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Abstract - This systematic literature review analyzes fifty peer-reviewed studies that address the use of digital twin technology
in the construction industry. The objective of the review is to examine how digital twins contribute to process improvement and
productivity enhancement when compared with conventional monitoring and control approaches. The study selection process
was conducted using the PRISMA methodology, supported by the PICOC framework, and focused on publications indexed in the
Scopus database. The analyzed literature reports that the implementation of digital twins enables measurable gains in
operational productivity-frequently reported at around 30%-and contributes to error reduction on construction sites through
real-time data integration, advanced simulation models, and data-informed decision-making. Despite these reported benefits,
adoption in the construction sector remains limited. Common barriers identified include insufficient digital competencies,
regulatory and organizational constraints, and the complexity associated with managing large volumes of heterogeneous data.
Based on the reviewed evidence, this study highlights the need for coordinated digital transformation strategies, greater
interoperability with technologies such as Building Information Modeling (BIM) and cyber-physical systems, and clearer

implementation guidelines to strengthen the role of digital twins as a practical and sustainable tool within construction processes.
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1. Introduction

The last decade has seen significant progress in
construction project applications of technologies such as
digital twinning in the context of digital transformation. This
system, which acts as a virtual representation of the physical
structure, enables real-time monitoring and performance
evaluation [1]. In addition, more than 40 academic studies
have been examined and validated, identifying six main
application areas: building information modeling (BIM),
resource management, logistics operations, energy simulation,
structural monitoring, and maintenance management [1, 2].
Research shows that the implementation and development of
digital twins can improve operational efficiency by about 30%
and reduce operational errors by up to 25%, mainly due to the
ability to consistently and accurately transmit data [3]. At the
same time, construction projects need to systematically
improve efficiency, quality, and performance metrics to
achieve continuous improvement and increase productivity
[3]. However, they still face several challenges, such as
manual guidance, human error, lack of automation, and
limited digital integration [3, 5]. In this regard, research shows
that about 59% of project managers rely on manually
collected, incomplete, and untimely data, and 65% miss

potential project changes due to delays and unreliable data
sources, resulting in biased data interpretation in decisions [4].
More than 40 case studies of digital twin technology
applications have been documented to overcome these
shortcomings, aimed at improving transparency, coordination,
and control of projects across the industry [1]. Recent studies
report 34 key organizational and technical barriers affecting
the implementation of digital twins in construction, with data
governance and workforce training emerging as the most
persistent challenges [4, 5]. Despite these limitations, digital
twins are increasingly recognized as a transformative
mechanism that enables real-time process visibility and
supports evidence-based decision-making, leading to
improvements in design coordination and project control [5].
Their capacity to integrate with Building Information
Modeling (BIM) and cyber-physical systems, together with
the growing need for digital skills among construction
professionals, positions digital twins as a relevant competitive
asset for the sector [3]. Although previous literature reviews
have successfully outlined the technological scope and
application areas of Digital Twins (DTs) in the construction
sector [1, 3-5], an important research gap remains unresolved.
Most prior studies do not incorporate a quantitative or
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comparative approach that allows a systematic assessment of
the efficiency improvements attributed to DTs in relation to
conventional monitoring and management methods. In
addition, the reported evidence is frequently fragmented, as it
is confined to isolated application domains such as structural
health monitoring or energy management and rarely considers
organizational and human factors, which are decisive for
large-scale implementation.

In response to these limitations, this systematic literature
review presents an integrated analysis that: (i) consolidates
and quantitatively examines performance indicators reported
in empirical studies (for example, efficiency improvements of
approximately 30% and error reductions close to 25%); (ii)
applies the PICOC framework to enable a structured
comparison between DT-based solutions and traditional
process improvement practices; and (iii) discusses technical,
data-related, and organizational constraints within a unified
analytical framework, with the aim of identifying practical
pathways to support successful adoption. Consequently, this
review extends beyond a descriptive inventory of applications
and offers a critical evaluation of the real impact and practical
feasibility of DTs as instruments for continuous improvement
in the construction industry.

The remainder of this paper is structured as follows.
Section 2 describes the research methodology, including the
formulation of research questions using the PICOC

framework, the definition of inclusion and exclusion criteria,
and the study selection process guided by PRISMA
guidelines. Section 3 presents the main findings derived from
the analysis of the selected studies.

2. Methodology

This SLR was conducted following the PRISMA protocol
to ensure a complete and accurate presentation of procedures
and findings [6]. Thus, the PICOC research question
(Problem, Intervention, Comparison, Results, and Context)
was formulated based on this; complementary questions were
formulated, and the keywords used to construct the Scopus
search equation were identified.

2.1. PICOC Question and Its Components

To guide this systematic literature review, a research
question was formulated according to the PICOC approach,
allowing a precise delineation of the key elements of the study.
The research question is presented below:

QP: What digital twin applications have been developed
in the construction industry to replace traditional monitoring
methods and help address low productivity?

Likewise, the components of the PICOC model that
structure the research question are detailed in Table 1,
allowing a clear and focused approach to the analysis of those
digital twin applications in the construction industry.

Table 1. PICOC components

Implementation of digital

Low Productivity Wins

P [ C @) C
Problem Intervention Comparison Results Context
Improved

Traditional manual
monitoring methods

productivity and
decision-making

Construction industry

In this regard, the following complementary questions are
presented:

o QL. What is the current state of productivity in the
construction industry?

o Q2: What specific uses of digital twins have been
developed?

o Q3: What differences exist between digital twins and
traditional manual control methods?

o Q4: What benefits have been reported after implementing
these technologies, and what limitations have they
presented?

o  Q5: What studies have been conducted in the construction
industry, and with which populations or units of analysis?

2.2. Relevant Specialized Keywords

Below are the standardized keywords in English for each

field of the PICOC method (see Table 2), seeking to use these

keywords to help reach a larger information base in order to
answer the research question.

Table 2. Keywords

P | Low productivity, inefficiency, manual processes, and
digital integration

Digital twin, BIM integration, real-time monitoring,
predictive maintenance, cyber-physical systems

Traditional monitoring, manual inspection, analog
methods, and non-digital control

Improved productivity, operational efficiency, cost
O | reduction, error reduction, sustainability, and decision-
making

Construction industry, building sector, infrastructure
projects, civil engineering

C

2.3. Scopus Search Equation

For this database, the five PICOC components were
incorporated using Boolean operators (OR, AND), truncation
(*), and quotation marks (“ ) were used, thus obtaining the
following equation:
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("productivit*" OR “efficien*" OR "decision making")
AND ("digital twin*") AND ("construction*” OR
"infrastructure” OR  "building*") AND (“"continuous
improvement™ OR "optim*") AND ("visuali*" OR "traditional
method*")

2.4. Inclusion and Exclusion Criteria

The selection criteria were defined to ensure that the
reviewed studies offered relevant, recent, and verifiable
evidence on the application of digital twins in the construction
sector.

Only journal articles and review papers were considered.
These works had to deal with productivity issues in
construction and include a clear application of digital twins,
supported by numerical results and a comparison with
traditional or manual control methods.

Studies not directly related to the construction sector were
excluded from the review. Likewise, conference proceedings,
academic theses, and non-indexed sources were not
considered. Only publications written in English or Spanish
and released from 2020 onward were retained, in order to
concentrate the analysis on recent studies supported by
verifiable data.

2.5. Selection Process

Articles were selected using the PRISMA methodology.
Initially, 6,702 records were retrieved. Subsequently, in the
first screening stage, 3,120 records were eliminated from
excluded records, leaving 2,952 records for review. 1,852
records from unretrieved publications were eliminated,
leaving 1,100 records.

Of these, 95 records were discarded under Reason 1 (R1)
records were discarded for not addressing productivity in the
construction industry; 60 records were excluded under Reason
2 (R2) for not describing the applications of digital twins; 93
records were removed under Reason 3 (R3) did not clearly
report statistical results from the application of these methods;
46 records were excluded under Reason 4 (R4)because they
were not developed in construction industry settings; 67
records were discarded under Reason 5 (R5)did not
specifically describe the difference in the use of traditional
manual control methods; 242 records were excluded under
Reason 6 (R6) were not original articles or reviews; 79 records
were removed under Reason 7 (R7) were documents in
languages other than English and Spanish; and 367 records
were excluded under Reason 8 (R8) were documents
published before 2020. Finally, 50 articles relevant to the
research topic were selected.

In this sense, a step-by-step graphic representation of this
PRISMA methodology was created, visually, as shown in
Figure 1 below:
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Fig. 1 PRISMA methodology
3. Results

The analysis considered a total of 50 publications. Of
these, 38 were published in 2025 and the remaining 12
between 2021 and 2024, reflecting a strong emphasis on recent
research related to digital twins in the construction sector. The
selected works include both empirical studies and systematic
reviews, covering a range of methodological perspectives.

For example, Figure 2 shows the classification of the
documents studied according to their type. These articles were
selected based on systematic reviews of research areas [7-9,
15-21, 33, 37-43], while articles [2, 10-14, 22-32, 34-36, 44-
55]. Therefore, information exchange between twin products
is a suitable basis for implementing digital twin impact tests
in real construction scenarios.
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Fig. 2 Type of scientific studies

3.1. Current Status of Productivity in the Construction
Industry

The analysis of the fifty reviewed documents reveals the
current state of productivity in the construction sector. In this
regard, some studies offer explicit definitions, while others

Productivity not explicitly defined or addressed

Productivity as time and cost reduction

Productivity as energy or operational efficiency

0

link it to operational or energy efficiency, or, failing that, to
the reduction of time and costs. Thus, this variability reflects
the lack of consensus in understanding, although there is a
tendency to understand it as part of the overall efficiency of
the construction environment.

12

10

14

5 10 15

Fig. 3 Interpretation of productivity in the analyzed studies

In Figure 3, the main factors that negatively impact
productivity are related to the lack of digital integration [7, 24,
32], the poor interoperability between platforms [13, 15, 29,
38] and the persistence of manual processes and disconnected
data [23, 25, 27, 39].

These limitations have common consequences, such as
delay in schedules, increase in operating costs, low energy
sustainability, and failures in structural accuracy, as observed
in articles [9, 11, 20, 30, 33, 34, 36, 41].

3.2. Specific Uses of Digital Twins in Construction
Digital twins have been used in various construction
contexts, reflecting a range of uses that include predictive
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maintenance, visualization, environmental monitoring, and
urban planning, among others [10-42]. Accordingly, Figure 4
classifies the studies according to the identified applications.
Of the total reviewed studies (see Table 3), 25% focus on
predictive maintenance, with articles such as [21, 22, 26, 30,
32-34, 36, 42] standing out.

This is followed by energy optimization with 22.2%, as
in [14, 23, 25, 29, 31, 35, 38, 40]. Advanced visualization and
inspection represent 19.4% of the cases ([13, 15, 17, 20, 27,
30, 41]), while urban planning [10, 18, 19, 24, 28, 39] and
complementary applications [11, 12, 16, 22, 34, 36] each
cover 16.7%.
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Various applications (AR, comfort, monitoring,
etc.)

Urban planning and infrastructure

Advanced visualization and inspection

Energy and environmental optimization

Predictive/structural maintenance

0

— o

2 4 6 8 10

Fig. 4 Categories of use of digital twins

Table 3. Percentage by type of scientific studies

Category of Use Percentage (%)
Predictive/Structural Maintenance 25.0%
Energy and Environmental Optimization 22.2%
Advanced Visualization and Inspection 19.4%
Urban Planning and Infrastructure 16.7%
Miscellaneous Applications 16.7%

14;41%

m Digital twins (with advanced technologies)
m Traditional methods (manual or analog)

3.3. Contrast with Traditional Methods

Moreover, the studies also show an explicit comparison
between the use of digital twins and traditional methods.
Among the main ones (see Figure 5), some cases, such as [7,
13, 15, 17, 30, 31, 39, 40], still employ analog approaches,
while others report a transition toward more integrated and
predictive digital tools [12, 20, 22, 26, 28, 29, 33, 35, 41].

20;59%

Fig. 5 Types of tools used in the studies

This review found that 59% (20 papers) of the reviewed
studies initially used numerical blinding methods, while 41%
(14 papers) relied on traditional methods. This change has
been shown to increase knowledge, and studies using
historical data have shown that their performance has
improved [22, 26, 35].

3.4. Benefits and Limitations of Implementation
Several studies have documented the benefits of creating
and deploying digital twins, such as the effects on teams’
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planning, maintenance, and sustainability [9-42]. Figure 6
illustrates these concepts. The benefits of implementing
digital twins in construction are widely reflected in various
technical and operational aspects.

Project planning and control is the most frequent
category, representing 36.4% of the analyzed studies ([7, 9,
11, 12, 14, 16, 18, 20, 22, 23, 25, 27, 29, 31, 33, 35]).
Secondly, resource, time and energy savings were identified
in 29.5% of the cases ([8, 10, 13, 17, 19, 21, 26, 28, 30, 32,
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34, 37, 38]). For its part, the optimization of production
processes appears in 20.5% of the studies ([15, 24, 36, 39, 40,

41, 43, 45, 46]).

Increased sustainability

Optimized production

Saved resources, time, and energy

Improved planning and control

|

Finally, an increase in sustainability was identified in
13.6% ([2, 42, 44, 48-50]), demonstrating a growing interest
in environmental efficiency through digital technologies.

16

6 8§ 10 12 14 16 18

Fig. 6 Type of benefit achieved

Table 4. Percentage by Type of Benefit Achieved

Type of benefit achieved

Percentage (%)

Improved planning and control 36.4%
Saved resources, time, and energy 29.5%
Optimized production 20.5%
Increased sustainability 13.6%

3.5. Units of Analysis in the Studies Reviewed

Three predominant units of analysis were identified in the
reviewed articles: constructed infrastructure, industry
professionals, and digital systems or integrated sensors. The
frequency with which these categories appear is summarized
in Figure 7.

Digital Systems and Integrated Sensors

Industry Professionals

Built Infrastructure

—

I -

0

2

4 6 8 10 12 14 16

Studies that address built infrastructure as a unit of
analysis include [7, 9, 11, 14, 16, 18, 20, 23, 25, 28, 30, 32,
34, 36, 38]. On the other hand, [8, 10, 12, 15, 19, 21, 24, 27,
29, 31, 33, 35, 37] consider industry professionals. Finally,

Fig. 7 Type of benefit achieved
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[13,17, 22, 26, 39, 40, 41, 42, 43, 44] focus on digital systems
or sensors. In proportional terms, the percentages associated
with each unit of analysis are presented in Table 5.
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Table 5. Percentage of units under analysis

Primary Unit of Analysis Percentage (%0)

Built Infrastructure 39.5%
Industry Professionals 34.2%
Digital Systems and Integrated Sensors 26.3%

4. Discussions

This review compiles evidence from fifty peer-reviewed
studies to explore how Digital Twins are being used to support
continuous improvement in the construction industry. Overall,
the results do not point to a disruptive technological shift.

Instead of showing a disruptive change, the results
describe a sector where digital tools are being introduced
slowly and with caution. In many situations, the decision to
use Digital Twins is linked to immediate operational problems
rather than to long-term digital strategies. At the same time,
several limitations are still present. These include internal
organizational issues, differences in workforce skills, and
problems related to data access and quality. The following
sections discuss these aspects in relation to previous studies
and consider what they mean for practical application and
future research.

4.1. Selective Adoption and Domain-Specific Value

Figure 4 indicates that digital twins in construction are
mainly applied to a narrow range of use cases, especially
predictive maintenance and energy management, where
problems are clearly identified, and results can be verified
with relative ease.

This pattern reflects the project-based nature of
construction, where digital twins are mainly adopted to
support short-term, site-specific tasks such as scheduling,
monitoring, and resource management, while their use in
urban-scale applications or long-term strategic planning
remains limited.

4.2. The Pace of Transformation: Incremental Integration
over Disruption

The results indicate that a change in the construction
sector is occurring progressively rather than through a sudden
transformation. As shown in Figure 5, digital twin solutions
are often used alongside conventional practices, which remain
part of everyday operations instead of being fully replaced.

This pattern is largely explained by practical conditions
within organizations, such as the level of digital readiness,
workforce skills, and reliance on established routines.
Construction activities are commonly spread across multiple
subcontractors and geographically separated sites, making
uniform digital workflows difficult to implement and sustain.
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4.3. Resolving Contradictions: Data Access versus Reported
Efficacy

The literature highlights a gap between the efficiency
gains reported in research and the data constraints found in
construction practice. Sensor-based studies often show clear
improvements, while organizational analyses point to
fragmented data, interpretation difficulties, and limited trust in
digital outputs, issues that are intensified by the temporary and
multi-stakeholder nature of construction projects.

4.4. Implications and Future Pathways

The results indicate that broader adoption of digital twins
in construction depends on both technical integration and
organizational practice. While interoperability with BIM
and existing systems is required, it alone does not address
the operational challenges encountered on site.

Equally important is the way digital information is
integrated into daily on-site decisions and work practices.
Future studies should therefore focus on long-term case
analyses that consider organizational adaptation, user
involvement, and implementation costs, in order to better
understand how digital twins can be sustainably
embedded in regular construction operations.

5. Conclusion

A review of recent studies indicates that digital twins are
increasingly used in the construction sector to address supply
chain constraints and to overcome limitations associated with
conventional management approaches. It is clear that real-
time data acquisition accurately represents the physical
location, which can save between 30% and 25%. It was found
that 59% of data collectors reported fragmentation due to
manual work. 65% of those who accessed the system reported
a change in status. This is because the data can be used to
identify and analyze the potential impact of digital twins. The
primary uses of digital twins are data modeling, facility
management, electrical modeling, equipment maintenance
and upkeep, with the greatest impact on planning, technical
knowledge, weather data maintenance, and employee training.

A variety of engineering tools for the first time, including
twin engineering, BIM techniques, and engineering physics.
We propose a hybrid approach for the analysis, combining
traditional methods with digital twins to achieve a fully digital
approach. Connecting twins and maximizing real-time
monitoring is the best way to eliminate traditional tools on
complex or highly complex projects.
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