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Abstract - This research proposes a hybrid method for protecting distributed Machine Learning (ML) systems that combines 
neural network interconnection strengthening with model architecture obfuscation. Experimental results demonstrate that the 

combined approach maintains the accuracy of the global learning task while outperforming isolated methods (obfuscation-only 

or strengthening-only). The proposed method significantly enhances the robustness of inter-network communication by 

preserving the consistency of feature transmission among neural networks. Both obfuscation and hybrid strategies significantly 

reduce the effectiveness of various model attacks, such as model stealing, model inversion, and membership inference, thereby 

lowering the fidelity score of surrogate models. The overall evaluation indicates that the proposed approach achieves a well-

balanced trade-off between accuracy, confidentiality, and attack resistance within the defined system constraints. 

Keywords - Dolev-Yao threat model, Machine Learning Model Security, Model-level attack, Model Obfuscation, 

Hyperparameters. 

1. Introduction  
The growing adoption of ML models across various 

domains has made ML systems themselves a primary target 

for adversarial attacks. Consequently, the protection of ML 

models has emerged as a distinct area of research. Existing 

defense methods can be broadly categorized into three groups. 

1.1. Cryptographic Methods 
These approaches provide a high level of formal security 

but are often associated with considerable computational 
overhead and limited scalability when applied to neural 

networks. Typical techniques include encryption, 

homomorphic computations, and differential privacy 

mechanisms [1-3]. 

1.2. Protection Methods against Interaction-Level Attacks 
To enhance the resilience of distributed systems, secure 

protocols for feature transmission have been developed [4,5]. 

Such protocols reduce the risk of data interception or 

modification during transmission; however, they remain 

vulnerable to attacks targeting individual model components. 

1.3. Model Obfuscation and Architectural Protection 

Methods 
  Several studies [6-8] have explored obfuscation 

techniques, structural redundancy, and parametric masking. 

These approaches hinder the extraction of architectural and 

parametric details but often degrade the accuracy of the 

original learning task. 

Various studies point to the growing threat posed by 

model-based attacks (model stealing, model inversion, 

membership inference) [9-11]. Consequently, numerous 

studies have been devoted to addressing this problem within 

the stated constraints [12-14].  

However, the proposed solutions either provide high 

security at the expense of reduced efficiency [15-17] or focus 

on specific aspects of the problem [18-21], again creating new 

links. 

 A separate challenge that requires a solution is the 

detection of malware obfuscated using neural networks. The 

challenge of increasing the stealth of a model's internal 
architecture while simultaneously enhancing its resilience is 

becoming increasingly relevant.  

1.4. Research Gap 

A review of existing work revealed three key unresolved 

issues: 

 Lack of integrated mechanisms. 

Modern defenses typically protect either communication 

channels or model architecture. No widely deployed solution 
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provides combined protection against attacks at both the 

communication and model levels. 

 Precision instability during obfuscation. 

Most obfuscation approaches significantly distort feature 

propagation, leading to uneven accuracy loss, especially in 

distributed systems. 

 Insufficient resilience to cross-layer attacks. 

Attackers increasingly use hybrid attack vectors (e.g., 

simultaneous model theft and channel fuzzing). Existing 

mitigation methods mostly operate in isolation and do not 

provide a unified optimization framework. 

Existing methods and solutions based on them address 

this challenge with a number of limitations. The method 

proposed in this paper is distinguished by its combination of 

model obfuscation and strengthening of connections between 

networks, which allows for simultaneous enhancement of the 
architecture's stealth and the resilience of a distributed system 

to attacks.  

The scientific novelty of the proposed approach lies in 

developing a hybrid model that allows for variable changes in 

system parameters, thereby enabling adaptive model tuning 

across operating scenarios and improving forecasting 

accuracy under changing input data.  

This approach enables: 

 Dynamically accounting for the influence of external 

factors on system behavior. 

 Reducing forecast uncertainty through real-time 

parameter calibration. 

  Ensuring scalability and portability of the model to 

different data types and environments. 

 Reducing the risk of overfitting by combining multiple 

calibration and optimization methods. 

The aim of this research is to develop a method that 

combines strengthening of connections between neural 

networks and model obfuscation. 

2. Problem Definition  
Let there be a set of neural networks 𝑁 =

{𝑁1,𝑁2, . . . , 𝑁𝑚} united into a distributed system, where Ni 

denotes an individual neural network in the distributed system 

that solves a subtask of the global objective. Data exchange 

between networks is performed over untrusted 

communication channels. 

In particular, the following types of attacks are possible: 

2.1. Interaction-Level Attacks  
Interception, modification, or forgery of the data 

transmitted between neural networks (an adversary with 

capabilities described by the CIA (CIA, confidentiality, 

integrity, availability) threat model [22]. 

2.2. Model-Level Attacks  
Extraction of the architecture and parameters of 

individual networks with the aim of reverse engineering, 
cloning, or circumventing protection mechanisms (an 

adversary with capabilities described by the Dolev-Yao threat 

model) [23].  

It is required to develop a method М = {𝐹,𝑂} (where: M 

- denotes the proposed method, 𝐹 - the interaction operator, 

and O - the obfuscation operator that modifies a network) that 

provides protection of inter-network interactions and 

concealment of the internal structure of neural networks while 

preserving the functional effectiveness of the system. 

3. Boundary Conditions 
 Obfuscation was applied to only one neural network 

within the distributed system. 

 The experiments were conducted using convolutional, 

recurrent, capsule, and generative-adversarial networks. 

 The obfuscation process must not degrade the robustness 

of inter-network interactions, while connection 

strengthening must not reduce the degree of model 
concealment. 

 Each neural network Ni must be transformed into a 

modified network (𝑁𝑖
′), 𝑁𝑖

′ = 𝑂(𝑁𝑖)that preserves the 

output distribution (E) within an acceptable error margin 

𝐸[𝐿(𝑁𝑖(𝑥), 𝑁𝑖
′(𝑥))] < 𝜀 , while concealing its 

architectural and parametric characteristics from external 

analysis (L - the loss function defined for the primary 

learning task,𝜀  - the upper bound on the allowable 

divergence between the output distributions of the 

original and obfuscated neural networks). 

4. Proposed Method 
 Let each neural network Ni produce an output probability 

distribution 𝑝𝑖(𝑥) = 𝑁𝑖(𝑥), 𝑝𝑖(𝑥) ∈ 𝛥𝑘−1, where 𝛥𝑘−1 is a 

simplex of dimension k-1, k is the dimension of the output 

simplex (the number of classes in the classification problem).  

Definition of the output matching operator: 𝐹(𝑁𝑖 , 𝑁𝑗) =

𝑠𝑜𝑓𝑡 𝑚𝑎𝑥 (𝑊𝑖𝑗𝜙(𝑝𝑖)), where: 𝜑(𝑥) is the projection 

function, 𝑊𝑖 is the interaction weight matrix, softmax is the 

normalizing function, and is the latent dimension in the 

interaction operator.  

Optimization is achieved by minimizing the functional 

𝐿𝑙𝑖𝑛𝑘 = ∑ 𝐷𝐾𝐿 (𝐹(𝑁𝑖), 𝐹(𝑁𝐽))𝑖≠𝑗  , where 𝐿𝑙𝑖𝑛𝑘  is the 

internetwork matching functional, and 𝐷𝐾𝐿 is the Kullback–

Leibler (KL) divergence [24] measuring the discrepancy in the 

matching of distributed models (Figure 1). 
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Fig. 1 Alignment of neural network outputs 

The proposed model alignment approach brings the 

output probability distributions of different neural networks 

into a unified representation. This method reduces the 

system’s vulnerability to attacks on individual communication 

channels. Consequently, it ensures output consistency and 

enhances robustness against targeted channel-level attacks. 
The interaction between networks is synchronized iteratively 

via the Fmatch functional, and obfuscation O is applied to one 

network selected randomly at each training step. Unlike 

known approaches, the proposed method optimizes both 

structural and probabilistic consistency of distributed models 

in a single functionality. 

4.1. Model Obfuscation 

 Each network Ni is transformed by an obfuscation 

operator O, which modifies the network’s structure and 

parameters while preserving its functionality.  

The obfuscation process was implemented using the 

method described in research [25]. Formally, 𝑁𝑖
′ =

𝑂(𝑁𝑖)where: 𝑁𝑖
′is the modified version of the original 

network. The obfuscation criterion 𝐿𝑜𝑏𝑓  is defined as 𝐿𝑜𝑏𝑓 =

𝐿𝑡𝑎𝑠𝑘(𝑁𝑖
′) + 𝜆 ⋅ 𝐶(𝑁𝑖

′), where 𝐿𝑡𝑎𝑠𝑘  denotes the task-specific 

loss function, 𝐶(𝑁𝑖
′) represents the complexity measure (e.g., 

the number of unique layers or the network depth), and 𝜆is the 

balancing coefficient controlling the trade-off between model 

accuracy and concealment degree. Thus, the operator O 

minimizes the combined functional 𝐿𝑜𝑏𝑓  , ensuring that task 

accuracy is preserved while enhancing the concealment of the 

model’s architecture and parameters. 

4.2. Joint Optimization 
The final goal of the proposed method is the simultaneous 

optimization of interaction and obfuscation processes. 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝛼 ⋅ 𝐿𝑡𝑎𝑠𝑘 + 𝛽 ⋅ 𝐿𝑙𝑖𝑛𝑘 + 𝛾 ⋅ 𝐿𝑜𝑏𝑓  task represents the 

global task error, 𝐿𝑙𝑖𝑛𝑘  is the inter-network consistency 

functional, and 𝐿𝑜𝑏𝑓  denotes the obfuscation functional. The 

coefficients 𝛼, 𝛽, 𝛾 are hyperparameters controlling the 

balance between accuracy, interaction robustness, and model 

concealment. Thus, the training of the entire system reduces 

to finding the set of network parameters that minimizes the 

overall optimization functional 𝐿𝑡𝑜𝑡𝑎𝑙 ( Figure 2). 

 
Fig. 2 Final optimization functional 

Each type of neural network is described by its own 

analytical expressions, which, by varying the parameters, can 

improve a particular indicator for that network.  

An equation for the functioning of a neural network 

classification model (1) is given in [26]. 

𝑌(𝑧) = 𝜑(∑ 𝜔𝑖1
(3)
. 𝜑(∑ 𝜔𝑖𝑗

(2)
. 𝜑(∑ 𝜔𝑗𝑘

(1)𝑛
𝑘=1 . 𝑍𝑘 +

𝑁1
𝑗=1

𝑁2
𝑖=1

𝛩𝑗
(1)) + 𝛩𝑖

(2)) + 𝛩1
(3)) (1) 

where 𝜑 the neural network activation function, 𝜔𝑖𝑗
(𝑘)

 

weights at the input of the neuron of the ith layer, 𝛩𝑖
(𝑛)

 output 

layer offset parameter, and 𝑍𝑘 signals at the input/output of 

neural network layers.  

Analytical expression (1) is necessary for the final 

evaluation of the overall effectiveness of the proposed model 

and allows for the output distributions of different neural 

networks to be unified. This approach reduces the system's 

vulnerability to attacks on individual communication 

channels. This ensures output consistency and reduces 

vulnerability to attacks on individual communication 

channels. The proposed method enables achieving a balance 

between efficiency and security. This results in a practical 

compromise: the system maintains high prediction accuracy 

while reducing the likelihood of interaction-based attacks and 

concealing the architectures of individual models. 

4.3. Algorithm Environment 

Algorithm: Hybrid training with random obfuscation 

Input: Dataset D, networks {N_i}, obfuscation operator O, 

interaction weight matrix W, hyperparams α, β, γ, epochs T 

for epoch = 1 to T do 

  for each mini-batch B ∈ D do 

    for each node i: 
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      compute y_i = N_i(x; θ_i)    # forward 

    select j ← Uniform({1..n})    # random node to 

obfuscate 

    θ_j' = O (θ_j; λ)             # apply obfuscation with param 

λ 
    compute F_match = Σ_{i,k} KL( softmax 

(W·proj(y_i)), softmax(W·proj(y_k)) ) 

    compute L_task = Σ_i Loss_task (y_i, y_true) 

    compute L_obf = ObfCriterion (θ_j', θ_j) 

    L_total = α·L_task + β·F_match + γ·L_obf 

    update θ ← θ − η ∇_θ L_total 

  end for 

end for 

Output: Trained parameters {θ_i} 

The training process jointly minimizes the task loss, the 

inter-network matching functional, and the obfuscation 
criterion within a single optimization loop. At each iteration, 

all networks compute their outputs, and one network is 

randomly selected for structural obfuscation, ensuring 

stochastic perturbation of its parameters under the constraint 

of bounded output divergence. 

4.4. Description of the Experiment 

In a virtual environment based on a High-Performance 

Cluster (HPC) (Figure 3), the Windows Server 2019 

Operating System (OS), with the activated Hyper-V 

virtualization role [27]. 

Fig. 3 Software-Defined Network based on an HPC 

Virtual environment was configured a software-defined 

network (SDN), containing the following: primary and 

secondary domain controllers (PDC, SDC), File Server, FTP 

server, Proxy server, Public Key Infrastructure (PKI), 

Certification Authority (CA), Mail server, ML IDS and Snort 

IDS, Suricata (Snort IDS intentionally had an unmitigated 

vulnerability CVE-2022-2068) and Database servers (DB-1, 

DB-2). OS Ubuntu v20.04 OS installed a generative 
adversarial network, connected to the ML IDS, which was also 

deployed separately. The solutions proposed in [28] were 

taken into account during deployment. 

A total of k instances (k = 4) of virtual infrastructures 

simulating a distributed security system using ML are 

deployed. These include the Snort IDS with an ML plug-in, 

the aforementioned services, and the Kali Linux OS with 

Metasploit software.  

The IDS protects its infrastructure object at each level: 

level 1 – FTP, level 2 – DB-1, 2, PDC, level 3 – PKI, CA, 

SDC, etc. Network connectivity is configured between the 

instances using a Hyper-V virtual adapter. Connectivity 

between instance elements is configured using Hyper-V 

private adapters.  

The architecture of the infrastructure deployment within 

the SDN is shown in Figure 4.  

The environment shown in Figures 3-4 enables attack 

emulation and practical evaluation of theoretical results. The 

study used Python 3.11, scikit-learn 1.5, torchvision 0.17, and 

secure communication channels between models built using 
the cryptography library version 41.1. The training dataset 

was CIC IDS 2017 [29] with embedded malware samples abc, 

cheeba, december_3, stasi, otario, dm, v-sign, tequila, flip 

obtained from sources [30-32]. 

 
Fig. 4 Experimental infrastructure in the SDN 

4.5. Obfuscation was Performed using 

Structural permutation of equivalent blocks (permutation 

of channels/layers with compensating matrices) [33-34], 

stochastic sparsity [35-36], and parametric masking using 

low-rank factorization of weights [37-40].  

Visualization of the obfuscated abc, cheeba, december_3, 

stasi, otario, dm, v-sign, tequila, flip, mimikatz malware at 

different training epochs is shown in Figures 5-7. 
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Fig. 5 Visualization of the obfuscated malware (I training epoch) 

 
Fig. 6 Visualization of the obfuscated malware (II training epoch) 

 
Fig. 7 Visualization of the obfuscated malware (III training epoch) 

4.5.1. Attacks Carried Out 

Attacks on interactions, packet permutation/drop, and 

fuzzing using deterministic fuzzers [41, 42]. 

4.5.2. Attacks on the Model 

Model extraction (model stealing), input 

inversion/reconstruction. 

4.6. Evaluation Criteria 

 The classification task was evaluated using the metrics 

accuracy, F₁macro, and AUROC. As the loss function, we 

used the averaged logarithmic loss (Log Loss). 

 Robustness to attacks was evaluated with the metric: 

𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 = 𝐸𝑥~𝐷𝑡𝑒𝑠𝑡 [𝑐𝑜𝑠 (𝑁𝑖
′(𝑥), 𝑁𝑖(𝑥))],  

where: Fidelity is the score of the surrogate 𝑁̂, 𝐸𝑥~𝐷𝑡𝑒𝑠𝑡  

denotes the expectation over objects x drawn from the test 

dataset Dtest, 𝑁𝑖
′(𝑥) the feature vector at the input x for the 

original model N, and 𝑁𝑖(𝑥)the feature vector at the input xxx 

for the modified (surrogate) model. 

 For membership inference attacks used 𝑀𝐼𝐴𝐴𝑈𝐶 =
𝐴𝑈𝐶({𝑠(𝑥𝑖𝑛)}, {𝑠(𝑥𝑜𝑢𝑡)}) (MIA, Membership 

Inference), 𝑠(𝑥𝑖𝑛)-is the value of the score function for an 

object xin from the training data, and 𝑠(𝑥𝑜𝑢𝑡)is the value 

of the score function for an object xout from external (out-

of-training) data. 

 Some hyperparameter values:  learning rate η = 1e-3 

(0,001), batch size = 128, epochs = 5, obfuscation 

strength λ ∈ {0.1, 0.3, 0.5}, interaction latent dim d = 64, 

W init = random normal, softmax = 1.0, coefficients: α = 

1.0, β = 0.5, γ = 0.2. 

4.7. Final Evaluation Function 

𝑄 = 𝛼1 ⋅ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ± 𝛼2 ⋅ 𝐿𝑜𝑔𝐿𝑜𝑠𝑠 ± 
±𝛼3 ⋅ 𝐿𝑖𝑛𝑘𝑆𝑐𝑜𝑟𝑒 ± 𝛼4 ⋅ 𝑂𝑏𝑓𝑆𝑐𝑜𝑟𝑒 ± 𝛼5 ⋅ 𝐹𝑖𝑑𝑒𝑙𝑖𝑡𝑦 (2) 

(Q - final evaluation function). The weights 𝛼𝑖 > 0 and 

the operation type (+ or –) are chosen based on the task’s 

priorities (for example, balancing between accuracy and 

stealth). Attack scenarios were constructed following the 

approaches described in [43, 44]. 

5. Research Results 
The research results are presented in Tables 1-4 and 

Figures 8-13. Visualizations of the values of parameters 

accuracy, precision, recall, and specificity for various attacks 

are presented in Figures 14-16. As shown in Table 1, the 

hybrid method provides the best balance between accuracy 

and robustness while maintaining high metric values. 

Additionally, the hybrid approach maintains higher precision 

and recall stability even under variable noise conditions.  
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Table 1. Classification accuracy comparison 

Method Accuracy Precision Recall F1-score 

Baseline Model 0.87 0.85 0.83 0.84 

Obfuscation 0.85 0.83 0.82 0.82 

Connection Strengthening 0.88 0.86 0.84 0.85 

Hybrid Method 0.91 0.89 0.87 0.88 

 
Fig. 8 Comparison results of classification accuracy for different methods 

This indicates that the integration of obfuscation with 

interconnection strengthening improves both generalization 

and feature consistency across distributed nodes. Specifically, 

the hybrid configuration achieves an accuracy of 0.91, 

exceeding the baseline model by 4.6%, and improves the F1-
score to 0.88, which is 7.3% higher than the obfuscation-only 

setup. Moreover, the precision and recall values remain above 

0.87 even under moderate perturbations, demonstrating 

consistent behavior across all test scenarios.  

Such numerical stability suggests that the hybrid 

framework provides a more uniform error distribution and 

effectively mitigates local overfitting effects within the 

distributed learning process. The chart illustrates the 

accuracy, precision, recall, and F1-score values for the 
baseline model, obfuscation, connection strengthening, and 

the hybrid method. It can be seen that the hybrid method 

demonstrates the best overall balance among these metrics.  

Table 2. Robustness against interaction attacks 

Attack Type Baseline Model Obfuscation Connection Strengthening Hybrid Method 

Packet Reordering 0.72 0.74 0.82 0.86 

Channel Noise 0.69 0.71 0.81 0.85 

Fuzzing 0.65 0.70 0.80 0.84 

As observed from Table 2, the hybrid method consistently 

achieves the highest robustness scores across all types of 

interaction-level attacks. Specifically, its resistance to packet 
reordering reaches 0.86, outperforming the connection-

strengthening-only method by 4% and the baseline by 19.4%. 

Under channel noise, the hybrid approach maintains a 

robustness of 0.85, indicating effective preservation of inter-

network data integrity.  

Even during fuzzing attacks, which typically cause the 

greatest instability, the method maintains 0.84, demonstrating 

its ability to ensure stable feature transmission and 

communication reliability under adverse network conditions. 

The results of packet reordering, channel noise, and fuzzing 

attacks are shown. The hybrid method demonstrates higher 

robustness compared to isolated approaches.  

Obfuscation by itself reduces the effectiveness of these 

attacks. The obtained results confirm that the hybrid method 

provides the highest resistance to model-level attacks.  

The reduction of fidelity and similarity metrics 

demonstrates that the obfuscation mechanism effectively 

conceals internal parameters while the strengthened links 

prevent reconstruction of the model’s latent space. 
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Fig. 9 Results of robustness against interaction attacks (packet reordering, noise, fuzzing) 

Table 3. Robustness against model attack 

Attack Metric Baseline Obfuscation 
Connection 

Strengthening 

Hybrid 

Method 

Model Stealing Fidelity Score ↓ 0.91 0.74 0.88 0.69 

Model Inversion Feature Similarity ↓ 0.83 0.66 0.81 0.61 

Member-ship Inference Attacker AUC ↓ 0.86 0.72 0.84 0.68 
 

 
Fig. 10 Visualization of the values of the parameters accuracy, precision, recall, specificity, and F-score (I training epoch) 

 
Fig. 11 Visualization of the values of the parameters accuracy, precision, recall, specificity, and F-score (II training epoch) 
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Fig. 12 Visualization of the values of the parameters accuracy, precision, recall, specificity, and F-score (IV training epoch, overfitting) 

The model achieves its optimal F-score value at the third 

training epoch (Figures 10-11). Determining the F-score 

allows them to set initial values for input parameters when 

configuring the network infrastructure, minimizing 

precomputations. At training epochs IV and higher, the model 

overfitted.  

 
Fig. 13 Shows metrics for model stealing, model inversion and 

membership inference attacks 

 
Fig. 14 Visualization of the values of the parameters accuracy, 

precision, recall, and specificity(I training epoch) 

 
Fig. 15 Visualization of the values of the parameters accuracy, 

precision, recall, and specificity (II training epoch) 

 
Fig. 16 Visualization of the values of the parameters accuracy, 

precision, recall, and specificity (III training epoch) 

When scaling network infrastructures (both topologically 
and by supported services), changing the accuracy, precision, 

recall, and specificity parameters makes it possible to create 

statistically independent values for training samples and, 

consequently, increase the reliability of the entire model. 
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The map shows the combined effectiveness of the three 

main attacks on the model in baseline configurations. Lower 

values indicate decreased attacker success, with the hybrid 

method consistently yielding the lowest results for model theft 

(0.59), inversion (0.50), and membership inference (0.53). 
Based on the obtained data, statistical tests were conducted on 

both the false network infrastructure itself and ML IDS tests. 

As shown in Table 4, the hybrid model achieves the highest 

integral score, reflecting a strong balance between accuracy, 

robustness, and stealth.  This balance confirms the efficiency 

of combining complementary defense mechanisms within a 

unified optimization process.

Table 4. Integral Evaluation  

Method Accuracy Attack Robustness Stealth Integral Score 

Baseline Model 0.87 0.70 0.40 0.65 

Obfuscation 0.85 0.72 0.82 0.78 

Connection Strengthening 0.88 0.81 0.50 0.80 

Hybrid Method 0.91 0.86 0.79 0.88 

 
Fig. 17 Integral evaluation of accuracy, robustness, and stealth for different methods 

6. Conclusion 
This research proposes a method that combines two 

complementary approaches to protecting distributed systems 

based on neural networks: strengthening the connections 

between individual models and obfuscating their structure and 

parameters. The hybrid approach improves the accuracy of the 

global learning task while reducing the risk of successful 

model or channel attacks. Based on the obtained results, it can 

be concluded that the proposed method increases the resilience 

of inter-network interaction under various attack scenarios 

such as noise, packet reordering, and fuzzing.  

The hybrid strategy demonstrates a superior balance 

between accuracy (0.91), robustness (0.86), and stealth (0.79) 

compared to isolated methods, confirming its effectiveness as 

an integrated security mechanism. However, these 

improvements are accompanied by higher computational costs 

during training and slightly increased inference time, which 

represents a reasonable trade-off between security and 

efficiency. Moreover, exploring adaptive weighting of 

obfuscation and strengthening components could further 

improve dynamic resilience against evolving attack strategies. 

The introduction of gradient synchronization mechanisms 
across distributed nodes may enhance convergence stability 

and minimize inter-network divergence under adversarial 

conditions. It is important to note the potential risks of dual-

use obfuscation technologies, for example, the possibility of 

their use to conceal malicious models. Therefore, research into 

such methods should be accompanied by the development of 

ethical certification and monitoring mechanisms for their use.  

Finally, integrating hardware-assisted encryption for secure 

communication channels will reduce the latency overhead 

introduced by software-based cryptographic layers. 

Collectively, these enhancements will enable more scalable, 
efficient deployment of the proposed hybrid model in practical 

distributed machine learning systems, ensuring robust 

protection against both interaction-level and model-level 

attacks. 
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