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Abstract - Among them, LEACH is one of the most established approaches in reducing energy consumption in wireless sensor
networks, especially by restricting long-range transmissions towards the base station, while its fixed-round extension, NRF-
LEACH, prolongs network lifetime by keeping the same cluster structure for a number of rounds. However, its performance
depends heavily on finding the optimal number of fixed rounds, and there is no clear analytical formulation for the NRF value,
which is a significant gap in the literature that affects energy efficiency, network stability, and the lifetime of the sensor network.
In this work, we introduce a hybrid method combining multi-objective optimization and statistical modeling to find the optimal
NRF value for different packet sizes and sensor densities, and then use the optimized results to construct an analytical model of
the NRF parameter using statistical fitting, which can predict the NRF value directly from network characteristics. The
experimental results obtained using NS-3 simulations demonstrate that the optimal NRF value changes significantly with packet
size and node density, and among the models tested, power regression is the most consistent with the simulation data, with the
correlation coefficient nearly 0.94 and the coefficient of determination nearly 0.89, which proves the validity of the proposed
modeling strategy and also indicates the necessity to select an appropriate NRF value for the application of NRF-LEACH in

practical scenarios.
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1. Introduction

Wireless Sensor Networks (WSNs) are effective in a
variety of applications, including environmental monitoring,
healthcare, industrial automation, and military systems [1-3].
Due to the limited energy resources of sensor nodes, which are
typically non-replaceable, energy conservation is crucial for
any communication or routing mechanism [1-3]. Hierarchical
routing protocols, which are known to decrease
communication overhead and prolong network lifetime by
grouping nodes into clusters and fusing data locally before
forwarding it to the base station, have gained a lot of attention
in this area [1, 4-6]. LEACH is among the most influential of
these protocols because of its distributed operation and
randomized cluster formation strategy [1]. Although it is still
relevant, LEACH repeats a setup phase at each round where
cluster heads are elected, and clusters are reconfigured, which
consumes a lot of energy and reduces the lifetime of the
network, particularly in dense deployments or high-
communication scenarios [7-9]. To overcome this limitation,
the NRF-LEACH variant proposes keeping the same cluster
structure for multiple consecutive rounds, avoiding repeated
setup phases, and resulting in significant energy savings and
increased network lifetime, with improvements reported to be
larger than those of the original protocol. However, the

effectiveness of this variant depends heavily on the number of
rounds during which the cluster structure is preserved. The
selection of this parameter, called NRF, has a significant
impact on the protocol's performance. However, to the best of
our knowledge, the NRF parameter has not been formally
characterized in the literature, and existing works introduce
enhanced clustering strategies or combine LEACH with
optimization techniques but they rely on fixed or empirically
selected NRF values and lack a principled way to determine
the optimal NRF in various network conditions [7-14], which
is a clear research gap. With growing scale and heterogeneity
of WSN deployments, a clear understanding of the evolution
of the optimal NRF as a function of packet size, node density,
and network behavior is necessary to ensure consistent
performance across diverse scenarios. In order to fill this gap,
this paper proposes a hybrid methodology for estimating the
optimal NRF based on multiobjective optimization and
statistical modeling of the optimized results to determine the
optimal NRF value that optimizes multiple performance
metrics [15-18]. The Pareto-optimal solutions for each
network configuration for three key metrics (the number of
rounds, the cumulative number of dead nodes, and the total
number of bits delivered to the base station) are calculated
using the NSGA-II algorithm [15-18]. Then, the Pareto-
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optimal solutions are statistically fitted into an analytical
expression of the NRF parameter, and the optimal NRF can be
estimated directly from packet size and sensor density,
providing a generalized and practical formula that can be
embedded into the NRF-LEACH protocol or other clustering-
based routing mechanisms.

The study is guided by the following research questions:

1. What are the effects of packet size, network density, and
overall energy behavior on the optimal NRF value?

2. Are multi-objective optimization methods, such as
NSGA-II, able to find the best NRF values reliably across
many different scenarios?

3. Is it possible to create a mathematical model that can

derive the accurate NRF value from observable network
parameters?

This research not only offers a systematic, optimization-
based analysis of the NRF parameter but also an analytical
model capable of predicting its value under realistic
conditions. These contributions make the NRF-LEACH
protocol more comprehensible and, at the same time, assist in
the selection of optimal configuration parameters in real-
world wireless sensor networks by providing practical
insights.

2. Related Works

Energy-efficient routing in wireless sensor networks has
encouraged the development of a vast number of clustering
methods to reduce communication overhead and prolong
network lifespan. The original LEACH protocol has been
enhanced by changing the way cluster-heads are selected or
by defining the clustering process differently. A case in point
is the use of energy-aware or distance-dependent criteria in
numerous works, which has resulted in the non-selection of
nodes with very little residual energy (the references to those
studies are [12-14]), leading to a more even spread of energy
consumption across the entire network. These methods
usually outperform the original LEACH, yet they still require
frequent reconfiguration stages, which reduces the network's
overall efficiency in the long run. Other researchers have
proposed different approaches and considered hybrid or multi-
stage clustering techniques, such as the combination of
redundant and reserve cluster heads to keep the cluster alive
during node failure and to strengthen communication between
the base station and the clusters by increasing the number of
packets delivered [8]; or hybrid optimization models that use
techniques like Particle Swarm Optimization (PSO), K-means
clustering, or fuzzy logic not only to select the cluster heads
but also to minimize the risk of early node death [10]. All these
approaches indeed have the potential to yield considerable
performance gains; however, they often come with the cost of
additional computational steps or the need for centralized
decision-making, which may not be suitable for large-scale or
resource-constrained networks. Moreover, different types of
LEACH have been put forward, which also share a common
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goal of achieving more uniform energy consumption, like the
ones that are based on residual energy [10], multi-hop routing
[11], and hierarchical decision processes [13]. In particular,
BCE-LEACH relies on the combination of both energy and
distance metrics, which not only balance cluster-head
selection but also lead to the introduction of relay nodes for
multi-hop communication, resulting in longer network
lifetime as compared to the traditional LEACH [10-11]. The
latest developments include, among others, shortest-path
algorithms, data fusion techniques, and cluster-head
coordination mechanisms aimed at improving the efficiency
of the system by increasing its throughput and reducing the
redundancy in the collected data [13]. The works reviewed so
far indicate that there is still a strong interest in improving
clustering methods and data delivery performance in Wireless
Sensor Networks (WSNSs).

Other authors have used machine learning techniques to
aid in the clustering process, such as using LEACH in
combination with learning-based algorithms, such as a
variation of K-means or a weighted decision scheme to choose
cluster heads based on parameters related to energy, distance,
or node density [19-21]. These methods provide more
flexibility, but generally involve extra computation or need an
external training stage, which is not suitable for highly
constrained sensor deployments. Lastly, competition-based or
location-aware clustering strategies have been proposed to
minimize overlap between clusters and minimize intra-cluster
transmission distances [14], which often use spatial metrics,
residual energy, or local density to select appropriate cluster-
head candidates and can lead to more balanced energy
distribution in dense scenarios. However, none of these
studies tackle the problem of how many rounds to run in order
to maintain a cluster structure over time. From the existing
literature, it has been observed that no prior work has provided
a formal framework to identify or model the optimal number
of fixed rounds in NRF-LEACH, and most studies focus either
on improving the cluster-head selection or proposing new
clustering strategies, but the NRF parameter that is at the core
of the performance of NRF-LEACH is empirically selected,
without a systematic evaluation of NRF across different
packet sizes, node densities, and network conditions, and no
analytical model exists for predicting its optimal value, which
motivate the present study, which combines multi-objective
optimization with statistical modeling to establish a robust and
generalizable method for estimating the optimal NRF value
under different network scenarios.

3. NRF-LEACH Protocol

The NRF-LEACH protocol enhances the traditional
LEACH algorithm by reducing the number of cluster
reconfigurations, since each round starts with a setup phase
when cluster heads are elected, and nodes join the nearest
cluster head, which is a major energy consumer in dense or
long-duration deployments.
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Fig. 1 NRF-LEACH protocol flowchart

NRF-LEACH overcomes this limitation by maintaining
the same cluster structure for a fixed number of rounds, called
NRF, after the initial setup phase; in the following NRF-1
rounds, the cluster configuration is preserved and the network
avoids repeated advertising and cluster-formation procedures,
which considerably reduces the energy overhead for cluster
reinitialization and prolongs the network lifetime when the
NRF value is appropriate for the network characteristics.

There are two primary stages in the protocol: the
configuration phase and the transmission phase. Cluster heads
broadcast an advertisement message during the configuration
phase, and every node that is not a cluster head chooses the
nearest cluster head and sends a membership message. These
communications incur both transmission and reception costs.
The total energy consumed during this phase corresponds to
the sum of (eq. 1) the energy spent by cluster heads to
broadcast advertisements, (eq. 2) the energy needed by non-
cluster-head nodes to receive these messages, and (eq. 3) the
energy required for nodes to transmit membership requests. In
LEACH, this cost is incurred every round, whereas in NRF-
LEACH itisonlyincurred once for a sequence of NRF rounds.
As a result, the overall energy required to configure the
network decreases proportionally with increasing NRF,
provided that the cluster structure remains stable. During the
transmission phase, nodes periodically send sensed data to
their cluster head, which aggregates and forwards the
information to the base station. This phase is identical in both
LEACH and NRF-LEACH, with the difference that NRF-
LEACH benefits from reduced control-message overhead.
However, preserving the same cluster structure for several
rounds may also introduce imbalances when residual energy
levels diverge among nodes or when the distribution of nodes
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becomes unfavorable after several rounds. Because of this, it
is important to choose the NRF parameter carefully. If it is too
small, the benefit of avoiding setup phases is limited, and if it
is too large, outdated cluster configurations may cause
performance to deteriorate.

The commonly used energy-related equations to model
NRF-LEACH capture the cost of transmitting and receiving
advertisement messages, membership messages, and
aggregated data, which includes the contribution of the
electronic circuitry, free-space or multipath propagation,
packet size, and node-to-cluster-head distances, which allows
the amount of energy saved by avoiding repeated
configuration phases to be quantified and highlights the direct
influence of the NRF value on the protocol efficiency, which
is particularly important for small packet sizes or networks
with moderate density, where transmission costs represent a
larger proportion of the total energy budget. In general, NRF-
LEACH provides a straightforward mechanism to minimize
the long-term cost of cluster formation. However, its
performance is highly dependent on the selection of the NRF
parameter and how it affects the energy consumption,
stability, and data delivery, which motivates the need to
develop a method to determine the optimal NRF value for
different network conditions. This problem is addressed in the
following sections via multi-objective optimization and
statistical modeling.

4. Explicit Contributions

While several variants of LEACH have been proposed to
enhance energy efficiency and prolong the lifetime of WSNs,
existing studies do not offer a principled approach to
determine the optimal number of fixed rounds in NRF-
LEACH. This study fills the gap by proposing a hybrid
optimization and modeling framework. The study's main
contributions are summarized below:

An optimized NRF parameter through a multi-objective
systematic method. This research employs the NSGA-II
algorithm that helps to determine the best NRF values by
considering the large number of network configurations
along with three performance indicators: the number of
rounds, the cumulative number of dead nodes, and the
total number of bits sent to the base station. To this date,
there has been no other study that applies the method of
multi-objective optimization for the setting of the NRF
parameter.

A simulation dataset of enormous size that simulates a
variety of network situations. The NS-3 simulation
yielded a total of over 480,000 simulations through the
manipulation of packet sizes, node densities, and NRF
values, which in turn not only represented a thorough
understanding of the behavior of NRF-LEACH over a
wide range of conditions but also profoundly solidified
the basis for making generalizable conclusions.
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3. A statistical model-based method that leads to an
analytical formula for the NRF value; the optimum NRF
values are derived from the NSGA-II and employed for
the model adaptation, while multiple fitting strategies are
explored.

Research comparing approach that reveals the importance
of the proposed model. The comparison quantitatively
evaluates logarithmic, polynomial, and power-law
regression models using mean squared error, correlation
coefficient, and coefficient of determination measures,
and finds that the power-law model is the best for the
NRF, packet size, and sensor density connection, so the
derived analytical formula allows direct NRF value
estimation.

The configuration has been identified in the results to be
the one that maximizes the advantages of the NRF-
LEACH, especially in the case of small and medium
packet sizes. This analytical model gives practitioners an
easy way to choose an appropriate NRF value to enhance
network efficiency without having to reconfigure or trial-
and-error evaluate.

These contributions offer the first systematic approach to
estimating the optimal number of fixed rounds in NRF-
LEACH, which integrates multiobjective optimization,
extensive simulations, and statistical modeling, thereby
making the protocol more practical and laying the groundwork
for future enhancements to clustering-based routing protocols.

5. Energy Consumption Model

NRF-LEACH uses the classical radio energy model that
assumes that the cost of transmitting and receiving data is
different and considers the propagation effects that depend on
the distance between the transmitter and the receiver.

During the configuration phase, two types of messages
are exchanged: advertising messages sent by cluster heads and
membership messages issued by non-cluster-head nodes. The
energy required for these operations is summarized by the
following equations. During the advertising step, each cluster
head broadcasts an advertisement of size k bits. If N¢n denotes
the number of elected cluster heads, the energy spent by all
cluster heads to transmit these advertisements is expressed as
in [22-24] (eq. 1).

Egavex = Nen * Eepect * k + Nep * &5 % k% d? @

where Eeiec represents the electronic circuitry cost per bit,
&rs IS the free-space amplification factor, and d denotes the
average transmission distance. In the cluster-formation step,
each non-cluster-head node transmits a membership request to
the closest cluster head. The transmission energy for these
requests is given as in [22-24] by (eq. 2):
ch * (N - Nch) * Eelec *k (2)

Eqav rx =
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where N is the total number of nodes.

In the cluster-formation step, each non-cluster-head node
transmits a membership request to the closest cluster head.
The transmission energy for these requests is:

Ejoin_tx = (N - Nch) * (Eelect *k+ gfs * ke x dz) (3)

Each cluster head receives, on average, N/Ng
membership requests. The energy consumed in receiving
these messages is given by (eq. 4) :

N
Ejoin_rx = Nep * N_ch * Egrect *K=Nx Egpee *k  (4)

The total energy required by the setup phase in the
standard LEACH protocol is given by (eq. 5)

LEACH _—
Esetup - Eadv_tx + Eadv_rx

+ Ejoin_tx + Ejoin_rx (5)
In NRF-LEACH, the configuration phase is carried out
once every NRF rounds. For the remaining (NRF — 1) rounds,
no reconfiguration is performed. The total energy consumed
for the configuration phase in NRF-LEACH becomes (eg. 6).

ENRF-LEACH — _1

LEACH
setup NRF * E,

setup (6)
The corresponding energy saved by avoiding repeated
setup phases is given by (eq. 7).

— EFLEACH _ pNRF-LEACH
- Esetup Esetup

E

saved (7)

These equations highlight the direct influence of the NRF
parameter on network performance. Increasing the number of
rounds during which the same cluster structure is maintained
reduces configuration overhead proportionally.

However, an excessively large NRF value may result in
poorly balanced energy consumption among nodes as cluster-
head roles remain unchanged for too long. This trade-off
explains why the determination of an optimal NRF value is
essential to the effective operation of NRF-LEACH.

6. Methodology

The approach we are suggesting employs large-scale
simulations, multi-objective optimization, and statistical
modeling to tackle the problem and determine the optimal
number of fixed rounds in the NRF-LEACH protocol.

The process consists of three major steps: (1) creation of
data and formulation of the optimization problem, (2) using
the NSGA-II algorithm, and (3) building a mathematical
model for the NRF parameter. The various steps of our method
are thoroughly explained below and presented in Figure 2.
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Fig. 2 Flowchart of statistical adjustment methodology
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6.1. Experimental Environment

Simulations were performed using the NS-3 network
simulator, which offers a detailed and modular platform for
simulating hierarchical routing protocols. Three network
configurations were considered to reflect varying levels of
sensor density: sensor nodes were randomly deployed in
square areas of 100x100 m2, 200x200 mz2, and 300x300 mz,
corresponding to networks of 100, 200, and 300 nodes,
respectively; the base station was placed at the center of each
deployment area; each sensor node was initialized with an
energy of 0.5 J; and radio communication followed the
standard energy dissipation model with free-space and
multipath propagation parameters. Packet sizes ranged from 8
to 512 bits to evaluate NRF-LEACH with small, medium, and
large data payloads; for each packet size and for each node
density, the protocol was run with NRF values ranging from 1
to 500, resulting in over 480,000 independent simulations.

6.2. Data Generation

Three performance indicators were recorded for each
simulation:
The number of rounds completed before the network
became non-operational,
The total number of dead nodes at the end of the
simulation,
The total amount of bits sent to the base station.

These performance indicators were selected because they
reflect different dimensions of network performance: lifetime,
power used by the nodes, and net throughput. The resulting
dataset is a triad of performance figures for every tested NRF
value, which constitutes the training basis for determining the
NRF value that ensures the optimal compromise between
energy efficiency and data delivery performance. The
conducted tests are listed in the table below.

Table 1. Simulations carried out

Density Packet Size NRF
100 Nodes / 16-bit, 24-hit, 32- From 1to
10000 m? bit....512-bit 500
200 Nodes / 16-bit, 24-hit, 32- From 1to
40000 m? bit....512-bit 500
300 Nodes / 16-bit, 24-hit, 32- From 1to
90000 m? bit....512-bit 500
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6.3. Problem Formulation

Finding the optimal NRF was treated as a multi-objective
optimization problem, with the optimal NRF taken as an
objective-available solution.
Maximize the number of rounds (network lifetime),
Minimize the number of dead nodes,
Maximize the number of bits received at the base station.

These are conflicting objectives. For example,
maximizing network lifetime may lead to cluster heads
depleting their energy sooner, increasing the number of dead
nodes, while minimizing node mortality may reduce
throughput or shorten the operational duration. Since the
problem is multi-objective, it seeks a set of trade-off solutions,
and hence Pareto-based optimization is more appropriate.

6.4. NSGA-I1 Optimization Setup

The NSGA-II algorithm was chosen due to its ability to
handle conflicting objectives, its ability to preserve solution
diversity, and its ability to approximate the Pareto front with
less computational effort. The collected simulation data is
processed by the NSGA-II algorithm by treating each NRF
value as a candidate solution. The NSGA-II parameters
utilized in this study are as follows:
Population size: 200
Number of generations: 300
Crossover probability: 0.9
Mutation probability: 0.1
Selection method: binary tournament
Crossover operator: simulated binary crossover
Mutation operator: polynomial mutation
Ranking method: non-dominated sorting
Diversity preservation: crowding distance metric

The algorithm generates a Pareto front for each packet
size and each density configuration, which consists of a set of
non-dominated NRF values that are used to select the most
appropriate NRF for each scenario.

A single proposed NRF value is produced by the
integration of the three performance indicators in a weighted
way. The weights determined through experiments (o= 0.2, B
= 0.6, and y = 0.2) reflect the importance of minimizing node
death while keeping the throughput and life expectancy of the
device at acceptable levels.

6.5. Statistical Modeling of the NRF Parameter

Using the NRF values found by NSGA-II for each
simulation scenario, the model fits the time series
simultaneously. The dependent variable is the optimized NRF
value, and the independent variables are packet size and node
density. The following three regression models were assessed:
Logarithmic fitting (eq. 11),
Polynomial fitting of third order (eq. 12),
Power-law fitting (eq. 13)
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Mean squared error (eq. 9), correlation coefficient (eq. 8),
and coefficient of determination (R?) (eq. 10) were used to
assess each model, with the power-law model consistently
achieving the best performance in all cases, with a correlation
coefficient near 0.94 and R? approaching 0.89. The final
analytical expression can be used to derive a predictive
formula for estimating the optimal NRF value based on
network parameters directly.

L, J(xi=X)(vi-7)

r= — = (8)
JZ?:1(Xi—X) Xiza(vi-Y)
X and Y are the means of the variables X and Y.
MSE = =31, (y; — 9:)? ©)
S i-9)?
2 _ Zi=1\1 i
R*= S (-2 (10)

yi is the real value, ; is the predicted or adjusted value
and y are the means of the variables y.

y =a+blog(x) + clog(2) (11)
y=ay+a;x+ a,z+azx® + auxtzt +agz? +

agx® + a;x?zt + agx'z? + ayz® (12)
y=ax?z¢ (13)

By turning the optimization process's output into a useful
tool, this modeling stage allows users to configure NRF-
LEACH without the need for lengthy simulations.

6.6. Workflow Summary
The entire methodological process can be outlined in the
following steps:

1. Datageneration through simulation of NRF-LEACH with
various settings of NRF, packet size, and node density,

2. Metrics of performance will be computed (rounds, dead
nodes, delivered bits),

3. NSGA-II is used to get Pareto-optimal NRF values,

4. Weights are applied to the aggregation process to
determine one representative NRF for each configuration,

5. Statistical models are created with packet size and density
as factors,

6. The best regression model is chosen, and a final analytical
expression is obtained.

7. Validation of the model through independent simulation

data.

The method adopting this strategy has the merit of being
both strong and applicable in different scenarios and grants
NRF parameter determination in NRF-LEACH through a
systematic and reproducible approach.
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7. Results and Discussion

The large-scale simulation outcomes, along with the
multi-objective optimization process that followed, are
discussed in this section under three major components: the
raw simulation data, the behavior of the NSGA-II
optimization, and the statistical modeling of the NRF
parameter, stressing the effects of packet size and sensor
density on the optimal number of fixed rounds.

7.1. Analysis of Simulation Results

In Figures 3, 4, and 5, respectively, the performance of
NRF-LEACH in the three distinct deployment scenarios is
illustrated, where the networks consist of 100, 200, and 300
nodes, the total number of rounds, the base station's packets
received, and the cumulative number of dead nodes were all
registered for the range of NRF values from 1 to 500, in terms
of different packet sizes.

7.1.1. Scenario 1: 100 Nodes in 100x100 m?2

The results for packet sizes from 8 to 512 bits are reported
in Figure 3. For small packet sizes (8, 16, and 32 bits), the
number of rounds (sub-figures al, a2, and a3) and the number
of packets received (sub-figures bl, b2, and b3) improve
significantly as NRF increases from 1 to about 60. After that,
the gains are small, indicating that after NRF = 60, the number
of repeated configuration phases is no longer a significant
contributor to energy consumption. As can be seen in sub-
figures a4 and a5, the number of rounds improves, but more
modestly for larger packet sizes (64 and 128 bits). As can be
seen in sub-figures b4 and b5, throughput starts to decline for
NRF values greater than 60 since data transmission causes
some cluster heads to deplete their energy prematurely.

7.1.2. Scenario 2: 200 Nodes in 200%200 m?2

As shown in Figure 4, these general trends are still valid
with an increased network density. The area where NRF
brings the most significant gains is still centered between 2
and 60, with diminishing returns beyond this range, but the
magnitude of these improvements is slightly reduced,
especially for the number of rounds, due to higher data traffic
and more frequent intra-cluster interactions that cause the
energy depletion to be faster in denser environments.

7.1.3. Scenario 3: 300 Nodes in 300%300 m?2

Figure 5 confirms that the impact of NRF weakens as
network density increases. Although NRF values between 2
and 60 continue to offer noticeable gains in certain
configurations, the benefits become less pronounced and more
dependent on packet size. Larger networks tend to experience
higher communication overhead, which mitigates the savings
obtained by avoiding repeated setup phases.

7.2. Interpretation of Key Trends
Across all scenarios, the most consistent observation is
that NRF-LEACH performs best when NRF lies within the
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interval [2]. In this region, avoiding the overhead of repeated «  Some nodes deplete their energy before the cluster

setup phases leads to measurable energy savings. For larger structure is refreshed.

NRF values, however:

« Residual energy becomes unevenly distributed, This behavior highlights the importance of selecting an
o  Cluster heads remain fixed for too long, NRF value that balances configuration overhead and cluster-

« The transmission cost becomes dominant (especially for head stability.
larger packets),
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7.3. NSGA-II Optimization Results

NSGA-II was applied to the simulation dataset to identify
Pareto-optimal solutions for each combination of packet size
and sensor density. Trade-offs between the three performance
metrics are evident in the resulting Pareto fronts.

A Pareto front for a typical set of 7 configuration runs
shows that maximizing the number of rounds often comes at
the cost of maximizing throughput, and that minimizing the
number of dead nodes adds to the trade-off. The diversity of
solutions and the smooth distribution along the front confirm
that NSGA-11 applies here.

The weighted selection method (0=0.2, $=0.6, y=0.2) that
gives more weight to solutions with lower node mortality, but
still produces reasonable operational duration and throughput,
yields a single representative NRF value for each
configuration and provides the statistical modeling that
underpins the results.

7.4. Comparative Summary of Optimized NRF Values

Table 2 summarizes representative results taken from the
NSGA-II outputs to show how packet size and density affect
the optimal NRF.

Table 2. Representative optimized NRF values

Packet Density: Density: Density:
Size (bits) | 100 nodes 200 nodes 300 nodes
8 50-60 45-55 40-50
32 35-50 30-45 2540
128 10-30 5-25 5-20
512 <10 <10 <10

These results clearly show that:

o Larger NRF values (better stability) are possible with
smaller packets,

o Larger packets require smaller NRF values (to preserve
energy balance),

« Higher network density lowers the optimal NRF range.

7.5. Statistical Fitting and Model Performance

Three regression models were tested: logarithmic, third-
order polynomial, and power-law regression. Table 3
summarizes their performance metrics.The power-law model
provides the best agreement with the optimized NRF values.
Its high correlation and R? values indicate that packet size and
density have a nonlinear influence that is well captured by this
model. This model, therefore, serves as the final analytical
expression for estimating the NRF value.

Table 3. Regression performance metrics

Model Type MSE Correlation R’ Estimated parameters
Logarithmic regression 903.97 0.92 0.72 a=21770.49 , b=-0.52, c=-0.71
Polynomial regression [341.17,-3.35, -2.45¢-5, 9.54 ¢-3, 5.86 ¢-3, -4.50 e-3,
(order 3) 826.47 0.86 0.74 ’8.36 c-6, -8.87 0-6, 3.57 o-7, 6.75 c-6]
Power-law 351.37 0.94 0.89 a=89082.97, b=-0.71, ¢=-0.80

7.6. Structural Fitting

Table 4 summarizes the simulation parameters used
throughout the study. These parameters were applied
consistently across all network densities and packet-size
configurations in order to generate a homogeneous dataset
suitable for comparative analysis. The values of &t, gamp, and
Ecec follow the standard radio model typically used in
LEACH-based studies, while the probability of selecting
cluster heads was fixed at 0.05.

Packet sizes ranged from 8 to 512 bits, and the network
density was varied over 100, 200, and 300 nodes. The three-
dimensional adjustment surfaces from the logarithmic,
polynomial, and power-law regression models are shown in
Figures 6, 7, and 8, respectively, with the scatter points
representing the outputs from the NSGA-II optimization to
give a qualitative assessment of how well the regression
models capture the distribution of optimized NRF values as a
function of packet size and sensor density.

Table 4. Simulation Parameters

Parameters

Values

Size of network

100m/100m, 200/200, 300/300

Base Station (BS)

(50m,50m), (100m,100m), (150m,150 m),

Eefs 8 pj/bit/m2
Eamp 0.0013pj/bit/m4
Eelec 50 nj/bit
dg 87,7m
Initial Energy 05]
Cluster Head probability 0.05
Total nodes 100, 200, 300
SCHEDULE_MESSAGE 16 bits
MESSAGE_LENGTH 8,16,24,32,40,48 ........512bits
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As we can see in Figure 6, the logarithmic model
approximates the overall shape of the data, but it does not
capture the variation in the data for larger packet sizes, where
the surface flattens out. The polynomial model in Figure 7,
being a higher-order structure, has more flexibility, but shows
localized oscillations that do not follow the actual distribution
of the data, particularly in regions where packet size increases
most rapidly.

On the other hand, as Figure 8 shows, the power-law
model generates a continuous surface that tracks the cloud of
experimental points in all three cases. The quantitative results
in Table 3 are consistent with the qualitative observation that
the power-law regression has the lowest mean squared error
(351.37), the highest correlation coefficient (0.94), and the
highest coefficient of determination (0.89), which collectively
demonstrate that the power-law function can more accurately
model the nonlinear behavior of the NRF parameter and its
sensitivity to packet size and density than the logarithmic and
polynomial models.

Logarithmic fit: Y =a + b log(X) + ¢ log(Z)

225
200
175
150
125

75
50
25

200
Packet Size300
500
Fig. 6 Statistical adjustment of the NRF number (Logarithmic fit)

Polynomial fit of order 3

250
200
150
100

50

200

Packet Size 300

500

Fig. 7 Statistical adjustment of the NRF number (Polynomial fit of
order 3)
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Power Adjustment: Y = a* X"b* Z"¢
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Fig. 8 Statistical adjustment of the NRF number (Power Adjustment)

Taken together, the numerical indicators and visual
inspection lead to the conclusion that the power-law model
provides the most reliable analytical representation of the
relationship between the NRF parameter, packet size, and
sensor density. This model is therefore selected as the final
predictive equation for estimating the optimal NRF value in
the NRF-LEACH protocol.

7.7. Discussion

The results confirm that NRF-LEACH can significantly
extend network lifetime when the NRF parameter is chosen
appropriately. The study shows that:

The NRF parameter is very sensitive to packet size,
Values in the range of 2 to 60 serve up the most
consistent and universal advantages.

Too large an NRF value causes an energy imbalance
among nodes,

The correlation between NRF and network parameters is
of a nonlinear nature.

The new analytical model that has been derived here is a
very effective tool for configuring NRF-LEACH without the
need for extensive simulations. Besides, it gives the network
operators the capability to calculate the NRF value from the
size of packets and the density of sensors, which will help
them to be more effective in the deployment of hierarchical
routing strategies.

8. Ethical Considerations

The simulation data generated using the NS-3 network
simulator is the only data on which this study is based. There
were no real-world measurements, no personal data, and no
sensitive information that was collected or processed. The
work did not involve human or animal subjects or identifiable
personal information, so ethical approval and informed
consent are not required, and all the procedures are in
accordance with the standard research practices in computer
science and wireless networking.
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9. Conclusion

The research considered the effect on the performance of
the NRF-LEACH protocol caused by the parameter NRF and
put forward a methodical approach for finding the best value
of the NRF for various network setups. This was done through
the combination of large-scale simulations, multi-objective
optimization, and statistical modeling methods, which not
only give a detailed characterization of the protocol behavior
but also a practical analytical model. The results indicate that
the NRF values that provide the greatest benefits for the NRF-
LEACH depend heavily on selecting an NRF value that
provides a trade-off between configuration overhead and
cluster-head stability, and that values in the lower and medium
range offer consistent gains, with excessively large values
resulting in unbalanced energy consumption and premature
node failures.

The NSGA-II algorithm was used to determine Pareto-
optimal NRF values that represent reasonable trade-offs
between network lifetime, data delivery, and node
survivability. Based on the optimized NRF values, a statistical
model was established to capture the nonlinear relationship
between NRF, packet size, and sensor density, where the
power-law model showed the highest correlation and
determination coefficients among the tested approaches, and
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