International Journal of Engineering Trends and Technology
ISSN: 2231-5381 / https://doi.org/10.14445/22315381/1JETT-V7412P114

Volume 74 Issue 2, 204-214, February 2026
© 2026 Seventh Sense Research Group®

Original Article

Research on a Hybrid Security Model for Distributed
Neural Networks

Timur V. Jamgharyan

Department of Information Security and Software Development, National Polytechnic University of Armenia, Yerevan,
Armenia.

Corresponding Author : t.jamharyan@polytechnic.am

Received: 22 October 2025 Revised: 12 January 2026 Accepted: 20 January 2026 Published: 14 February 2026

Abstract - This research proposes a hybrid method for protecting distributed Machine Learning (ML) systems that combines
neural network interconnection strengthening with model architecture obfuscation. Experimental results demonstrate that the
combined approach maintains the accuracy of the global learning task while outperforming isolated methods (obfuscation-only
or strengthening-only). The proposed method significantly enhances the robustness of inter-network communication by
preserving the consistency of feature transmission among neural networks. Both obfuscation and hybrid strategies significantly
reduce the effectiveness of various model attacks, such as model stealing, model inversion, and membership inference, thereby
lowering the fidelity score of surrogate models. The overall evaluation indicates that the proposed approach achieves a well-
balanced trade-off between accuracy, confidentiality, and attack resistance within the defined system constraints.
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1. Introduction

The growing adoption of ML models across various
domains has made ML systems themselves a primary target
for adversarial attacks. Consequently, the protection of ML
models has emerged as a distinct area of research. Existing
defense methods can be broadly categorized into three groups.

1.1. Cryptographic Methods

These approaches provide a high level of formal security
but are often associated with considerable computational
overhead and limited scalability when applied to neural
networks.  Typical techniques include encryption,
homomorphic computations, and differential privacy
mechanisms [1-3].

1.2. Protection Methods against Interaction-Level Attacks
To enhance the resilience of distributed systems, secure
protocols for feature transmission have been developed [4,5].
Such protocols reduce the risk of data interception or
modification during transmission; however, they remain
vulnerable to attacks targeting individual model components.

1.3. Model
Methods
Several studies [6-8] have explored obfuscation
techniques, structural redundancy, and parametric masking.
These approaches hinder the extraction of architectural and
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parametric details but often degrade the accuracy of the
original learning task.

Various studies point to the growing threat posed by
model-based attacks (model stealing, model inversion,
membership inference) [9-11]. Consequently, numerous
studies have been devoted to addressing this problem within
the stated constraints [12-14].

However, the proposed solutions either provide high
security at the expense of reduced efficiency [15-17] or focus
on specific aspects of the problem [18-21], again creating new
links.

A separate challenge that requires a solution is the
detection of malware obfuscated using neural networks. The
challenge of increasing the stealth of a model's internal
architecture while simultaneously enhancing its resilience is
becoming increasingly relevant.

1.4. Research Gap
A review of existing work revealed three key unresolved
issues:

e Lack of integrated mechanisms.
Modern defenses typically protect either communication
channels or model architecture. No widely deployed solution
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provides combined protection against attacks at both the
communication and model levels.

e  Precision instability during obfuscation.

Most obfuscation approaches significantly distort feature
propagation, leading to uneven accuracy loss, especially in
distributed systems.

o Insufficient resilience to cross-layer attacks.

Attackers increasingly use hybrid attack vectors (e.g.,
simultaneous model theft and channel fuzzing). Existing
mitigation methods mostly operate in isolation and do not
provide a unified optimization framework.

Existing methods and solutions based on them address
this challenge with a number of limitations. The method
proposed in this paper is distinguished by its combination of
model obfuscation and strengthening of connections between
networks, which allows for simultaneous enhancement of the
architecture's stealth and the resilience of a distributed system
to attacks.

The scientific novelty of the proposed approach lies in
developing a hybrid model that allows for variable changes in
system parameters, thereby enabling adaptive model tuning
across operating scenarios and improving forecasting
accuracy under changing input data.

This approach enables:

Dynamically accounting for the influence of external
factors on system behavior.
Reducing forecast uncertainty
parameter calibration.

Ensuring scalability and portability of the model to
different data types and environments.

Reducing the risk of overfitting by combining multiple
calibration and optimization methods.

through  real-time

The aim of this research is to develop a method that
combines strengthening of connections between neural
networks and model obfuscation.

2. Problem Definition

Let there be a set of neural networks N =
{N{,N,,...,N,,} united into a distributed system, where N;
denotes an individual neural network in the distributed system
that solves a subtask of the global objective. Data exchange
between  networks is performed over  untrusted
communication channels.

In particular, the following types of attacks are possible:
2.1. Interaction-Level Attacks

Interception, modification, or forgery of the data
transmitted between neural networks (an adversary with
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capabilities described by the CIA (CIA, confidentiality,
integrity, availability) threat model [22].

2.2. Model-Level Attacks

Extraction of the architecture and parameters of
individual networks with the aim of reverse engineering,
cloning, or circumventing protection mechanisms (an
adversary with capabilities described by the Dolev-Yao threat
model) [23].

It is required to develop a method M = {F, 0} (where: M
- denotes the proposed method, F - the interaction operator,
and O - the obfuscation operator that modifies a network) that
provides protection of inter-network interactions and
concealment of the internal structure of neural networks while
preserving the functional effectiveness of the system.

3

. Boundary Conditions
Obfuscation was applied to only one neural network
within the distributed system.
The experiments were conducted using convolutional,
recurrent, capsule, and generative-adversarial networks.
The obfuscation process must not degrade the robustness
of inter-network interactions, while connection
strengthening must not reduce the degree of model
concealment.
Each neural network N; must be transformed into a
modified network (N;), N; = O(N;)that preserves the
output distribution (E) within an acceptable error margin
E[L(N;(x),N{(x))] <e , while concealing its
architectural and parametric characteristics from external
analysis (L - the loss function defined for the primary
learning task,e - the upper bound on the allowable
divergence between the output distributions of the
original and obfuscated neural networks).

4. Proposed Method

Let each neural network Ni produce an output probability
distribution p;(x) = N;(x),p;(x) € 4¥~*, where A*! is a
simplex of dimension k-1, k is the dimension of the output
simplex (the number of classes in the classification problem).

Definition of the output matching operator: F(Ni,Nj) =
soft max (VI/l-]-¢(pl-)), where: @(x) is the projection
function, W; is the interaction weight matrix, softmax is the

normalizing function, and is the latent dimension in the
interaction operator.

Optimization is achieved by minimizing the functional
Link = Zie D, (FOND,F(N))) . where Ly, s the
internetwork matching functional, and Dy, is the Kullback—

Leibler (KL) divergence [24] measuring the discrepancy in the
matching of distributed models (Figure 1).
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Fig. 1 Alignment of neural network outputs

The proposed model alignment approach brings the
output probability distributions of different neural networks
into a unified representation. This method reduces the
system’s vulnerability to attacks on individual communication
channels. Consequently, it ensures output consistency and
enhances robustness against targeted channel-level attacks.
The interaction between networks is synchronized iteratively
via the Fmaen functional, and obfuscation O is applied to one
network selected randomly at each training step. Unlike
known approaches, the proposed method optimizes both
structural and probabilistic consistency of distributed models
in a single functionality.

4.1. Model Obfuscation

Each network Ni is transformed by an obfuscation
operator O, which modifies the network’s structure and
parameters while preserving its functionality.

The obfuscation process was implemented using the
method described in research [25]. Formally, N; =
O(N;)where: Njis the modified version of the original
network. The obfuscation criterion L, is defined as L,,; =
Leask(N;) + A - C(N;), where Lo, denotes the task-specific
loss function, C(N;) represents the complexity measure (e.g.,
the number of unique layers or the network depth), and Ais the
balancing coefficient controlling the trade-off between model
accuracy and concealment degree. Thus, the operator O
minimizes the combined functional L, , ensuring that task
accuracy is preserved while enhancing the concealment of the
model’s architecture and parameters.

4.2. Joint Optimization

The final goal of the proposed method is the simultaneous
optimization of interaction and obfuscation processes.
Leotar = @ * Legsk + B+ Lymie v - Lopy task represents the
global task error, L;,, is the inter-network consistency
functional, and L,,, denotes the obfuscation functional. The
coefficients «,B,y are hyperparameters controlling the
balance between accuracy, interaction robustness, and model
concealment. Thus, the training of the entire system reduces
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to finding the set of network parameters that minimizes the
overall optimization functional L,,.,; ( Figure 2).

A Oy
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Loyw=a Log+B-Lyc+7: L,y
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Fig. 2 Final optimization functional

Each type of neural network is described by its own
analytical expressions, which, by varying the parameters, can
improve a particular indicator for that network.

An equation for the functioning of a neural network
classification model (1) is given in [26].

(1
Wiy,

Y(2) = o2, 0 o(Xn,

o) +06)+06f)

T+
1

N. (2)
.<p(2j=11 w;; -

)
3]
weights at the input of the neuron of the i layer, QL.(") output
layer offset parameter, and Z, signals at the input/output of
neural network layers.

where ¢ the neural network activation function, w

Analytical expression (1) is necessary for the final
evaluation of the overall effectiveness of the proposed model
and allows for the output distributions of different neural
networks to be unified. This approach reduces the system's
vulnerability to attacks on individual communication
channels. This ensures output consistency and reduces
vulnerability to attacks on individual communication
channels. The proposed method enables achieving a balance
between efficiency and security. This results in a practical
compromise: the system maintains high prediction accuracy
while reducing the likelihood of interaction-based attacks and
concealing the architectures of individual models.

4.3. Algorithm Environment
Algorithm: Hybrid training with random obfuscation
Input: Dataset D, networks {N_i}, obfuscation operator O,
interaction weight matrix W, hyperparams o, 3, y, epochs T
for epoch=1t0 T do
for each mini-batch B € D do
for each node i:
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computey i=N_i(x; 0 i) # forward
select j « Uniform({l..n}) # random node to
obfuscate
0j=0(@0_j;n # apply obfuscation with param
A
compute F match = X {i,k} KL( softmax

(W-proj(y_i)), softmax(W-proj(y_k)) )
compute L_task =% i Loss_task (y_i, y_true)
compute L_obf = ObfCriterion (0_j', 6 j)

L_total = a-L task + B-F _match +y-L_obf
update 6 — 0—nmV 0L total
end for
end for

Output: Trained parameters {0 i}

The training process jointly minimizes the task loss, the
inter-network matching functional, and the obfuscation
criterion within a single optimization loop. At each iteration,
all networks compute their outputs, and one network is
randomly selected for structural obfuscation, ensuring
stochastic perturbation of its parameters under the constraint
of bounded output divergence.

4.4. Description of the Experiment
In a virtual environment based on a High-Performance
Cluster (HPC) (Figure 3), the Windows Server 2019
Operating System (OS), with the activated Hyper-V
virtualization role [27].
Hyper-V DB-1 DB-2

FTP Server  File Server ~ PDC

W =1/

Generative-Adversarial
Network

W1

- S

X

Soflwarv Deﬁncd Nelwork

IDSIIPS i

Pmu server Vlanl server

Ih h Performance
Clusters

\/

Z

Fig. 3 Software-Defined Network based on an HPC

N

Virtual environment was configured a software-defined
network (SDN), containing the following: primary and
secondary domain controllers (PDC, SDC), File Server, FTP
server, Proxy server, Public Key Infrastructure (PKI),
Certification Authority (CA), Mail server, ML IDS and Snort
IDS, Suricata (Snort IDS intentionally had an unmitigated
vulnerability CVE-2022-2068) and Database servers (DB-1,
DB-2). OS Ubuntu v20.04 OS installed a generative
adversarial network, connected to the ML IDS, which was also
deployed separately. The solutions proposed in [28] were
taken into account during deployment.
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A total of k instances (k = 4) of virtual infrastructures
simulating a distributed security system using ML are
deployed. These include the Snort IDS with an ML plug-in,
the aforementioned services, and the Kali Linux OS with
Metasploit software.

The IDS protects its infrastructure object at each level:
level 1 — FTP, level 2 — DB-1, 2, PDC, level 3 — PKI, CA,
SDC, etc. Network connectivity is configured between the
instances using a Hyper-V virtual adapter. Connectivity
between instance elements is configured using Hyper-V
private adapters.

The architecture of the infrastructure deployment within
the SDN is shown in Figure 4.

The environment shown in Figures 3-4 enables attack
emulation and practical evaluation of theoretical results. The
study used Python 3.11, scikit-learn 1.5, torchvision 0.17, and
secure communication channels between models built using
the cryptography library version 41.1. The training dataset
was CIC IDS 2017 [29] with embedded malware samples abc,
cheeba, december_3, stasi, otario, dm, v-sign, tequila, flip
obtained from sources [30-32].

I Instance 4
l Instance 3
I Instance 2
Instance 1
§ ¢ ML 1
Snon&zNA Tr;wdu e FTP Server
Private, VLAN
ID=110
( SDN base on Hyper-V 0
Private, VLAN
ID=110
L]
Kali Linux -—
(Metasploit) X R
High Performance Clusters
(Windows Server 2019)

Fig. 4 Experimental infrastructure in the SDN

4.5. Obfuscation was Performed using

Structural permutation of equivalent blocks (permutation
of channels/layers with compensating matrices) [33-34],
stochastic sparsity [35-36], and parametric masking using
low-rank factorization of weights [37-40].

Visualization of the obfuscated abc, cheeba, december_3,
stasi, otario, dm, v-sign, tequila, flip, mimikatz malware at
different training epochs is shown in Figures 5-7.
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Fig. 5 Visualization of the obfuscated malware (I training epoch)
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Fig. 6 Visualization of the obfuscated malware (Il training epoch)
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Fig. 7 Visualization of the obfuscated malware (111 training epoch)
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4.5.1. Attacks Carried Out
Attacks on interactions, packet permutation/drop, and
fuzzing using deterministic fuzzers [41, 42].

4.5.2. Attacks on the Model
Model extraction
inversion/reconstruction.

(model  stealing),  input

4.6. Evaluation Criteria

e The classification task was evaluated using the metrics
accuracy, Fimacro, and AUROC. As the loss function, we
used the averaged logarithmic loss (Log Loss).

e Robustness to attacks was evaluated with the metric:
Fidelity = E,p,,,, [cos (Nl-’(x), IVl-(x))],

where: Fidelity is the score of the surrogate N, ExDyost
denotes the expectation over objects x drawn from the test
dataset Dies;, N; (x) the feature vector at the input x for the
original model N, and N; (x)the feature vector at the input xxx

for the modified (surrogate) model.

e For membership inference attacks used MIA,yc =
AUC{sCei)} {sCeoue) D) (MIA, Membership
Inference), s(x;,)-is the value of the score function for an
object Xin from the training data, and s(x,,.)is the value
of the score function for an object X0 from external (out-
of-training) data.

e Some hyperparameter values: learning rate n = 1e-3
(0,001), batch size = 128, epochs = 5, obfuscation
strength A € {0.1, 0.3, 0.5}, interaction latent dim d = 64,
W init = random normal, softmax = 1.0, coefficients: o =
1.0,=0.5,y=0.2.

4.7. Final Evaluation Function
Q = ay - Accuracy + a, - LogLoss +
ta, - LinkScore + a, - ObfScore + as - Fidelity (2)

(Q - final evaluation function). The weights a; > 0 and
the operation type (+ or —) are chosen based on the task’s
priorities (for example, balancing between accuracy and
stealth). Attack scenarios were constructed following the
approaches described in [43, 44].

5. Research Results

The research results are presented in Tables 1-4 and
Figures 8-13. Visualizations of the values of parameters
accuracy, precision, recall, and specificity for various attacks
are presented in Figures 14-16. As shown in Table 1, the
hybrid method provides the best balance between accuracy
and robustness while maintaining high metric values.
Additionally, the hybrid approach maintains higher precision
and recall stability even under variable noise conditions.
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Table 1. Classification accuracy comparison

Method Accuracy Precision Recall F1-score
Baseline Model 0.87 0.85 0.83 0.84
Obfuscation 0.85 0.83 0.82 0.82
Connection Strengthening 0.88 0.86 0.84 0.85
Hybrid Method 0.91 0.89 0.87 0.88

0.96

Comparison of F1-score and AUC across Methods
mFl-score mAUC

0.94

0.92

0.9

Value

-0.88

etri

2086 -

0.84 -
0.82 -
0.8 -

0.78 -

Baseline Obfuscation

Combined Method

Link Strengthening

Fig. 8 Comparison results of classification accuracy for different methods

This indicates that the integration of obfuscation with
interconnection strengthening improves both generalization
and feature consistency across distributed nodes. Specifically,
the hybrid configuration achieves an accuracy of 0.91,
exceeding the baseline model by 4.6%, and improves the F1-
score to 0.88, which is 7.3% higher than the obfuscation-only
setup. Moreover, the precision and recall values remain above
0.87 even under moderate perturbations, demonstrating
consistent behavior across all test scenarios.

Such numerical stability suggests that the hybrid
framework provides a more uniform error distribution and
effectively mitigates local overfitting effects within the
distributed learning process. The chart illustrates the
accuracy, precision, recall, and Fl1-score values for the
baseline model, obfuscation, connection strengthening, and
the hybrid method. It can be seen that the hybrid method
demonstrates the best overall balance among these metrics.

Table 2. Robustness against interaction attacks

Attack Type Baseline Model Obfuscation Connection Strengthening Hybrid Method
Packet Reordering 0.72 0.74 0.82 0.86
Channel Noise 0.69 0.71 0.81 0.85
Fuzzing 0.65 0.70 0.80 0.84

As observed from Table 2, the hybrid method consistently
achieves the highest robustness scores across all types of
interaction-level attacks. Specifically, its resistance to packet
reordering reaches 0.86, outperforming the connection-
strengthening-only method by 4% and the baseline by 19.4%.
Under channel noise, the hybrid approach maintains a
robustness of 0.85, indicating effective preservation of inter-
network data integrity.

Even during fuzzing attacks, which typically cause the
greatest instability, the method maintains 0.84, demonstrating
its ability to ensure stable feature transmission and
communication reliability under adverse network conditions.
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The results of packet reordering, channel noise, and fuzzing
attacks are shown. The hybrid method demonstrates higher
robustness compared to isolated approaches.

Obfuscation by itself reduces the effectiveness of these
attacks. The obtained results confirm that the hybrid method
provides the highest resistance to model-level attacks.

The reduction of fidelity and similarity metrics
demonstrates that the obfuscation mechanism effectively
conceals internal parameters while the strengthened links
prevent reconstruction of the model’s latent space.
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Inter-network Robustness under Different Attacks
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Fig. 9 Results of robustness against interaction attacks (packet reordering, noise, fuzzing)

Table 3. Robustness against model attack

. . . Connection Hybrid

Attack Metric Baseline | Obfuscation Strengthening Method
Model Stealing Fidelity Score | 0.91 0.74 0.88 0.69
Model Inversion Feature Similarity | 0.83 0.66 0.81 0.61
Member-ship Inference Attacker AUC | 0.86 0.72 0.84 0.68

= Binary classification quality
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Fig. 10 Visualization of the values of the parameters accuracy, precision, recall, specificity, and F-score (I training epoch)

Fscore

accuracy

precision

recall

specificity

H Binary classification quality

m Discrimination Threshold

T T T

0 10 20

T T

30 40

T T T

50 60 70

T T 1

80 90 100

Fig. 11 Visualization of the values of the parameters accuracy, precision, recall, specificity, and F-score (11 training epoch)
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Fig. 12 Visualization of the values of the parameters accuracy, precision, recall, specificity, and F-score (IV training epoch, overfitting)

The model achieves its optimal F-score value at the third
training epoch (Figures 10-11). Determining the F-score
allows them to set initial values for input parameters when
configuring the network infrastructure, minimizing
precomputations. At training epochs 1V and higher, the model
overfitted.

Effectiveness of Model Attacks (lower is better)

0.80
0.75

-0.70

Model I ion-
odel Inversion 1o6s

Attack

-0.60

Membership Inference 0.55

0.50

R

Obfi Combiied

Fig. 13 Shows metrics for model stealing, model inversion and
membership inference attacks

sy I :
, i

UDPSYN Accuracy

Brute-force attack Precision

Recall

CVE-2022-20685

Specificity
Replay attack

Fig. 14 Visualization of the values of the parameters accuracy,
precision, recall, and specificity(l training epoch)
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UDP SYN
DGA attack

Brute-force attack

CVE-2022-20685

Replay attack

Fig. 15 Visualization of the values of the parameters accuracy,
precision, recall, and specificity (11 training epoch)

CVE-2022-20685

Replay attack

Brute-force attack

Accuracy
Fig. 16 Visualization of the values of the parameters accuracy,
precision, recall, and specificity (I11 training epoch)

When scaling network infrastructures (both topologically
and by supported services), changing the accuracy, precision,
recall, and specificity parameters makes it possible to create
statistically independent values for training samples and,
consequently, increase the reliability of the entire model.
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The map shows the combined effectiveness of the three
main attacks on the model in baseline configurations. Lower
values indicate decreased attacker success, with the hybrid
method consistently yielding the lowest results for model theft
(0.59), inversion (0.50), and membership inference (0.53).
Based on the obtained data, statistical tests were conducted on

both the false network infrastructure itself and ML IDS tests.
As shown in Table 4, the hybrid model achieves the highest
integral score, reflecting a strong balance between accuracy,
robustness, and stealth. This balance confirms the efficiency
of combining complementary defense mechanisms within a
unified optimization process.

Table 4. Integral Evaluation

Method Accuracy Attack Robustness Stealth Integral Score
Baseline Model 0.87 0.70 0.40 0.65
Obfuscation 0.85 0.72 0.82 0.78
Connection Strengthening 0.88 0.81 0.50 0.80
Hybrid Method 0.91 0.86 0.79 0.88
Integral Evaluation of Methods
Baseline Obfuscation Combined Method

Obfuscation Strength

Interaction Robustness

Attack Resistance

Accuracy

Fig. 17 Integral evaluation of accuracy, robustness, and stealth for different methods

6. Conclusion

This research proposes a method that combines two
complementary approaches to protecting distributed systems
based on neural networks: strengthening the connections
between individual models and obfuscating their structure and
parameters. The hybrid approach improves the accuracy of the
global learning task while reducing the risk of successful
model or channel attacks. Based on the obtained results, it can
be concluded that the proposed method increases the resilience
of inter-network interaction under various attack scenarios
such as noise, packet reordering, and fuzzing.

The hybrid strategy demonstrates a superior balance
between accuracy (0.91), robustness (0.86), and stealth (0.79)
compared to isolated methods, confirming its effectiveness as
an integrated security mechanism. However, these
improvements are accompanied by higher computational costs
during training and slightly increased inference time, which
represents a reasonable trade-off between security and
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efficiency. Moreover, exploring adaptive weighting of
obfuscation and strengthening components could further
improve dynamic resilience against evolving attack strategies.
The introduction of gradient synchronization mechanisms
across distributed nodes may enhance convergence stability
and minimize inter-network divergence under adversarial
conditions. It is important to note the potential risks of dual-
use obfuscation technologies, for example, the possibility of
their use to conceal malicious models. Therefore, research into
such methods should be accompanied by the development of
ethical certification and monitoring mechanisms for their use.
Finally, integrating hardware-assisted encryption for secure
communication channels will reduce the latency overhead
introduced by software-based cryptographic layers.
Collectively, these enhancements will enable more scalable,
efficient deployment of the proposed hybrid model in practical
distributed machine learning systems, ensuring robust
protection against both interaction-level and model-level
attacks.
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