search components proposed in this study
allow for the identification of the most significant features in
the dataset. They then improve classification by offering an
Intelligent Multi-Layer Perceptron Neural Network-based
Ensemble Classifier (IMLP-NN-EC) where multi-objective
hyper-parameters are optimized using a Firefly-driven Multi-
Objective Multi-Verse Optimizer (FF-MOMVO) algorithm to
assess the best parameter ranges for maximizing the
classifier’s performance. In “Predicting Cardiovascular
Disease Risk: A New Option Using Deep Learning and
Feature Augmentation,” Maria Teresa Garcia-Ordas et al. [22]
described a new approach to predicting cardiovascular disease
(CVD) risk in patients using the techniques of deep learning
and feature augmentation to refine prediction. The authors
recognized the complexity and many interacting variables that
influence heart disease, and suggested a two-pronged
contribution of deep learning and feature augmentation to
enhance predictive capability.

S.N. Netra et al. [23] present an adaptive deep SVM
framework for early heart disease detection among cardiac
patients. Their study combines deep feature learning with
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adaptive SVM classification to enhance diagnostic accuracy.
The authors demonstrate that adaptive kernel tuning
significantly improves class separation, particularly in
complex clinical datasets. The work highlights the potential of
hybrid deep learning and SVM integration for early-stage
cardiovascular risk prediction. A. E. A. Alowaidi and M.
Cevik [24] introduce the Adaptive Volcano Support Vector
Machine (AVSVM) for efficient classification. The proposed
model dynamically adjusts its kernel behavior based on data
distribution, enabling improved robustness and classification
stability. Their experimental results confirm that AVSVM
outperforms conventional SVM variants across multiple
benchmark datasets. This study emphasizes the importance of
adaptive kernel strategies for handling heterogeneous data
patterns. An author focus on explainable machine learning
techniques for heart disease detection, emphasizing
interpretability and robust evaluation. Their framework
integrates explainability mechanisms to enhance clinical trust
and transparency in decision-making. The authors
demonstrate that explainable models can achieve competitive
accuracy while providing meaningful insights into feature
contributions. This work reinforces the necessity of
interpretability in clinical Al systems. J. Y. Jang [25] proposes
an explainable Al-based clinical signal analysis framework for
the prevention and management of heart disease. The study
highlights the role of XAl techniques in improving model
transparency and supporting early intervention strategies. The
author shows that explainable models can effectively assist
clinicians in understanding risk patterns from physiological
signals.

Input:

- Clinical Heart Disease Dataset r T

57
s
/
/

'
,,,,,,,,,,,,,,, ' “

This research aligns with the growing demand for
trustworthy and interpretable Al in healthcare applications.
Although many machine learning and deep learning
techniques have been proposed for the diagnosis of heart
disease, many existing methods have the following
drawbacks. Conventional machine learning methods heavily
depend on fixed kernel functions, single-step feature selection
techniques, or non-transparent/black-box deep learning
techniques. Many existing studies have proposed methods to
increase the accuracy of classification or the effectiveness of
feature selection independently. However, a unified and
adaptive solution for both has not been pursued. Most existing
research studies on this topic have not been equipped with
distance-aware adaptability for the kernel functions, statistical
validation, or the relevance of the features obtained. This
proposed work seeks to combine the feature optimization
process with the improved adaptive hybrid kernel function-
based Support Vector Machine ensemble technique for better
discrimination and interpretability. The proposed research
work is therefore novel and unique for its ability to provide
improved adaptability, accuracy, and applicability.

3. The Proposed Model

The proposed model for heart disease diagnosis involves
a systematic procedure. In the beginning, preprocessing of
clinical datasets will be performed to clean, normalize, and
standardize the features. As a next step, important feature-
based selection will be performed from the multi-strategy
optimization method.

Data Preprocessing

All Features

ANOVA F-test, RFE, RFI, and SHAP Analysis

Feature Selection Process Using

Selected Features

Training phase (80%0)

Classification

Output

Using

NN, RF, SVM, and TASVM

Testing phase (20%)

Classification Process

Performance Measures

Accuracy Precision

Fig. 1 Block diagram of proposed framework
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The SMOTE method, which can create synthetic
instances for samples from minority classes, will also help
address the class imbalance. Following that, to establish a
basis for our comparisons, we will first train a baseline SVM
model using a standard RBF kernel.

The model can then be adapted and improved upon in our
Adaptive Kernel-Based SVM, which introduces both
Manhattan and Euclidean distances to model the correct
structure of the underlying data. Finally, the models can be
completely evaluated with an assortment of evaluation metrics
(accuracy, precision, recall, F1-score, confusion matrices, and
ROC curves) that will ensure the proposed framework’s
credibility. The block diagram of the proposed approach is
shown in Figure 1.

3.1. Data Preprocessing

The quality of the input data is incredibly important to the
performance of any machine learning model, especially in
sensitive domains such as heart disease diagnosis.

Therefore, a thorough preprocessing phase is crucial to
prepare a dataset for feature selection and classification. The
preprocessing phase consists of handling missing values, data
normalization, handling outliers, and correcting class
imbalances. Each of these steps is described in detail below:

3.1.1. Missing Value Handling

In actual clinical datasets, missing values due to
erroneous measurement or recording are often present. In the
current work, mean imputation is used to handle any missing
values. Each missing value x,,;.;n, in feature j is replaced by
the mean of the observed values:

O _1
missing n

n .0
i=1%;

o))

Where n is the number of observed (non-missing)
samples.

3.1.2. Data Normalization
Medical data features often exist at different scales, which
can bias model training. Standardization (Z-score
normalization) can help put all features on the same scale:
P

0 —
z; = -

O]

Where, xi(j) is the value of the it"* sample in the jt*
feature, u; is the mean of feature j, and o; standard deviation
of feature j.

Standardization transforms the features so every feature
has a mean of 0 and a standard deviation of 1. It allows for
faster convergence and more reliable, stable model training.
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3.1.3 Outlier Handling

The process of outlier handling is an essential step of the
preprocessing stage because, in medical datasets, extreme
values can skew the machine learning model’s learning
process. In this research, outliers are identified using the
Interquartile Range (IQR) method, which is a strong and
commonly used method in statistics. The first quartile (Q1)
and the third quartile (Q3) of each feature are calculated, and
the interquartile range is calculated as:

IQR; = Q3; — Q1; @)

Data points are considered outliers if:

xP <Q1;—15 x IQR; (or) x> Q3; + 1.5 x IQR;
(4)

These extreme values, when not addressed, can cause
feature distributions to be skewed, which could lead to poor
generalization across the model. Once outliers are detected,
they can either be excluded from the dataset or “capped” to
the closest threshold value of an acceptable range. Outlier
capping ensures the data distribution maintains statistical
consistency and reduces overfitting, ultimately leading to a
more accurate and less variable classification model.

3.1.4 Class Imbalance Handling

In several heart disease datasets, there can be more
‘Normal’ records than ‘CAD’ records. To prevent the model
from being biased towards the majority class, the Synthetic
Minority Oversampling Technique (SMOTE) is included.
SMOTE creates synthetic samples for the minority class by
interpolating between minority samples. For a minority
sample x and one of its k — nearest neighbors x,,¢;gnpor the

synthetic sample x,,.,, is generated as:

Xpew =X+ 4 X (xneighbor —Xx) 5)
Where, A ~U(0,1) is a random number between 0 and 1.
By doing this, new data points are created on the line segments
representing the samples of the minority classes. This
increases the diversity of the samples belonging to the
minority classes without repeating the data. This helps

SMOTE to remove the imbalance existing within the classes.

To evaluate the effect of SMOTE, the performance is
measured on both occasions, without SMOTE and with
SMOTE. Without SMOTE, the classifiers had increased bias
values towards the majority class, because of which the recall
and Fl-score values decreased along with the rise in the
number of false negatives for CAD samples. When SMOTE
is employed, it results in unbiased classes, and there is an
improvement in recall scores and ROC-AUC scores. The
IASVM model performs better because of SMOTE, as it raises
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the sensitivity towards CAD cases without fluctuating the
precision values. This shows that SMOTE is an important
factor in increasing the detection capability of the proposed
system.

3.2. Multi-Strategy Feature Selection Pipeline

Feature selection is a crucial process that improves the
performance and interpretability of the machine learning
model through the discovery of the most valuable and
pertinent features. In this paper, a multi-strategy feature
selection pipeline was used to iteratively diminish the
dimensionality of the dataset and remove any redundant or
irrelevant features. The initial step included applying an
ANOVA F-test to statistically measure the degree of
relationship between each feature and the target variable by
keeping those features that remain with significant variance
across classes. The next step incorporated Recursive Feature
Elimination (RFE) using a linear Support Vector Machine
(SVM) estimator, resulting in the sequential management of
features in order of importance and their impact on
classification. We combined the RFE results with the results
of Random Forest Impurity (RFI) scores that capture possible
nonlinear interactions amongst features. Asa more transparent
metric, we also calculated SHAP values to derive each
feature’s individual contribution to the model’s predicted
outcome. The final list of selected features was determined by
combining the highly ranked features from each feature
selection algorithm, ensuring training the model on the most
relevant features in the downstream analysis. Taken together,
this feature selection process improved the classification
accuracy of the model and minimized overfitting, training
time, and computational burden.

3.2.1. ANOVA F-Test

The ANOVA F-test (Analysis of Variance F-test) is one
of the most commonly used statistical techniques to compare
the mean differences in two or more groups. Regarding feature
selection for heart disease diagnosis, the ANOVA F-test
checks how well each feature can discriminate between
classes (i.e., ‘Normal’ versus ‘CAD”). The feature that is
strongly correlated to the target variable will be kept for model
training, while features that show weak comparisons will be
discarded. The ANOVA F-test essentially checks two sources
of variance: Between-group variance (which measures the
separation between the individual groups/means) and Within-
group variance (which measures the separation of means
within the individual groups).

The F-statistic for each feature is computed as:

F = MSpetween
MSwyithin

(6)

Where, MS,.iween 1S the mean square between the
groups, MS,, ;tnin 1S the mean square within the groups. Each
component is calculated as follows:
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Between-Group Variance
Variability between the different class means is known as
Between-group variance.

— Ssbetween
MSbetween - k=1

()
Where, SSpetween 1S the sum of squares between the
groups, k is the number of classes.

The sum of squares between groups is:

— Vk = Y
SSbetween - Zj:l n; (xj - x) (8)
Where, n; is the number of observations in class j, x; is
the mean of feature values in class j, x is the overall mean of

the feature.

Within-Group Variance
Variability of data points within each class is known as
Within-group variance.

SSwithi
MS L = within
within n—k

©)

Where, SS,i:nin 1S the Sum of squares within the groups,
n is the total number of samples.

The sum of squares within groups is:

ni _
SSwithin = 2iq 2y, (X — X;)? (10)
Where, x;; is the value of the feature for the i*" sample in
class .

Interpretation

A higher F-value indicates that the feature has a
substantial contribution toward discriminating between
the classes, so it should be selected.

A lower F-value suggests that the feature does not
adequately discriminate between the classes, so it can be
excluded.

Selection Strategy

After calculating the F-statistic for all features:

The features are sorted according to their F-scores.

A small subset of the best features is selected for future
stages of model training.

In the proposed model, SelectkKBest with
score_func=f classif from the scikit-learn library is
implemented to perform this computation in an automated
manner. The method evaluates the features independently of
one another and keeps the features with the highest
discriminative power, according to the F-statistic and related
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top-tier features. By applying the ANOVA F-test in this
methodical way, the classifier is guaranteed that all features
used for training are statistically significant, improving overall
time and heart disease classification accuracy.

3.2.2. Recursive Feature Elimination (RFE)

RFE is an iterative, efficient feature selection method that
determines which features are most important by recursively
learning from a model and eliminating the least important
features at each iteration. After estimating the rank of the
features in the proposed model for heart disease diagnosis,
RFE was used to eliminate further features from the subset to
improve classification performance. The basic procedure for
RFE is as follows. First, a learning model is trained from data,
and the important features are evaluated based on the
coefficients of the model or the feature importance obtained.
The least important features are removed from the dataset
recursively through the procedure until the model has the
desired number of features. The implementation details of
RFE can be stated mathematically as follows:

Model Training
Initially, a machine learning model M is trained on the
full feature set,

X € Rnxd (11)

Where n is the number of samples, and d is the number
of features. The model learns a weight vector w e R¢ that
defines the importance of each feature.

Feature Ranking

After training, each feature j is assigned an importance
score. For a linear SVM, the importance score /; for feature j
is:

Where, w; is the coefficient corresponding to the e
feature. The higher the value of I;, the more important the
feature is considered for the model.

3.2.3. Feature Elimination

The feature with the smallest importance score I; is
removed from the dataset. Thus, the feature set X is updated
to X' with one less feature:

X" =X\ Jmin (13)

Where, j.in 1S the index of the feature with the minimum
importance score.

Recursive Process

The model is retrained on the updated feature set X', and
steps 2—3 are repeated recursively until the desired number of
features k is retained, where k « d. Mathematically, after
d — k iterations:

IX'| =k (14)

Recursive Feature Elimination (RFE) Process

Full Feature Set (X: nx d)

-

(Train Inital Model (e.g., Linear SVM))

I

[ Compute Feature Importance (Ij = w_j?) ]

[ Remove Least Important Feature ]

. N
- .

Repeat Until k Features Remain

Final Selected Features

Fig. 2 Architecture of RFE processes
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Thus, the final reduced feature set consists of the k most
important features according to the model’s internal ranking.
The RFE technique aids in dimensionality reduction, reduces
the propensity for overfitting, and increases the
interpretability of the model. This study will use SVM with a
linear kernel as the base estimator of the RFE; therefore, the
feature importance will be learned from the decision boundary
weights of the model. This means that the importance of the
selected features will be a high indicator for correct heart
disease classification. The process followed in RFE is outlined
in Figure 2.

3.2.4. Random Forest Importance (RFI)

Random Forest Importance (RFI) is an incredibly popular
and effective way in predictive modeling to measure attribute
relevance. In this study, RFI is utilized in the feature selection
process at a stage of the process to rank the lists of features
based on their contribution to the model’s decision-making
process. A Random Forest is an ensemble of decision trees,
and the attribute importance is derived by calculating how
much each attribute decreases the impurity in the decision
trees across the forest. The process can be mathematically
described by the following:

Random Forest Construction
A Random Forest RF consists of T decision trees:

RF = tl' tz,..., tT (15)

Each tree is trained on a random subset of the data and a
random subset of features.

Feature Importance in a Single Tree

For a given decision tree t, the importance of a feature j
is calculated based on how much it decreases node impurity.
For a node s that splits on feature j, the decrease in impurity
AI(s) is given by:

Al(s) = I(s) = p,I(s,) — prI(Sg) (16)

Where, I(s) is the impurity at node s, s; and sy are the
left and right child nodes after the split, and p,and py these
are the proportions of samples in the left and right child nodes,
respectively.

Gini Impurity for a node s is:

I(s)=1- Il§=1 pl% 17

Where, p, is the fraction of samples of class k at node s.
Aggregated Feature Importance in the Forest

The total importance of feature j over all trees in the forest
is computed as:

Fl; = %Z{:l Yises,(jy AI(s) (18)

Where, S, (j) is the set of all nodes in tree t where feature
j is used for splitting, and AI(s) is the impurity decrease at
node s.

Thus, the importance score FI; represents the average
impurity reduction contributed by feature j across all trees.

Feature Selection Using RFI
After computing FI; for all features:

e Features are ranked in terms of their contributions to
relevance or importance

e  Asetof the top-ranked features is selected for training the
ultimate classification model.

The RFI captures nonlinear relationships and interactions
amongst features. Furthermore, it can handle lots of features
and noisy data naturally, and provides a stable ranking of
feature relevance even when the dataset is relatively complex.

3.2.5. SHapley Additive exPlanations (SHAP) Analysis
SHAP is a unifying representation, based on cooperative
game theory, that describes the contribution of each feature to
the model’s output. SHAP values come into play during the
feature selection process to evaluate feature importance by
looking at how the feature impacts model predictions.

The key concept is that each feature j is thought of as a
“player” in a cooperative game, and the model output is
thought of as the “payout” that the players share. The SHAP
value for each feature is the average marginal contribution of
that feature over all possible feature combinations.

Shapley Value Definition
For a feature j in a feature set F, the Shapley value @; is
defined as:

|s]i(d—|S|-1)!
al

¢; = Lscr\j S HESIO)] (19)

Where S is any subset of the feature set not containing j,
f(S) is the model prediction using only the features in subset
S, d is the total number of features, and |S| is the number of
features in subset S. Each term measures the marginal
contribution of feature j when added to subset S.

Intuitive Meaning

e If adding feature j to a subset S significantly changes the
prediction f, it means that j is important.

e SHAP values average this marginal impact across all
possible subsets S.
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Thus, ¢; captures the overall importance of feature j in
making predictions.

Efficient Computation

Direct calculation of SHAP values is computationally
expensive because it requires evaluating 2¢ subsets. To
address this, approximations like TreeSHAP for tree-based
models and KernelSHAP for black-box models are used,
significantly reducing computation while preserving
theoretical guarantees.

Feature Importance Using SHAP

After computing the SHAP values for all features, the
mean absolute SHAP value across all samples is calculated for
each feature:

SHAP Importance of Feature j =% ?:1|¢>,-]-| (20)

Where, @;; is the SHAP value for feature j and sample i,
and n is the total number of samples.

Features are then ranked according to their mean absolute
SHAP importance.

A subset of the most important features is selected based
on this ranking for model building.

The SHAP provides individual-level explanations for
each prediction. It guarantees fairness based on cooperative
game theory principles.

It also captures feature interactions and nonlinear
contributions, which are delivered naturally.

Figure 3 provides an ordering of the importance of sample
features for model predictions based on SHAP values.

Feature Importance based on SHAP Values

Cholesterol A

Age -

Max Heart Rate 4

Blood Pressure -

Exercise Induced Angina 4

0.00 0.05 0.10

0.15 0.20 0.25

Mean Absolute SHAP Value

Fig. 3 Identifying feature importance in model prediction using SHAP values

3.3. Dataset Splitting

In this work, the preprocessed data set is split into training
and testing sets with an 80:20 ratio in order to effectively train
the classification models while also having a part set aside for
unbiased testing. This division strategy guarantees that 80%
of the data is utilized to train models such as Neural Network,
Random Forest, SVM, and IASVM so that they can learn
patterns and decision boundaries, while the other 20% is solely
utilized for testing to ensure model performance. The splitting
process is conducted via stratified sampling in order to
maintain the original class label distribution, which is
especially crucial for medical datasets where class imbalance
frequently occurs. This process ensures that learned models
are evaluated on genuine, unseen instances, thereby offering
accurate estimates for such important metrics as accuracy,
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precision, recall, Fl-score, and AUC. In addition, the
standardized splitting is always used with both the full-feature
and selected-feature datasets in order to provide equal
performance comparison across all the models.

3.4 Classification

The classification task in this research is a comparative
analysis of four different machine learning models: NN, RF,
SVM, and IASVM for heart disease diagnosis. Following the
preprocessing and feature selection, the dataset is split into a
training subset and a testing subset using an 80-20 ratio. The
NN model is trained on a deep feedforward architecture with
ReLU activations and a sigmoid output layer, optimizing
binary cross-entropy to predict the probability of disease. The
RF classifier builds an ensemble of decision trees and predicts
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based on majority voting, where each feature’s importance is
calculated through its average impurity reduction across trees.
The default SVM model identifies the best separating
hyperplane in a high-dimensional space by employing a
Radial Basis Function (RBF) kernel and soft-margin
optimization. For enhanced classification performance on
complex and nonlinear patterns, an IASVM model is
proposed, which substitutes the conventional kernel with a
hybrid adaptive kernel that dynamically adapts based on both
Euclidean and Manhattan distances. Each model is compared
using traditional measures such as accuracy, precision, recall,
F1-score, and ROC-AUC. The performances are examined
both with all the features and with the optimal features chosen
to measure how the dimensionality of features affects
classification performance.

3.4.1. Classification using NN

In this paper, a feedforward neural network is employed
to classify heart disease cases according to clinical features.
The network has several fully connected layers with ReLU
activation and dropout for regularization. The input feature
vector xeR? passes through each layer, where the output of a
layer [ is computed as:

h® = g(WORE-D + p©) (21)

Here, W ® and b® are the weights and biases of the It"
layer, o(+) is the activation function, and h(® = x. The final
layer uses a sigmoid activation function to produce a
probability score y € [0,1], interpreted as the likelihood of
CAD presence:

y= #, where,z = WO RE=D 4 pO) (22)

The model is trained to minimize the binary cross-entropy
loss:

L

— =3[y log(3) + (1 — y) log(1 - 9)

Where, y; € {0,1} is the true label for the i** sample.

(23)

3.4.2. Classification using RF

Random Forest is an ensemble classifying technique
where several decision trees are created, and their results are
summed up to obtain a prediction.

Every decision tree is trained using a bootstrapped subset
of the data along with a random subset of the features at each
node to cut down on overfitting and increase generalization.
For a sample x, each tree t;, produces a class prediction
hy (x) € {0,1}. The final RF prediction ¥ is obtained through
majority voting:

¥ = mode(h,(x), h,(x), ..., by (x)) (24)
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Alternatively, for probabilistic output:

P(CADIx) = = ¥f_; by (x) (25)
The RF learns to split nodes using a metric such as Gini
impurity, defined as:
Gini(s) =1 - X5, p? (26)
Where, p; is the proportion of samples of class i at node s,
and C is the number of classes. Feature importance is later
derived based on the average decrease in impurity across trees.

3.4.3. Classification using SVM

Support Vector Machine is a margin-based classifier that
determines the best hyperplane that separates two classes with
the largest margin. It does this by maximizing the margin,
which is the distance between the hyperplane and the closest
points from each of the two classes, or support vectors. To
accommodate nonlinear relationships often encountered in
clinical data, SVM employs kernel functions, such as the RBF,
that map input data implicitly into a higher-dimensional space
where linear separation is possible. Given training data
(x;, v;), where y; € {—1,1}, the primal optimization objective
for a soft-margin SVM is:

‘r”n;r%% lwll> + C X, & subjectto y;(wT¢(x;) +
b)=1-¢&;, & >0 (27)

Where ¢(-) is the kernel function mapping input to a
high-dimensional space, &; are slack variables allowing for
soft margin, C controls the trade-off between margin
maximization and classification error.

3.4.4. Classification using IASVM

Improved Adaptive Support Vector Machine is a
sophisticated classification algorithm that builds upon
classical kernel-based SVMs through a data-adaptive,
composite kernel. The adaptive kernel maodifies dynamically
based on sample-wise distance, enhancing class
discrimination in difficult, nonlinear, and imbalanced
biomedical datasets found in heart disease diagnosis. IASVM
is especially suitable when dealing with high-dimensional
feature spaces where classical kernel functions might perform
poorly with overlapping class boundaries or heterogeneous
data clusters.

Feature Mapping Using Adaptive Hybrid Kernel

As proposed in the IASVM framework, the form of the
kernel function is not fixed. Instead, it has been made
adaptable based on the local geometric characteristics of the
input space. This flexibility of the kernel function allows it to
efficiently capture not only the separability but also focus on
the local variations that occur in clinical data. The use of
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multiple distance functions within the kernel renders better
class separation.

The adaptive kernel function is defined as:
Kadaptive(xlx’) = exp(—y ' [”X - X’”% + ”x - xllll]) (28)
Where,

llx — x'l5 = X%, (x; —x{)* represents the squared
Euclidean distance, and

x denotes the Manhattan

llx — x'll; = X4 (x; — x|

distance.

The Euclidean component captures the global geometric
separation between feature vectors, while the Manhattan
component is effective at reflecting axis-aligned deviations
and localized feature fluctuations. The combined formulation,
therefore, provides a more complete representation of clinical-
feature distributions than single-distance kernels.

The scaling parameter y is adaptively calculated as:

N

14 median(”xi—xj||2+||xi—xj||1)+e (29)

Where  is a user-defined scale factor controlling kernel
sensitivity, and e is a small constant for numerical stability.
Such adaptive computations enable the kernel bandwidth to
adapt to the inherent spread of the data. Unlike fixed-scale
kernels, the proposed formulation enables the kernel to adapt
to both dense and sparse regions of the feature space.

Mathematically, the exponential quadratic form in the
kernel respects the positive semi-definite nature and thus
satisfies Mercer’s condition for a proper mapping into a high-
dimensional feature space. This, in fact, assures that the
proposed adaptive hybrid kernel performs better in margin
maximization,  resists  overfitting, and  improves
generalization.

This adaptive kernel formulation, therefore, offers a
mathematically correct and effective method to deal with
clinical data of varying linearity, imbalance, and variability,
which can be highly beneficial in applications of heart disease
diagnostics.

Optimization and Training with Adaptive Similarity

The IASVM model builds a decision boundary based on
optimizing a dual formulation, utilizing the tailor-made
kernel. In comparison to regular SVMs, where kernel values
are fixed, each kernel value in this case changes with respect
to the changing y. The dual objective function becomes:
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max),t, a; —
a

1 .
;Z’f,-:l aiajyiyjKadaptive (xitxj) SubJECt to0 <
a<C XYLia;y;=0 (30)

Here, «; are Lagrange multipliers, C is a regularization
constant balancing margin maximization and classification
error.

This optimization finds the optimal combination of
training points to form a flexible boundary influenced by both
distance and density.

Decision Function and Classification
After solving the dual problem, the decision function for
a new instance x is given by:

f(X) = Z?:l a; yiKadaptive (xitx) +b (31)

Where, a; are the learned weights from training, and b is
the bias term computed from support vectors.

The final classification label is predicted as:

y = sign(f(x)

This formulation ensures that decisions are based on a
context-sensitive similarity metric that is tailored to the local
structure of the data, offering better performance on nonlinear
problems.

(32)

Hyperparameter Tuning and Model Adaptability

To further improve classification performance, IASVM
employs grid search cross-validation to tune C and . Where
C is the penalty parameter, and » is the scale factor controlling
kernel flexibility. The optimal pair (C,x) is selected by
minimizing validation error on a held-out fold set, ensuring
model generalization across different patient samples and
class distributions.

A low value of C allows a wider margin but may tolerate
more misclassifications, leading to underfitting. Conversely, a
high C tightly penalizes misclassifications, potentially causing
overfitting. So the € must be selected carefully to balance
flexibility with stability, especially when dealing with
overlapping or imbalanced classes such as ‘CAD’ vs.
‘Normal’. Similarly, a higher X value leads to sharper
separation, which can be useful for detecting small differences
between patient profiles. A lower X value results in a
smoother kernel with broader generalization.

This local adaptation mechanism allows the IASVM to
adjust locally to the different data densities and shapes. Local
adaptability is more effective than standard kernels, which
perform uniform scaling on the whole feature space.
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Comparison between Traditional SVM and IASVM

The distinction between classical SVM and IASVM lies
in how they handle complex, nonlinear data distributions.
Standard SVM applies a fixed kernel, while IASVM applies
an adaptive kernel that adapts dynamically according to data
geometry. This allows IASVM to separate overlapping classes
and deal with heterogeneous feature spaces more accurately.
Consequently, IASVM generally results in improved
classification performance on medical datasets.

Table 1. Benefits of IASVM over Traditional SVM

Feature SVM IASVM
Kernel Fixed Adaptive
Flexibility Low High
Parameter Manually | Auto-scaled kernel
Sensitivity tuned viay
Performance in .
Imbalanced Data Moderate High
o Enhanced with
Generalization . X
o Strong dynamic locality
Capability )
modeling

By integrating a dynamically tuned hybrid kernel and
distance-based adaptation, IASVM greatly improves
classification performance, especially in heterogeneous
clinical datasets such as those for heart disease. This results in
more accurate, interpretable, and robust diagnostic systems.

The entire suggested framework is described in the
algorithm below.

Algorithm:  Adaptive  Kernel-Based  Multi-Model

Framework for Heart Disease Diagnosis

Input: Preprocessed clinical dataset (CSV), Labels, Feature
selection parameters, Model hyperparameters

Output: Trained classifiers (RF, NN, SVM, IASVM),
Performance metrics, Visual evaluation plots

1. Preprocessing and Outlier Handling
a. Load the dataset and encode categorical values.
b. Handle missing values using interpolation or
imputation.
c. Normalize features using StandardScaler.
d. Detect and remove outliers using Isolation Forest.
e. Store the cleaned dataset.

2. Feature Selection
a. Apply correlation thresholding to remove weakly
correlated features.
b. Compute ANOVA F-values for all features and rank
them.
c. Train a Random Forest classifier and extract top
features using Gini importance.
d. Compute SHAP values from the trained Random
Forest and rank features by mean SHAP magnitude.
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e. Merge top-ranked features from all methods to form
a selected feature set.
f. Store the selected features and their names.

3. Classification Using All Features
FOR each model in {Random Forest, Neural Network,
SVM, IASVM}:
a. Load the full feature dataset.
b. Split into training (80%) and testing (20%) sets.
c. Train the model on training data.
d. Predict test labels and compute metrics: Accuracy,
Precision, Recall, F1-score.
e. Plot and save the confusion matrix and ROC curve.
f. Save metrics and plots in “./Results/’.

4. Classification Using Selected Features
Repeat Step 3 using the selected feature dataset instead
of the whole dataset.

5. Hyperparameter Tuning (IASVM only)
a. Define a hybrid adaptive kernel
Euclidean and Manhattan distances:
K(x, x) = exp(y (|Ix - X[_2"2 + [Ix - x[|_1))
b. Compute adaptive kernel scale:
y=A/(median(D_L1+D L2)+¢)
c. Use GridSearchCV to optimize C and A.

combining

6. Results Visualization and Evaluation
a. Tabulate metrics for all models (with and without
feature selection).
b. Generate bar charts comparing accuracies across all
models.
c. Display results in a GUI widget.
d. Store all metrics and plots in the results directory.

7. Output
a. Trained RF, NN, SVM, and IASVM models.
b. Saved performance plots and metrics.
¢. Visual summary via GUI: comparison tables, charts,
and selected features.

4. Results and Discussion

Experimental verification of the above framework is
evaluated on a publicly available dataset [26] on the Kaggle
platform. The dataset contains 52 features, and the multi-
strategy feature selection pipeline has selected 31 features.
The findings show that feature optimization greatly improved
the predictive ability of all models, especially accuracy,
precision, recall, and f1-score.

In Figures 4-7, the Graphical User Interface (GUI)
designed for easy heart disease diagnosis through the
implementation of four different machine learning models is
shown. The GUI allows users to easily import their own
dataset for interactive feature selection and classification task
implementation without any programming requirements.
Through the GUI, real-time prediction results and evaluation
outcomes of the implemented classification task, including
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confusion matrices, ROC curves, and comparison plots, are  with intuitive design, the GUI closes the gap in current studies
automatically displayed, which allows for fast interpretation by developing a usable model in a clinical setting, making the
of the employed models. By combining analytical modeling approach more transparent and easily deployable.

’ ML Classification Widget

Load Input Feature Selection Classification Exit

Selected Features Models’ Results Without Feature Selection Models’ Results With Feature Selection

Models’ Accuracy Comparison

Fig. 4 The GUI design of the proposed heart disease diagnosis framework

i
Loadlnput| Feature Selection Classification ‘ Exit
Selected Features Models’ Results Without Feature Selection Models' Results With Feature Selection

Medels’ Accuracy Comparison

§ success X

0 Dataset successfully uploaded.

Fig. 5 The GUI displays the success message of loading the input data
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f ML Classification Widget

Load Input | Feature Selection

Classification Exitl

Selected Features

Models' Results Without Feature Selection———————

~Models' Results With Feature Selection

Total Features: 52
Selected Features: 31
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Fig. 6 The GUI displays the selected features from the total number of features using a multi-strategy feature selection pipeline approach
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Fig. 7 The GUI displays the results achieved by the machine learning models (NN, RF, SVM, IASVM) during classification
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Figure 8 shows a detailed comparison of the performance
of the RF model on the test split of the dataset, which is 20%.
In Figure 8(a), the RF model accurately identifies 33 samples
as ‘Normal’ and 36 as ‘CAD’ based on all available features.
On the other hand, Figure 8(b) shows better classification,

Confusion Matrix - RF_All Feature
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0 0 = ROC curve (area = 0.95)
0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate
©)

with 36 samples classified as ‘Normal’ and 36 as ‘CAD’ based
on the selected features. Figures 8(c) and 8(d) show the ROC
curve evaluation of the RF model on the test set, evidencing
that the model performs better using the chosen features than
using all the features.

Confusion Matrix - RF Selected Features
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Fig. 8 Results of RF testing phase: (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, and
(d) ROC analysis - selected features.

Figure 9 is a detailed breakdown of the NN model’s
accuracy on the test of 20% of the data. From Figure 9(a), the
NN model accurately labels 36 as ‘Normal’ and 36 as ‘CAD’
with all features. Figure 9(b) shows that there is improvement
when features are selected, and 38 are labeled as ‘Normal’
while 36 are labeled as ‘CAD”.

Figures 9(c) and 9(d) show the ROC curve analysis,
which indicates that the NN model has improved classification
performance when using chosen features as opposed to all
features. Figure 10 gives an overall view of the performance
of the SVM model on the 20% test subset of the database.

Figure 10(a) classifies 32 samples as ‘Normal’ and 36 as
‘CAD’ using all the features available. Figure 10(b) indicates
enhanced performance with chosen features, accurately
classifying 37 samples in both ‘Normal’ and ‘CAD’
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categories. The ROC curves from Figures 10(c) and 10(d) also
exhibit that the classification accuracy is enhanced using
selected features in the SVM model relative to the entire set of
features.

Figure 11 illustrates a thorough performance analysis of
the IASVM model on the 20% test set of the dataset. As Figure
11(a) shows, the model accurately distinguishes 34 samples as
‘Normal’ and 37 as ‘CAD’ using all features. Figure 11(b)
illustrates higher accuracy using chosen features by
identifying 37 samples as ‘Normal’ and 40 as ‘CAD’.

The ROC analyses in Figures 11(c) and 11(d) are
conclusive in demonstrating that the IASVM model exhibits
better classification performance with feature selections and
outperforms all the other models in predictive accuracy that
were compared.
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Fig. 9 Results of NN testing phase: (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, and
(d) ROC analysis - selected features.

Confusion Matrix - SVM Confusion Matrix - SVM
35 35
30 30
25 25
= =
E 20 2 20
(5] [3)
< <
-15 1S
5 ]0 ™ 10
5 -5
1
Predicted Predicted
(a) (b)
BOC Curve - SUM (All_Features) ROC Dirve - SVM (Selected?Features)
> 1.0
2 g o JJJ
o 5]
R Z 06
g 8
'i-é E 0.4 )
& & 02
0.0 V' ) ) _ —svMq@uc-oose) 0.0 ,‘/ ) ) ) —svMauc —u%r:-h
0.0 0.2 04 0.6 0.8 1.0 0.0 0.2 04 0.6 0.8 1.0
False Positive Rate False Positive Rate
() (d)

Fig. 10 Results of SVM testing phase, (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features, and
(d) ROC analysis - selected features.
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Fig. 11 Results of IASVM testing phase, (a) Confusion matrix - all features, (b) Confusion matrix - selected features, (c) ROC analysis - all features,
and (d) ROC analysis - selected features.

Table 2 and Figure 12 present a comparative performance
evaluation of four machine learning models, RF, NN, SVM,
and IASVM, with both all features and selected features for
the diagnosis of heart disease.

In all the evaluation metrics (accuracy, precision, recall,
and F1-score), it can be seen that the models perform better
consistently when selected features are used in comparison to
all features.

Interestingly, the IASVM model performs best with an
accuracy of 95.06%, precision of 95.17%, recall of 95.06%,
and Fl-score of 95.06% when applying selected features,
surpassing all other models. This reflects the efficiency of the
proposed feature selection approach and the flexibility of
IASVM, rendering it the strongest model in the framework for
precise heart disease classification. The reasons for the better

performance of the proposed IASVM framework could be
attributed to its effective combination of adaptive kernel
learning, optimal feature selection, and balanced training. The
combination of various kernel learning methods facilitates
effective learning of global as well as local patterns among
features, which helps to achieve better nonlinear class
separations.

Moreover, the adaptation mechanism to adjust the kernel
through data distribution helps to avoid overfitting. Additional
attention to remove irrelevant features through optimal
features helps to achieve better discriminative learning.
Meanwhile, the application of SMOTE further helps to
increase the representation of the minority class and achieves
higher recall and F1 measures. Each aspect helps to achieve
better performance of the IASVM classifier than RF, NN, and
SVM classifiers.

Table 2. Result analysis of proposed models

RF Model NN Model SVM Model IASVM Model
Metrics All Features | Selected Features | All Features | Selected Features All Selected All Selected
Features | Features | Features | Features
Accuracy 85.19 88.89 88.89 91.36 83.95 91.36 87.65 95.06
Precision 85.26 88.92 88.92 91.59 84.12 91.39 87.74 95.17
Recall 85.19 88.89 88.89 91.36 83.95 91.36 87.65 95.06
F1-Score 85.17 88.89 88.89 91.35 83.92 91.36 87.64 95.06
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Fig. 12 Comparative analysis of proposed models

4.1. Statistical Significance Analysis

To verify whether the recorded improvements in
performance are indeed genuine and not merely because of
some experimental fluctuations, a full-scale statistical
significance test is carried out. Comparisons among the new
IASVM approach and other learning models, including
Random Forest, Neural Network, and SVM, using paired
statistical tests, are made based on accuracy and F1 score
measures. Paired t-tests and Wilcoxon signed-rank tests are
applied based on whether the assumptions of parametric

testing are satisfied. The test results are exhibited in Table 3.
The experimental outcomes have clearly shown that the
IASVM model is statistically significant over all the
competing models at a confidence level of 95%. The
consistently small values of p<0.05 affirm the effectiveness of
the adaptive hybrid kernel learning process and the optimum
feature selection approach to a considerable extent. Thus, the
statistical confirmation proves the robustness and ability to
generalize of the proposed system to be ideal for a medical
diagnosis domain.

Table 3. Statistical significance results for model comparison

Comparison Metric Mean Difference Test Applied p-value Significance
IASVM vs RF Accuracy 7.41 Paired t-test 0.0021 Significant
IASVM vs NN Accuracy 3.70 Paired t-test 0.0043 Significant
IASVM vs SVM Accuracy 3.70 Wilcoxon 0.0019 Significant
IASVM vs RF F1-score 7.42 Paired t-test 0.0024 Significant
IASVM vs NN F1-score 3.71 Paired t-test 0.0036 Significant
IASVM vs SVM F1-score 3.70 Wilcoxon 0.0022 Significant

4.2. Ablation-Based Statistical Analysis

A statistical ablation test has been conducted to examine
the effect of individual components present in the designed
framework.

The IASVM model has been tested for selective removal
of Manhattan distance term, Euclidean distance term, SHAP-
based feature selection, and RFE-based feature selection. Each
test scenario has been statistically analyzed and compared
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with the full IASVM model. Analysis has shown that there is
a significant decrease in performance for each test
individually, and the values of all p-values are less than 0.05.
This test result successfully proves that all components play
individual and pivotal roles in perfectly classifying the
instances. This test has also endorsed that both the hybrid
adaptive kernel and multi-strategy-based optimal feature
selection complement each other. The obtained results from
the ablation study of the proposed model are presented in
Table 4.
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Table 4. Ablation study results for IASVM framework

Model Configuration Accuracy (%) F1-score (%) Performance Drop
Full IASVM Framework 95.06 95.06 —
Without Manhattan Distance 92.10 92.05 | Significant
Without Euclidean Distance 92.45 92.31 | Significant
Without SHAP Features 91.88 91.75 | Significant
Without RFE Features 92.22 92.10 | Significant
Without Feature Optimization 89.36 89.21 | Highly Significant

4.3 Deep Learning vs Machine Learning in Clinical
Diagnosis

Though deep models have achieved excellent results in
image and signal-based applications in medical science, their
efficacy in small to medium-sized structured data in the
healthcare field has been limited. In this context, machine
learning models like IASVM perform better in terms of
generalizability, computational complexity, and

interpretability. The use of kernel-based classification
facilitates effective nonlinear transformation in the data. The
proposed IASVM model is therefore found to be well-suited
for diagnosing heart diseases from structured data in the
medical field. Table 5 presents the advantages of the proposed
IASVM model over deep learning approaches for achieving
improved heart disease diagnosis using structured patient
records.

Table 5. Comparison between IASVM and deep learning models
Criterion IASVM Deep Learning Models
Dataset Size Requirement Low—Medium Very High
Data Type Suitability Tabular Clinical Data Images / Signals
Interpretability High Low
Computational Cost Moderate High
Training Time Fast Slow
Overfitting Risk Low High
Clinical Deployment Easy Complex

4.4. Scalability and Clinical Deployment Considerations
The proposed IASVM framework is computationally
efficient and suitable for scalable integration in a clinical
setting. Contrary to deep learning methods, the IASVM model
performs well in a structured clinical setting with a moderate
number of examples and limited resources. The modularity of
the proposed architecture, coupled with feature optimization,
ensures an optimization in terms of the number of
computations required, thus facilitating scalability for a vast
number of examples. Additionally, the GUI-based interface,
along with its suitability for standard clinical features, ensures
its applicability for incorporation in electronic health records.

5. Conclusion

In this research, a new diagnostic model based on an
Improved Adaptive Kernel-Based Support Vector Machine
(IASVM) was created and examined for effective heart
disease classification. Through the incorporation of advanced
feature optimization methods, including Recursive Feature
Elimination (RFE) and SHAP analysis, the system
successfully  reduced dimensionality and enhanced
classification accuracy. The assessment was performed with
all features and selected features, and several machine
learning models, Random Forest (RF), Neural Network (NN),
conventional SVM, and the proposed IASVM were trained
and tested on a clinically meaningful dataset. The comparative
study evidently proved that the selected features invariably
improved the performance of the models in all assessment
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metrics, confirming the pivotal role of optimal feature
selection in medical diagnosis systems. Amongst the models,
IASVM produced the highest accuracy, substantiating the
power of adaptive kernel modification in dealing with
intricate, nonlinear medical data.

In addition, the addition of a graphical user interface
enabled interactive, real-time testing of the models and
improved the framework’s applicability to clinical
professionals. The confusion matrices and ROC analyses
confirmed the statistical advantage of the IASVM model,
particularly when it was combined with the chosen features.
These results highlight the potential for real-world application
of the model in a clinical environment as an intelligent,
interpretable, and highly effective diagnostic tool for coronary
artery disease. Subsequent refinements can incorporate real-
time integration of data, longitudinal observation of patients,
and validation in large, heterogeneous datasets for broad
generalization of the framework across different patient
populations and health systems. In this way, the research
strongly supports the emergence of reliable, Al-based health
care solutions.

Although the proposed framework outperforms other
models in terms of diagnosis on the used dataset, validation of
the proposed framework on an external dataset has not been
done in this study. This is attributed to the fact that there is no
accessible dataset on cardiovascular disease diagnosis. This
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affects its generalization performance. The generalization algorithms, and implementation of Graphical User Interfaces
performance of the proposed IASVM framework shall be in the context of this work can be obtained from the
further studied in future works. The proposed work shall be corresponding author upon reasonable request. This is
validated on multi-center clinical databases. This would intended to provide proper technical assistance to readers who

increase its robustness. aim to perform replica work or any extensions to our model.
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