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Abstract - Among them, LEACH is one of the most established approaches in reducing energy consumption in wireless sensor 

networks, especially by restricting long-range transmissions towards the base station, while its fixed-round extension, NRF-
LEACH, prolongs network lifetime by keeping the same cluster structure for a number of rounds. However, its performance 

depends heavily on finding the optimal number of fixed rounds, and there is no clear analytical formulation for the NRF value, 

which is a significant gap in the literature that affects energy efficiency, network stability, and the lifetime of the sensor network. 

In this work, we introduce a hybrid method combining multi-objective optimization and statistical modeling to find the optimal 

NRF value for different packet sizes and sensor densities, and then use the optimized results to construct an analytical model of 

the NRF parameter using statistical fitting, which can predict the NRF value directly from network characteristics. The 

experimental results obtained using NS-3 simulations demonstrate that the optimal NRF value changes significantly with packet 

size and node density, and among the models tested, power regression is the most consistent with the simulation data, with the 

correlation coefficient nearly 0.94 and the coefficient of determination nearly 0.89, which proves the validity of the proposed 

modeling strategy and also indicates the necessity to select an appropriate NRF value for the application of NRF-LEACH in 

practical scenarios. 

Keywords - WSN, CH, LEACH, NRF-LEACH, NSGA-II, NRF.

1. Introduction  
Wireless Sensor Networks (WSNs) are effective in a 

variety of applications, including environmental monitoring, 

healthcare, industrial automation, and military systems [1-3]. 

Due to the limited energy resources of sensor nodes, which are 

typically non-replaceable, energy conservation is crucial for 
any communication or routing mechanism [1-3]. Hierarchical 

routing protocols, which are known to decrease 

communication overhead and prolong network lifetime by 

grouping nodes into clusters and fusing data locally before 

forwarding it to the base station, have gained a lot of attention 

in this area [1, 4-6]. LEACH is among the most influential of 

these protocols because of its distributed operation and 

randomized cluster formation strategy [1]. Although it is still 

relevant, LEACH repeats a setup phase at each round where 

cluster heads are elected, and clusters are reconfigured, which 

consumes a lot of energy and reduces the lifetime of the 
network, particularly in dense deployments or high-

communication scenarios [7-9]. To overcome this limitation, 

the NRF-LEACH variant proposes keeping the same cluster 

structure for multiple consecutive rounds, avoiding repeated 

setup phases, and resulting in significant energy savings and 

increased network lifetime, with improvements reported to be 

larger than those of the original protocol. However, the 

effectiveness of this variant depends heavily on the number of 

rounds during which the cluster structure is preserved. The 

selection of this parameter, called NRF, has a significant 

impact on the protocol's performance. However, to the best of 

our knowledge, the NRF parameter has not been formally 

characterized in the literature, and existing works introduce 

enhanced clustering strategies or combine LEACH with 

optimization techniques but they rely on fixed or empirically 

selected NRF values and lack a principled way to determine 

the optimal NRF in various network conditions [7-14], which 

is a clear research gap. With growing scale and heterogeneity 
of WSN deployments, a clear understanding of the evolution 

of the optimal NRF as a function of packet size, node density, 

and network behavior is necessary to ensure consistent 

performance across diverse scenarios. In order to fill this gap, 

this paper proposes a hybrid methodology for estimating the 

optimal NRF based on multiobjective optimization and 

statistical modeling of the optimized results to determine the 

optimal NRF value that optimizes multiple performance 

metrics [15–18]. The Pareto-optimal solutions for each 

network configuration for three key metrics (the number of 

rounds, the cumulative number of dead nodes, and the total 
number of bits delivered to the base station) are calculated 

using the NSGA-II algorithm [15–18]. Then, the Pareto-
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optimal solutions are statistically fitted into an analytical 

expression of the NRF parameter, and the optimal NRF can be 

estimated directly from packet size and sensor density, 

providing a generalized and practical formula that can be 

embedded into the NRF-LEACH protocol or other clustering-

based routing mechanisms. 

The study is guided by the following research questions: 

1. What are the effects of packet size, network density, and 

overall energy behavior on the optimal NRF value? 

2. Are multi-objective optimization methods, such as 

NSGA-II, able to find the best NRF values reliably across 

many different scenarios? 

3. Is it possible to create a mathematical model that can 

derive the accurate NRF value from observable network 

parameters? 

This research not only offers a systematic, optimization-

based analysis of the NRF parameter but also an analytical 
model capable of predicting its value under realistic 

conditions. These contributions make the NRF-LEACH 

protocol more comprehensible and, at the same time, assist in 

the selection of optimal configuration parameters in real-

world wireless sensor networks by providing practical 

insights. 

2. Related Works 
Energy-efficient routing in wireless sensor networks has 

encouraged the development of a vast number of clustering 

methods to reduce communication overhead and prolong 

network lifespan. The original LEACH protocol has been 

enhanced by changing the way cluster-heads are selected or 

by defining the clustering process differently. A case in point 

is the use of energy-aware or distance-dependent criteria in 

numerous works, which has resulted in the non-selection of 

nodes with very little residual energy (the references to those 

studies are [12–14]), leading to a more even spread of energy 

consumption across the entire network. These methods 
usually outperform the original LEACH, yet they still require 

frequent reconfiguration stages, which reduces the network's 

overall efficiency in the long run. Other researchers have 

proposed different approaches and considered hybrid or multi-

stage clustering techniques, such as the combination of 

redundant and reserve cluster heads to keep the cluster alive 

during node failure and to strengthen communication between 

the base station and the clusters by increasing the number of 

packets delivered [8]; or hybrid optimization models that use 

techniques like Particle Swarm Optimization (PSO), K-means 

clustering, or fuzzy logic not only to select the cluster heads 
but also to minimize the risk of early node death [10]. All these 

approaches indeed have the potential to yield considerable 

performance gains; however, they often come with the cost of 

additional computational steps or the need for centralized 

decision-making, which may not be suitable for large-scale or 

resource-constrained networks. Moreover, different types of 

LEACH have been put forward, which also share a common 

goal of achieving more uniform energy consumption, like the 

ones that are based on residual energy [10], multi-hop routing 

[11], and hierarchical decision processes [13]. In particular, 

BCE-LEACH relies on the combination of both energy and 

distance metrics, which not only balance cluster-head 
selection but also lead to the introduction of relay nodes for 

multi-hop communication, resulting in longer network 

lifetime as compared to the traditional LEACH [10-11]. The 

latest developments include, among others, shortest-path 

algorithms, data fusion techniques, and cluster-head 

coordination mechanisms aimed at improving the efficiency 

of the system by increasing its throughput and reducing the 

redundancy in the collected data [13]. The works reviewed so 

far indicate that there is still a strong interest in improving 

clustering methods and data delivery performance in Wireless 

Sensor Networks (WSNs). 

Other authors have used machine learning techniques to 
aid in the clustering process, such as using LEACH in 

combination with learning-based algorithms, such as a 

variation of K-means or a weighted decision scheme to choose 

cluster heads based on parameters related to energy, distance, 

or node density [19-21]. These methods provide more 

flexibility, but generally involve extra computation or need an 

external training stage, which is not suitable for highly 

constrained sensor deployments. Lastly, competition-based or 

location-aware clustering strategies have been proposed to 

minimize overlap between clusters and minimize intra-cluster 

transmission distances [14], which often use spatial metrics, 
residual energy, or local density to select appropriate cluster-

head candidates and can lead to more balanced energy 

distribution in dense scenarios. However, none of these 

studies tackle the problem of how many rounds to run in order 

to maintain a cluster structure over time. From the existing 

literature, it has been observed that no prior work has provided 

a formal framework to identify or model the optimal number 

of fixed rounds in NRF-LEACH, and most studies focus either 

on improving the cluster-head selection or proposing new 

clustering strategies, but the NRF parameter that is at the core 

of the performance of NRF-LEACH is empirically selected, 

without a systematic evaluation of NRF across different 
packet sizes, node densities, and network conditions, and no 

analytical model exists for predicting its optimal value, which 

motivate the present study, which combines multi-objective 

optimization with statistical modeling to establish a robust and 

generalizable method for estimating the optimal NRF value 

under different network scenarios. 

3. NRF-LEACH Protocol 
The NRF-LEACH protocol enhances the traditional 

LEACH algorithm by reducing the number of cluster 

reconfigurations, since each round starts with a setup phase 

when cluster heads are elected, and nodes join the nearest 

cluster head, which is a major energy consumer in dense or 

long-duration deployments. 
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Fig. 1 NRF-LEACH protocol flowchart 

NRF-LEACH overcomes this limitation by maintaining 

the same cluster structure for a fixed number of rounds, called 

NRF, after the initial setup phase; in the following NRF–1 

rounds, the cluster configuration is preserved and the network 

avoids repeated advertising and cluster-formation procedures, 

which considerably reduces the energy overhead for cluster 
reinitialization and prolongs the network lifetime when the 

NRF value is appropriate for the network characteristics. 

There are two primary stages in the protocol: the 

configuration phase and the transmission phase. Cluster heads 

broadcast an advertisement message during the configuration 

phase, and every node that is not a cluster head chooses the 

nearest cluster head and sends a membership message. These 

communications incur both transmission and reception costs. 

The total energy consumed during this phase corresponds to 

the sum of (eq. 1) the energy spent by cluster heads to 

broadcast advertisements, (eq. 2) the energy needed by non-

cluster-head nodes to receive these messages, and (eq. 3) the 
energy required for nodes to transmit membership requests. In 

LEACH, this cost is incurred every round, whereas in NRF-

LEACH it is only incurred once for a sequence of NRF rounds. 

As a result, the overall energy required to configure the 

network decreases proportionally with increasing NRF, 

provided that the cluster structure remains stable. During the 

transmission phase, nodes periodically send sensed data to 

their cluster head, which aggregates and forwards the 

information to the base station. This phase is identical in both 

LEACH and NRF-LEACH, with the difference that NRF-

LEACH benefits from reduced control-message overhead. 
However, preserving the same cluster structure for several 

rounds may also introduce imbalances when residual energy 

levels diverge among nodes or when the distribution of nodes 

becomes unfavorable after several rounds. Because of this, it 

is important to choose the NRF parameter carefully. If it is too 

small, the benefit of avoiding setup phases is limited, and if it 

is too large, outdated cluster configurations may cause 

performance to deteriorate. 

The commonly used energy-related equations to model 

NRF-LEACH capture the cost of transmitting and receiving 

advertisement messages, membership messages, and 

aggregated data, which includes the contribution of the 

electronic circuitry, free-space or multipath propagation, 

packet size, and node-to-cluster-head distances, which allows 

the amount of energy saved by avoiding repeated 

configuration phases to be quantified and highlights the direct 

influence of the NRF value on the protocol efficiency, which 

is particularly important for small packet sizes or networks 

with moderate density, where transmission costs represent a 

larger proportion of the total energy budget. In general, NRF-
LEACH provides a straightforward mechanism to minimize 

the long-term cost of cluster formation. However, its 

performance is highly dependent on the selection of the NRF 

parameter and how it affects the energy consumption, 

stability, and data delivery, which motivates the need to 

develop a method to determine the optimal NRF value for 

different network conditions. This problem is addressed in the 

following sections via multi-objective optimization and 

statistical modeling. 

4. Explicit Contributions 
While several variants of LEACH have been proposed to 

enhance energy efficiency and prolong the lifetime of WSNs, 

existing studies do not offer a principled approach to 

determine the optimal number of fixed rounds in NRF-

LEACH. This study fills the gap by proposing a hybrid 

optimization and modeling framework. The study's main 

contributions are summarized below: 

1. An optimized NRF parameter through a multi-objective 

systematic method. This research employs the NSGA-II 

algorithm that helps to determine the best NRF values by 

considering the large number of network configurations 

along with three performance indicators: the number of 
rounds, the cumulative number of dead nodes, and the 

total number of bits sent to the base station. To this date, 

there has been no other study that applies the method of 

multi-objective optimization for the setting of the NRF 

parameter. 

2. A simulation dataset of enormous size that simulates a 

variety of network situations. The NS-3 simulation 

yielded a total of over 480,000 simulations through the 

manipulation of packet sizes, node densities, and NRF 

values, which in turn not only represented a thorough 

understanding of the behavior of NRF-LEACH over a 
wide range of conditions but also profoundly solidified 

the basis for making generalizable conclusions. 

Start 
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3. A statistical model-based method that leads to an 

analytical formula for the NRF value; the optimum NRF 

values are derived from the NSGA-II and employed for 

the model adaptation, while multiple fitting strategies are 

explored. 
4. Research comparing approach that reveals the importance 

of the proposed model. The comparison quantitatively 

evaluates logarithmic, polynomial, and power-law 

regression models using mean squared error, correlation 

coefficient, and coefficient of determination measures, 

and finds that the power-law model is the best for the 

NRF, packet size, and sensor density connection, so the 

derived analytical formula allows direct NRF value 

estimation. 

5. The configuration has been identified in the results to be 

the one that maximizes the advantages of the NRF-

LEACH, especially in the case of small and medium 
packet sizes. This analytical model gives practitioners an 

easy way to choose an appropriate NRF value to enhance 

network efficiency without having to reconfigure or trial-

and-error evaluate. 

These contributions offer the first systematic approach to 

estimating the optimal number of fixed rounds in NRF-

LEACH, which integrates multiobjective optimization, 

extensive simulations, and statistical modeling, thereby 

making the protocol more practical and laying the groundwork 

for future enhancements to clustering-based routing protocols. 

5. Energy Consumption Model 
NRF-LEACH uses the classical radio energy model that 

assumes that the cost of transmitting and receiving data is 

different and considers the propagation effects that depend on 

the distance between the transmitter and the receiver.  

During the configuration phase, two types of messages 

are exchanged: advertising messages sent by cluster heads and 

membership messages issued by non-cluster-head nodes. The 

energy required for these operations is summarized by the 

following equations. During the advertising step, each cluster 

head broadcasts an advertisement of size k bits. If Nch denotes 

the number of elected cluster heads, the energy spent by all 
cluster heads to transmit these advertisements is expressed as 

in [22-24] (eq. 1). 

𝐸𝑎𝑑𝑣_𝑡𝑥 = 𝑁𝑐ℎ ∗ 𝐸𝑒𝑙𝑒𝑐𝑡 ∗ 𝑘 + 𝑁𝑐ℎ ∗ 𝜀𝑓𝑠 ∗ 𝑘 ∗ 𝑑2  (1) 

where Eelec represents the electronic circuitry cost per bit, 

εfs is the free-space amplification factor, and d denotes the 

average transmission distance. In the cluster-formation step, 

each non-cluster-head node transmits a membership request to 

the closest cluster head. The transmission energy for these 

requests is given as in [22-24] by (eq. 2): 

𝐸𝑎𝑑𝑣_𝑟𝑥 = 𝑁𝑐ℎ ∗ (N − 𝑁𝑐ℎ) ∗ 𝐸𝑒𝑙𝑒𝑐 ∗ k (2) 

where N is the total number of nodes. 

In the cluster-formation step, each non-cluster-head node 

transmits a membership request to the closest cluster head. 

The transmission energy for these requests is: 

𝐸𝑗𝑜𝑖𝑛_𝑡𝑥 =  (𝑁 − 𝑁𝑐ℎ) ∗ (𝐸𝑒𝑙𝑒𝑐𝑡 ∗ k + 𝜀𝑓𝑠 ∗ 𝑘 ∗ 𝑑2) (3) 

Each cluster head receives, on average, N/Nch  

membership requests. The energy consumed in receiving 

these messages is given by (eq. 4) : 

𝐸𝑗𝑜𝑖𝑛_𝑟𝑥  = 𝑁𝑐ℎ ∗
𝑁

𝑁𝑐ℎ
∗ 𝐸𝑒𝑙𝑒𝑐𝑡 ∗ k = N ∗  𝐸𝑒𝑙𝑒𝑐𝑡 ∗ k (4) 

The total energy required by the setup phase in the 

standard LEACH protocol is given by (eq. 5) 

𝐸𝑠𝑒𝑡𝑢𝑝
𝐿𝐸𝐴𝐶𝐻 =  𝐸𝑎𝑑𝑣_𝑡𝑥 + 𝐸𝑎𝑑𝑣_𝑟𝑥 +  𝐸𝑗𝑜𝑖𝑛_𝑡𝑥 +  𝐸𝑗𝑜𝑖𝑛_𝑟𝑥 (5)  

In NRF-LEACH, the configuration phase is carried out 

once every NRF rounds. For the remaining (NRF − 1) rounds, 

no reconfiguration is performed. The total energy consumed 

for the configuration phase in NRF-LEACH becomes (eq. 6). 

𝐸𝑠𝑒𝑡𝑢𝑝
𝑁𝑅𝐹−𝐿𝐸𝐴𝐶𝐻 =

1

𝑁𝑅𝐹
∗ 𝐸𝑠𝑒𝑡𝑢𝑝

𝐿𝐸𝐴𝐶𝐻  (6) 

The corresponding energy saved by avoiding repeated 

setup phases is given by (eq. 7). 

𝐸𝑠𝑎𝑣𝑒𝑑
 = 𝐸𝑠𝑒𝑡𝑢𝑝

𝐿𝐸𝐴𝐶𝐻 − 𝐸𝑠𝑒𝑡𝑢𝑝
𝑁𝑅𝐹−𝐿𝐸𝐴𝐶𝐻   (7) 

These equations highlight the direct influence of the NRF 

parameter on network performance. Increasing the number of 

rounds during which the same cluster structure is maintained 

reduces configuration overhead proportionally. 

However, an excessively large NRF value may result in 

poorly balanced energy consumption among nodes as cluster-

head roles remain unchanged for too long. This trade-off 

explains why the determination of an optimal NRF value is 

essential to the effective operation of NRF-LEACH. 

6. Methodology 
The approach we are suggesting employs large-scale 

simulations, multi-objective optimization, and statistical 

modeling to tackle the problem and determine the optimal 

number of fixed rounds in the NRF-LEACH protocol. 

The process consists of three major steps: (1) creation of 

data and formulation of the optimization problem, (2) using 

the NSGA-II algorithm, and (3) building a mathematical 

model for the NRF parameter. The various steps of our method 

are thoroughly explained below and presented in Figure 2. 
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Fig. 2 Flowchart of statistical adjustment methodology 

6.1. Experimental Environment 
Simulations were performed using the NS-3 network 

simulator, which offers a detailed and modular platform for 

simulating hierarchical routing protocols. Three network 

configurations were considered to reflect varying levels of 

sensor density: sensor nodes were randomly deployed in 
square areas of 100×100 m², 200×200 m², and 300×300 m², 

corresponding to networks of 100, 200, and 300 nodes, 

respectively; the base station was placed at the center of each 

deployment area; each sensor node was initialized with an 

energy of 0.5 J; and radio communication followed the 

standard energy dissipation model with free-space and 

multipath propagation parameters. Packet sizes ranged from 8 

to 512 bits to evaluate NRF-LEACH with small, medium, and 

large data payloads; for each packet size and for each node 

density, the protocol was run with NRF values ranging from 1 

to 500, resulting in over 480,000 independent simulations. 

6.2. Data Generation 
Three performance indicators were recorded for each 

simulation:  

 The number of rounds completed before the network 

became non-operational,  

 The total number of dead nodes at the end of the 

simulation,  

 The total amount of bits sent to the base station. 

These performance indicators were selected because they 

reflect different dimensions of network performance: lifetime, 

power used by the nodes, and net throughput. The resulting 

dataset is a triad of performance figures for every tested NRF 
value, which constitutes the training basis for determining the 

NRF value that ensures the optimal compromise between 

energy efficiency and data delivery performance. The 

conducted tests are listed in the table below. 

Table 1. Simulations carried out 

Density Packet Size NRF 

100 Nodes / 
10000 m2 

16-bit, 24-bit, 32-
bit....512-bit 

From 1 to 
500 

200 Nodes / 

40000 m2 

16-bit, 24-bit, 32-

bit....512-bit 

From 1 to 

500 

300 Nodes / 

90000 m2 

16-bit, 24-bit, 32-

bit....512-bit 

From 1 to 

500 

6.3. Problem Formulation 

Finding the optimal NRF was treated as a multi-objective 

optimization problem, with the optimal NRF taken as an 

objective-available solution. 

 Maximize the number of rounds (network lifetime), 
 Minimize the number of dead nodes, 

 Maximize the number of bits received at the base station.  

These are conflicting objectives. For example, 

maximizing network lifetime may lead to cluster heads 

depleting their energy sooner, increasing the number of dead 

nodes, while minimizing node mortality may reduce 

throughput or shorten the operational duration. Since the 

problem is multi-objective, it seeks a set of trade-off solutions, 

and hence Pareto-based optimization is more appropriate. 

6.4. NSGA-II Optimization Setup 

The NSGA-II algorithm was chosen due to its ability to 

handle conflicting objectives, its ability to preserve solution 
diversity, and its ability to approximate the Pareto front with 

less computational effort. The collected simulation data is 

processed by the NSGA-II algorithm by treating each NRF 

value as a candidate solution. The NSGA-II parameters 

utilized in this study are as follows: 

 Population size: 200 

 Number of generations: 300 

 Crossover probability: 0.9 

 Mutation probability: 0.1 

 Selection method: binary tournament 

 Crossover operator: simulated binary crossover 
 Mutation operator: polynomial mutation 

 Ranking method: non-dominated sorting 

 Diversity preservation: crowding distance metric 

The algorithm generates a Pareto front for each packet 

size and each density configuration, which consists of a set of 

non-dominated NRF values that are used to select the most 

appropriate NRF for each scenario.  

A single proposed NRF value is produced by the 

integration of the three performance indicators in a weighted 

way. The weights determined through experiments (α = 0.2, β 

= 0.6, and γ = 0.2) reflect the importance of minimizing node 

death while keeping the throughput and life expectancy of the 

device at acceptable levels. 

6.5. Statistical Modeling of the NRF Parameter 

Using the NRF values found by NSGA-II for each 

simulation scenario, the model fits the time series 

simultaneously. The dependent variable is the optimized NRF 

value, and the independent variables are packet size and node 

density. The following three regression models were assessed:  

 Logarithmic fitting (eq. 11),  

 Polynomial fitting of third order (eq. 12),  

 Power-law fitting (eq. 13) 

• Data generation from simulations by varying the 
following parameters: number NRF, packet size, 

network density.
Data generation 

• Optimization of the NRF number that 
maximizes the performance of the wireless 

sensor network, applying the NSGA-II.

Multi-objective 
optimization of 

NRF

• Modeling the NRF number as a function of 
sensor density and packet size.

Statistical 
adjustment of the 

NRF number
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Mean squared error (eq. 9), correlation coefficient (eq. 8), 

and coefficient of determination (R²) (eq. 10) were used to 

assess each model, with the power-law model consistently 

achieving the best performance in all cases, with a correlation 

coefficient near 0.94 and R² approaching 0.89. The final 
analytical expression can be used to derive a predictive 

formula for estimating the optimal NRF value based on 

network parameters directly. 

𝑟 =
∑ √(𝑋𝑖−𝑋)(𝑌𝑖−𝑌)𝑛

𝑖=1

√∑ (𝑋𝑖−𝑋)
2𝑛

𝑖=1 ∑ (𝑌𝑖−𝑌)
2𝑛

𝑖=1

  (8) 

𝑋 and 𝑌 are the means of the variables X and Y. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖)

2𝑛
𝑖=1  (9) 

𝑅2 =
∑ (𝑦𝑖−𝑦𝑖)2  𝑛

𝑖=1

∑ (𝑦𝑖−𝑦)2𝑛
𝑖=1

   (10) 

yi is the real value, 𝑦𝑖 is the predicted or adjusted value 

and 𝑦 are the means of the variables y. 

𝑦 = 𝑎 + 𝑏 log (𝑥) +  𝑐 log (𝑧) (11) 

𝑦 = 𝑎0 + 𝑎1𝑥 + 𝑎2z + 𝑎3𝑥2 + 𝑎4𝑥1𝑧1 + 𝑎5𝑧2 +
𝑎6𝑥3 + 𝑎7𝑥2𝑧1   + 𝑎8𝑥1𝑧2  + 𝑎9𝑧3 (12) 

𝑦 = 𝑎 𝑥𝑏 𝑧𝑐  (13) 

By turning the optimization process's output into a useful 

tool, this modeling stage allows users to configure NRF-

LEACH without the need for lengthy simulations. 

6.6. Workflow Summary 

The entire methodological process can be outlined in the 

following steps:  

1. Data generation through simulation of NRF-LEACH with 

various settings of NRF, packet size, and node density,  

2. Metrics of performance will be computed (rounds, dead 

nodes, delivered bits),  

3. NSGA-II is used to get Pareto-optimal NRF values,  

4. Weights are applied to the aggregation process to 

determine one representative NRF for each configuration,  

5. Statistical models are created with packet size and density 
as factors,  

6. The best regression model is chosen, and a final analytical 

expression is obtained.  

7. Validation of the model through independent simulation 

data.  

The method adopting this strategy has the merit of being 

both strong and applicable in different scenarios and grants 

NRF parameter determination in NRF-LEACH through a 

systematic and reproducible approach. 

7. Results and Discussion 
The large-scale simulation outcomes, along with the 

multi-objective optimization process that followed, are 

discussed in this section under three major components: the 

raw simulation data, the behavior of the NSGA-II 

optimization, and the statistical modeling of the NRF 

parameter, stressing the effects of packet size and sensor 

density on the optimal number of fixed rounds. 

7.1. Analysis of Simulation Results 

In Figures 3, 4, and 5, respectively, the performance of 

NRF-LEACH in the three distinct deployment scenarios is 

illustrated, where the networks consist of 100, 200, and 300 
nodes, the total number of rounds, the base station's packets 

received, and the cumulative number of dead nodes were all 

registered for the range of NRF values from 1 to 500, in terms 

of different packet sizes. 

7.1.1. Scenario 1: 100 Nodes in 100×100 m² 

The results for packet sizes from 8 to 512 bits are reported 

in Figure 3. For small packet sizes (8, 16, and 32 bits), the 

number of rounds (sub-figures a1, a2, and a3) and the number 

of packets received (sub-figures b1, b2, and b3) improve 

significantly as NRF increases from 1 to about 60. After that, 

the gains are small, indicating that after NRF ≈ 60, the number 
of repeated configuration phases is no longer a significant 

contributor to energy consumption. As can be seen in sub-

figures a4 and a5, the number of rounds improves, but more 

modestly for larger packet sizes (64 and 128 bits). As can be 

seen in sub-figures b4 and b5, throughput starts to decline for 

NRF values greater than 60 since data transmission causes 

some cluster heads to deplete their energy prematurely. 

7.1.2. Scenario 2: 200 Nodes in 200×200 m² 

As shown in Figure 4, these general trends are still valid 

with an increased network density. The area where NRF 

brings the most significant gains is still centered between 2 

and 60, with diminishing returns beyond this range, but the 
magnitude of these improvements is slightly reduced, 

especially for the number of rounds, due to higher data traffic 

and more frequent intra-cluster interactions that cause the 

energy depletion to be faster in denser environments. 

7.1.3. Scenario 3: 300 Nodes in 300×300 m² 

Figure 5 confirms that the impact of NRF weakens as 

network density increases. Although NRF values between 2 

and 60 continue to offer noticeable gains in certain 

configurations, the benefits become less pronounced and more 

dependent on packet size. Larger networks tend to experience 

higher communication overhead, which mitigates the savings 

obtained by avoiding repeated setup phases. 

7.2. Interpretation of Key Trends 

Across all scenarios, the most consistent observation is 

that NRF-LEACH performs best when NRF lies within the 
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interval [2]. In this region, avoiding the overhead of repeated 

setup phases leads to measurable energy savings. For larger 

NRF values, however: 
 Residual energy becomes unevenly distributed, 

 Cluster heads remain fixed for too long, 
 The transmission cost becomes dominant (especially for 

larger packets), 

 Some nodes deplete their energy before the cluster 

structure is refreshed. 

This behavior highlights the importance of selecting an 

NRF value that balances configuration overhead and cluster-

head stability. 

 
Fig. 3 Scenario 1 (100 Nœuds 100 * 100 m2) 
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Fig. 4 Scenario 2 (200 Nœuds 200 * 200 m2) 
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Fig. 5 Scenario 3 (300 Nœuds 300 * 300 m2) 
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7.3. NSGA-II Optimization Results 

NSGA-II was applied to the simulation dataset to identify 

Pareto-optimal solutions for each combination of packet size 

and sensor density. Trade-offs between the three performance 

metrics are evident in the resulting Pareto fronts. 

A Pareto front for a typical set of 7 configuration runs 

shows that maximizing the number of rounds often comes at 

the cost of maximizing throughput, and that minimizing the 

number of dead nodes adds to the trade-off. The diversity of 

solutions and the smooth distribution along the front confirm 

that NSGA-II applies here.  

The weighted selection method (α=0.2, β=0.6, γ=0.2) that 

gives more weight to solutions with lower node mortality, but 

still produces reasonable operational duration and throughput, 

yields a single representative NRF value for each 

configuration and provides the statistical modeling that 

underpins the results. 

7.4. Comparative Summary of Optimized NRF Values 

Table 2 summarizes representative results taken from the 

NSGA-II outputs to show how packet size and density affect 

the optimal NRF. 

Table 2. Representative optimized NRF values 

Packet 

Size (bits) 

Density: 

100 nodes 

Density: 

200 nodes 

Density: 

300 nodes 

8 50–60 45–55 40–50 

32 35–50 30–45 25–40 

128 10–30 5–25 5–20 

512 <10 <10 <10 

These results clearly show that: 

 Larger NRF values (better stability) are possible with 

smaller packets, 

 Larger packets require smaller NRF values (to preserve 

energy balance), 

 Higher network density lowers the optimal NRF range. 

7.5. Statistical Fitting and Model Performance 

Three regression models were tested: logarithmic, third-

order polynomial, and power-law regression. Table 3 
summarizes their performance metrics.The power-law model 

provides the best agreement with the optimized NRF values. 

Its high correlation and R² values indicate that packet size and 

density have a nonlinear influence that is well captured by this 

model. This model, therefore, serves as the final analytical 

expression for estimating the NRF value. 

Table 3. Regression performance metrics 

Model Type MSE Correlation R2 Estimated parameters 

Logarithmic regression 903.97 0.92 0.72 a= 21770.49 , b= -0.52, c=-0.71 

Polynomial regression  

(order 3) 
826.47 0.86 0.74 

[341.17, -3.35, -2.45 e-5, 9.54 e-3, 5.86 e-3, -4.50 e-3, 

-8.36 e-6, -8.87 e-6, 3.57 e-7, 6.75 e-6] 

Power-law 351.37 0.94 0.89 a = 89082.97, b = -0.71, c=-0.80 

7.6. Structural Fitting 

Table 4 summarizes the simulation parameters used 

throughout the study. These parameters were applied 

consistently across all network densities and packet-size 

configurations in order to generate a homogeneous dataset 

suitable for comparative analysis.  The values of εfs, εamp, and 

Eelec follow the standard radio model typically used in 

LEACH-based studies, while the probability of selecting 

cluster heads was fixed at 0.05.  

Packet sizes ranged from 8 to 512 bits, and the network 

density was varied over 100, 200, and 300 nodes. The three-

dimensional adjustment surfaces from the logarithmic, 

polynomial, and power-law regression models are shown in 

Figures 6, 7, and 8, respectively, with the scatter points 

representing the outputs from the NSGA-II optimization to 

give a qualitative assessment of how well the regression 

models capture the distribution of optimized NRF values as a 

function of packet size and sensor density. 

Table 4. Simulation Parameters 

Parameters Values 

Size of network 100m/100m, 200/200, 300/300 

Base Station (BS) (50m,50m), (100m,100m), (150m,150 m), 

εefs 8 pj/bit/m2 

εamp 0.0013pj/bit/m4 

Eelec 50 nj/bit 

𝑑0 87,7 m 

Initial Energy 0.5 j 

Cluster Head probability 0.05 

Total nodes 100, 200, 300 

SCHEDULE_MESSAGE 16 bits 

MESSAGE_LENGTH 8, 16, 24, 32, 40, 48 ……..512bits 
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As we can see in Figure 6, the logarithmic model 

approximates the overall shape of the data, but it does not 

capture the variation in the data for larger packet sizes, where 

the surface flattens out. The polynomial model in Figure 7, 

being a higher-order structure, has more flexibility, but shows 
localized oscillations that do not follow the actual distribution 

of the data, particularly in regions where packet size increases 

most rapidly. 

On the other hand, as Figure 8 shows, the power-law 

model generates a continuous surface that tracks the cloud of 

experimental points in all three cases. The quantitative results 

in Table 3 are consistent with the qualitative observation that 

the power-law regression has the lowest mean squared error 

(351.37), the highest correlation coefficient (0.94), and the 

highest coefficient of determination (0.89), which collectively 

demonstrate that the power-law function can more accurately 

model the nonlinear behavior of the NRF parameter and its 
sensitivity to packet size and density than the logarithmic and 

polynomial models. 

 
Fig. 6 Statistical adjustment of the NRF number (Logarithmic fit) 

 

 
Fig. 7 Statistical adjustment of the NRF number (Polynomial fit of 

order 3) 

 
Fig. 8 Statistical adjustment of the NRF number (Power Adjustment) 

Taken together, the numerical indicators and visual 

inspection lead to the conclusion that the power-law model 

provides the most reliable analytical representation of the 

relationship between the NRF parameter, packet size, and 

sensor density. This model is therefore selected as the final 

predictive equation for estimating the optimal NRF value in 

the NRF-LEACH protocol. 

7.7. Discussion 

The results confirm that NRF-LEACH can significantly 
extend network lifetime when the NRF parameter is chosen 

appropriately. The study shows that: 

 The NRF parameter is very sensitive to packet size, 

 Values in the range of 2 to 60 serve up the most 

consistent and universal advantages. 

 Too large an NRF value causes an energy imbalance 

among nodes, 

 The correlation between NRF and network parameters is 

of a nonlinear nature.  

The new analytical model that has been derived here is a 

very effective tool for configuring NRF-LEACH without the 

need for extensive simulations. Besides, it gives the network 
operators the capability to calculate the NRF value from the 

size of packets and the density of sensors, which will help 

them to be more effective in the deployment of hierarchical 

routing strategies.  

8. Ethical Considerations  
The simulation data generated using the NS-3 network 

simulator is the only data on which this study is based. There 
were no real-world measurements, no personal data, and no 

sensitive information that was collected or processed. The 

work did not involve human or animal subjects or identifiable 

personal information, so ethical approval and informed 

consent are not required, and all the procedures are in 

accordance with the standard research practices in computer 

science and wireless networking.  
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9. Conclusion  
The research considered the effect on the performance of 

the NRF-LEACH protocol caused by the parameter NRF and 

put forward a methodical approach for finding the best value 

of the NRF for various network setups. This was done through 

the combination of large-scale simulations, multi-objective 

optimization, and statistical modeling methods, which not 

only give a detailed characterization of the protocol behavior 

but also a practical analytical model. The results indicate that 

the NRF values that provide the greatest benefits for the NRF-

LEACH depend heavily on selecting an NRF value that 

provides a trade-off between configuration overhead and 
cluster-head stability, and that values in the lower and medium 

range offer consistent gains, with excessively large values 

resulting in unbalanced energy consumption and premature 

node failures. 

The NSGA-II algorithm was used to determine Pareto-

optimal NRF values that represent reasonable trade-offs 

between network lifetime, data delivery, and node 

survivability. Based on the optimized NRF values, a statistical 

model was established to capture the nonlinear relationship 

between NRF, packet size, and sensor density, where the 

power-law model showed the highest correlation and 
determination coefficients among the tested approaches, and 

its analytical formulation can be used as a simple and efficient 

method to estimate the optimal NRF for new deployments 

without any further simulations. Despite its strengths, the 

study has certain limitations. The simulations assume 

homogeneous sensor nodes with identical energy resources, 
whereas real deployments may include heterogeneous devices 

with different power profiles. The analysis also considers 

static networks and does not account for node mobility, 

environmental interference, or dynamic variations in packet 

generation rates. Furthermore, the optimization and modeling 

processes rely on the assumptions of the NS-3 energy model, 

which may differ from the characteristics of specific hardware 

platforms. There are multiple avenues for future work that can 

be explored to extend further the current approach: extending 

the method to heterogeneous or mobile sensor networks, 

incorporating additional parameters such as link quality, 

interference patterns, or variable data-generation rates, 
incorporating machine learning techniques to predict NRF 

values under uncertain or time-varying conditions, and 

applying the methodology to other clustering-based protocols 

to derive generalized models for energy-efficient routing in 

wireless sensor networks. Overall, the study contributes a 

structured framework for analyzing and configuring NRF-

LEACH, offering both theoretical insights and practical 

guidelines for improving energy efficiency and extending the 

lifetime of wireless sensor networks. 
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