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Abstract - The goal of this work is to provide a simple and reproducible method that performs three tasks for brain MRI in one
flow: consistent preprocessing, accurate tumor segmentation, and reliable multi-class classification. The procedure uses an
open dataset organized for both tasks. Preprocessing converts every slice to a common size, applies luminance equalization to
improve local contrast, binarizes masks with a fixed threshold, and normalizes images so the model receives stable inputs. A
shared residual encoder feeds two light heads: a U-Net style decoder for pixel masks and a small classifier for four labels
(glioma, meningioma, pituitary, no tumor). Training alternates segmentation and classification mini-batches with balanced
losses, and model selection uses a composite of validation Dice and validation accuracy. The protocol reports all outputs needed
for audit and reuse: learning curves, confusion matrices, segmentation overlays, and a history file with metrics. In a ten-epoch
run, the method achieved Dice 0.800 and loU about 0.667 for segmentation, and accuracy 0.929 with macro-F1 0.920 for
classification on the test split. The approach is compact, easy to train on a standard workstation, and avoids heavy architecture.

It is suitable as a dependable baseline for studies that need both a tumor mask and a case label, and it can be extended to new

sites or tasks by adjusting the preprocessing or the loss balance without changing the core design.

Keywords - Brain MRI, Brain tumors, Classification, Deep learning, Segmentation.

1. Introduction

Brain tumor care is difficult because symptoms are not
specific, tumors can grow quickly, and MRI scans look
different across patients and machines [1]. MRI is the main
imaging method in hospitals, but a radiologist must read many
slices for each patient, which takes time and can vary from
person to person [2]. Computer tools that can find the tumor,
outline it, and tell the likely type can reduce this variation and
help doctors decide faster and more safely [3]. In the last
decade, deep learning has become the standard way to build
such tools because it learns useful image patterns directly from
data instead of relying only on hand-made rules [4]. A simple
and popular family of models learns from a reduced version
of the image and then builds the full outline back, so it keeps
both overall context and small details at the same time [5].
Three-dimensional versions of these models are also used
because MRI is volumetric, and the through-slice context can
be important for brain tumors [6]. Many groups now start from
strong, ready-made image features that were originally trained
on large photo datasets; these features make training stable
and fast even when the medical dataset is not very large [7].
Community challenges and open datasets for brain tumors
have shown that progress is faster when images, labels, and
test rules are standard across centers [8]. Even with this
progress, using such systems in real hospitals still faces three

common issues. First, the quality of tumor outlines depends a
lot on how the input MRI is prepared. Different scanners and
protocols produce different intensity scales, and slow intensity
drift across the image can confuse a model if it is not corrected
[9]. Simple steps like intensity normalization and bias-field
correction are still useful because they reduce this variation
without adding any extra model complexity [10]. A widely
used method for bias correction is N4, which improves the
homogeneity of MRI and is recommended when data comes
from multiple centers [11]. Studies also show that the chosen
normalization method can change the final scores, so authors
should report preprocessing clearly and consistently [12].
Second, many works stop at producing a tumor mask and do
not link the same network to a case-level decision, such as
glioma, meningioma, pituitary tumor, or no tumor [13]. Third,
several classification studies rely on cropped slices or very
small subsets, which may give high accuracy in limited tests
but may not hold up in routine hospital use, where scans are
more diverse [14].

These points support a single pipeline that treats
preprocessing as a core step, learns to outline the tumor, and
learns to give a case-level class from the same set of shared
image features. Extra attention blocks and context modules
can help the outlining step focus on the right regions, but the
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full design should remain simple so that other teams can train
and reproduce it on normal GPUs [15]. Small and efficient
attention units can guide the outlining head to tumor
boundaries without heavy computation, which is useful when
we must handle many slices per patient [16]. Reports from
recent community challenges also emphasize that clean data
curation, careful validation, and honest reporting matter more
than very large networks for this problem [17]. Models that
mix residual feature extractors with simple decoders have
become a practical choice because they are easy to train, easy
to move across hospitals, and fast enough for daily work [18].

On the case-level decision side, many studies show that
MRI-based deep learning can separate common brain tumor
classes when the dataset is balanced and preprocessing is
consistent [19]. Transfer learning from large image collections
is common, but a light classifier on top of the same shared
features is often competitive if augmentation and
normalization are designed well [20]. Some recent works test
fine-tuning across more than one backbone to stabilize
performance when class frequencies are uneven [21]. Open
multi-class datasets also suggest that reporting the
preprocessing and using cross-validation helps other teams
repeat the results [22]. Several studies combine outlining and
classification in a single framework and report that training
both tasks together improves each task by sharing useful
features and by acting as a regularizer [23]. Based on this
evidence, a shared feature extractor with two small heads-one
for the mask and one for the label-looks like a practical design
for real-world brain tumor pipelines [24].

Our goal is a practical and reproducible pipeline that
covers three needs end-to-end: clear preprocessing, accurate
tumor outlining, and reliable multi-class labelling. We follow
three simple design rules from the literature and from our own
tests. First, we keep preprocessing explicitly and easily
auditable. We apply bias-field correction and intensity
normalization where needed, and we add a light contrast
equalization step so that brightness and contrast are more
stable before the images go into the network. Prior work
shows that these classical steps still help deep models on MRI
and should be reported with the same care as network settings
[25]. N4 correction is chosen because it is widely used, robust
to inhomogeneity, and suitable for multi-center data [26].
Controlled analyses also show that clear and simple
normalization improves generalization and repeatability,
which matches the needs of clinical translation [27]. Second,
we use one shared set of image features for both tasks. Earlier
research in multi-task learning for medical images indicates
that sharing early and middle-level features helps reduce
overfitting, especially when one task has stronger supervision
or more data than the other [28]. Reviews also suggest that two
parallel heads with balanced losses are effective and sample-
efficient for health imaging [29]. Brain tumor studies that
adopt multi-task structures report gains in both tumor outline
quality and case-level accuracy when the tasks are trained
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together with tuned weights, which supports this choice in our
work [30]. In our design, a residual feature extractor gives
stable optimization, a simple decoder outlines the tumor, and
a global-pool classifier predicts the label. This keeps the
system compact, easy to train, and friendly to standard GPU
cards used in hospitals [31]. Third, we add only those decoder
improvements that are proven and lightweight. Attention-
based variants of the basic decoder often improve boundary
quality and focus on the lesion, without adding much delay at
inference time, which fits routine clinical needs [32]. Small
channel-attention blocks further refine feature mixing and
have shown good results across medical segmentation tasks,
so we include them only when they provide a clear benefit in
our tests [33]. At the same time, recent challenge reports make
it clear that careful augmentation, clear validation splits, and
stable training settings have as much impact as any complex
block, so we standardize these parts in our experiments and in
our released code [34]. Practical experience with residual-
plus-decoder designs on brain tumor data also supports our
choice of this family as a robust and easy baseline for tumor
outlining [35].

Our study adds three concrete contributions. First, we
include a transparent preprocessing audit for brain MRI. We
compute simple image quality numbers, which include mean
squared error, peak signal-to-noise ratio, and structural
similarity between the original and the equalized images, and
we share visual comparisons. This step answers recent calls to
report MRI normalization clearly in clinical Al work [36].

Second, we propose a single model that uses one shared
feature extractor with two light heads: a decoder for the mask
and a small classifier for four clinical classes. We train both
heads together with balanced losses so that better localization
supports better labels and the other way round, which isin line
with findings from multi-task learning in healthcare imaging
[37].

Third, we evaluate the full pipeline on an open multi-
center dataset that provides both pixel-level masks and image-
level labels. We report complete metrics for both tasks-Dice
and Intersection-over-Union for the mask, and accuracy,
precision, recall, F1, and confusion matrices for the labels-and
we save overlays and learning curves for human review and
reproducibility. This mix of explicit preprocessing, shared
features, and clear reporting makes the system easier to
reproduce in different hospitals and supports safe translation
to practice [38].

The overall design focuses on clinical practicality rather
than novelty for its own sake. We keep the feature extractor
standard and, when useful, start from publicly available
weights to get stable gradients and faster convergence [39].
We use a simple decoder to preserve local detail around the
tumor and its nearby regions and avoid very heavy
transformer-only backbones, so training remains simple, and
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memory demand stays low [40]. For case-level labels, we
attach a small classifier to the same shared features and rely
on safe augmentation to avoid overfitting to scanner artefacts
or site-specific patterns [41].

Comparative reports suggest that compact heads can
match larger transfer-learning stacks if preprocessing is solid
and classes are balanced, so our choice keeps the model small
and easy to maintain.

Studies that test multi-head frameworks in tumor imaging
also show that a shared extractor can improve generalization
on external scans, which is essential for any clinical

deployment. Finally, we follow community guidance by
exporting intermediate plots, overlays, logs, and checkpoints,
so that others can repeat or extend our work with minimal
effort and clear audit trails.

2. Related Work

A comparison of some of the research efforts performed
on brain MRI analysis has been provided in Table 1 to
highlight the data used and performance measures obtained.

It has been made clear how the benchmarks differ for
testing and evaluation purposes based on research related to
segmentation.

Table 1. Existing models for MRI analysis

Ref. + Method (Year)

Dataset Used Reported Results

[1] U-Net (2015)

ISBI EM, private biomedical sets

Dice =~ 0.88

[2] 3D U-Net (2016)

BRATS 2015 Dice = 0.87

[4] ResNet (2016)

ImageNet (pretraining)

Top-1 Acc. 75.3%

[5] BRATS Benchmark (2015)

BRATS 20122014

Dice range: 0.70-0.85

[6] N4ITK (2010)

Multi-center MRI

Bias reduction (qualitative)

Multi-scanner MRI

[8] MRI Scale Standardization (2000)

Variance | (statistical)

[10] Multi-scale 3D CNN + CRF (2017) BRATS 2013 Dice = (.88
[11] Attention U-Net (2019) Pancreas CT / MRI Dice = 0.84
[12] SE-Net (2018) ImageNet Top-1 Acc. 77.6%
[13] UNet++ (2018) BRATS 2016 Dice ~ 0.89
[14] nnU-Net (2021) BRATS 2018-2020 Dice = 0.90
[17] Attention-based CNN (2021) BRATS 2017 Dice =~ 0.89
[18] Recurrent CNN (2016) Biomedical microscopy IoU =~ 0.86
[25] TransUNet (2024) Synapse, BRATS Dice = 0.91
[26] BraTS-Africa (2023) BraTS-Africa Dice =~ 0.82

2.1. Research Gaps
2.1.1. Lack of an Integrated End-To-End Framework

Most of the existing work deals with the problems of
tumor segmentation [1, 2, 10, 13, 14] or classification as
standalone problems. Very few of the existing approaches aim
to integrate the preprocessing stage and the classification task
for multiple classes into one unified learning model.

2.1.2. Lack of Reproducible Preprocessing

Though research on intensity normalization and
correction of bias fields has been thoroughly investigated in
literature [6, 8, 7], these pre-processing operations are often
either secondary in deep learning approaches or are
inadequately described and represented in deep learning
architecture.

2.1.3. Reliance on Complicated Architectures

Advanced models are normally deep, multi-scale, or
transformers [10, 14, 25], and are computationally expensive.
These models make it challenging for practical use in real-
world hospitals that might lack computational resources.

2.1.4. Limited Joint Exploitation of Shared Feature
Representations

Though attention mechanisms and refining modules are
beneficial for the precision of segmentations [11, 12, 17], the
majority of the approaches overlook the opportunity to use
common representations for both delineation and diagnoses on
a case level.

3. Proposed Framework

This study uses the BRISC-2025 open MRI resource
organized for two related tasks: segmentation with paired
image—-mask slices and four-class classification with image-
level labels. We treat both tasks together inside one unified
model so that a single feature extractor supports pixel masks
and case labels. The planned outputs are whole-tumor masks
and a class decision among glioma, meningioma, pituitary,
and no-tumor, as shown in Figure 1. The primary quantitative
readouts are Dice and Intersection-over-Union for masks, and
accuracy with macro-precision, macro-recall, and macro-F1
for labels. We use a fixed image size of 256x256 for all
experiments, binarize masks with a single threshold, and apply
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the same normalization to every image. The training objective
is the sum of a segmentation loss and a classification loss with
equal weights, and the preferred checkpoint is selected by a
composite score that averages validation Dice and validation
accuracy. All steps below follow one continuous pipeline so
that any reader can reproduce the same flow from raw images
to final outputs without extra tools, as shown in Figure 1.

Input MRI Slices + Masks

!
| Preprocessing |
]
| Shared Residual Encoder |
v N
Segmentation Classification
Head Head
]
| Joint Training |
!
| Model Selection |
]

Final Output (Tumor Mask) |

Fig. 1 Proposed Framework

3.1. Phase I- Preprocessing

Each MRI slice is first brought to a common format and
intensity scale before learning. The raw image is read in its
original orientation, converted to three channels if it is single-
channel, and resized to 256x256 with bilinear interpolation to
keep smooth edges. The paired mask is read as a single
channel, resized to the same 256x256 using nearest-neighbor
interpolation to avoid mixed labels, and converted into a strict
binary map using a fixed threshold at the mid-intensity level.
This thresholding choice is deliberate because many public
masks are near-binary due to saving and compression, forcing
those to true zeros and ones, which gives a stable target for a
sigmoid output layer. To reduce appearance differences across
scanners, we apply light contrast equalization in the luminance
space. The operation acts only on bright information and
leaves spatial content intact, so it helps the network see tumor
borders with better local contrast without inventing new
structures.

After contrast equalization, we normalize the image
intensities using mean and standard deviation values that are
standard for the chosen backbone, so that the input range
matches what the encoder expects. The same transformation
is applied to every slice from every class, and no class-specific
trick is used. To make the preprocessing transparent, we keep
side-by-side copies of a small random sample showing
original and equalized images at the same size, and for these
pairs, we compute simple image quality numbers such as mean
squared error, peak signal-to-noise ratio, and structural
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similarity. These numbers are not used by the model; they only
describe how much the pixel values changed after equalization
and help explain the step to the reader. We do not write any
processed file back to the dataset directory; all transforms are
done on the fly so that the original data remains unchanged,
and later sensitivity analyses can repeat the same steps with
different parameters if needed. The outcome of this phase is a
consistent stream of images and masks at a common size and
intensity range, ready for learning.

Algorithm PREPROCESS_BRISC2025

Inputs:
IMG_SIZE = 256
THRESH =128

MEAN = [0.485, 0.456, 0.406]
STD =[0.229, 0.224, 0.225]
USE_EQ = true
For each split in {"train", "test"}:
A. Segmentation Stream

Let IMG_DIR = ROOT/segmentation_task/split/images
Let MSK_DIR = ROOT/segmentation_task/split/masks
1. Build maps by filename stem:
IMAP[stem] = image_path in IMG_DIR
MMAP[stem] = mask_path in MSK_DIR
COMMON = intersection of stems in IMAP and
MMAP
2. For every stem in COMMON (processed per mini-
batch during training):
a) Read image | (any bit depth), convert to RGB if
needed.
b) If USE_EQ: apply luminance equalization to |
(LAB — equalise L — back to RGB).
c) Resize | to (IMG_SIZE, IMG_SIZE) using bilinear
interpolation.
d) Convert | to a float tensor in [0,1]; normalise
channel-wise using MEAN and STD.
e) Read mask M as a single channel (grayscale).
f) Resize M to (IMG_SIZE, IMG_SIZE) using
nearest-neighbour.
g) Binarise M_bin = 1 if M >= THRESH else 0.
h) Return (I_norm, M_hin) to the training/eval step.
B. Classification Stream

Let BASE = ROOT/classification_task/split
For each class c in
{"glioma","meningioma","no_tumor","pituitary"}:
For each image path P under BASE/c (processed per
mini-batch during training):
a) Read image |_c, convert to RGB.
b) If USE_EQ: apply luminance equalization.
c) Resize to (IMG_SIZE, IMG_SIZE) bilinear.
d) Convert to float tensor in [0,1]; normalise with
MEAN, STD.

e) Label y = index of class c in the fixed order.

f) Return (I_norm, y) to the training/eval step.
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3.2. Phase 11- Segmentation

Segmentation is learned with a U-Net style decoder
placed on top of a residual feature extractor. The encoder
follows a standard design with early convolution, pooling, and
four residual stages that produce feature maps at increasing
depth. The decoder reconstructs spatial detail in four up-
sampling steps.

At each step, a transpose convolution doubles the spatial
size, the feature map is concatenated with the matching
encoder feature through a skip connection, and two small
convolutions with batch normalization and ReLU refine
boundaries. A final 1x1 convolution produces one logit
channel, which is sampled once more to match the original
256x256 if required. We train this head with a sigmoid and a
binary cross-entropy loss because the mask is foreground
versus background. The optimizer is AdamW with a small
weight decay to keep the features stable, and the learning rate
follows a cosine schedule over the set number of epochs so
that updates are large early and gentle later.

Images are presented in small batches that fit comfortably
in memory, and the same image normalization from
preprocessing is used here. To keep the shared encoder well-
trained for edges and textures, we interleave segmentation
batches with classification batches inside every epoch so that
the encoder sees both pixel-wise and image-level signals.
Validation uses the test split provided with the dataset. For
each validation image, the model outputs a probability map;
we apply a fixed threshold of 0.5 to obtain a binary mask.

From this, we calculate the Dice and Intersection-over-
Union scores. To allow visual judgement, a few validation
images per epoch are saved with overlays that show the
predicted mask and the reference mask on the original
intensity scale, so a reader can see typical successes and
boundary errors. The checkpoint for this phase is the same as
the overall model checkpoint chosen by the composite score,
which balances segmentation and classification quality. This
arrangement avoids tuning the backbone for only one
objective and reflects clinical use, where both a good outline
and a good label matter.

Algorithm
SEGMENTATION WITH_SHARED _ENCODER
Inputs:

Model: shared encoder + UNet-style decoder +
classifier head

SEG_LOADER_TRAIN, SEG_LOADER_VAL //
Datal_oaders from Algorithm 1 (seg stream)

CLS_LOADER_TRAIN (used for alternating; see
Algorithm 3)

Loss_seg = BCEWithLogits

Optimizer = AdamW

Scheduler = CosineAnnealingLR over E epochs
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E (epochs), LAMBDA_SEG = 1.0, LAMBDA_CLS =
1.0

THRESH_MASK = 0.5 for inference threshold

Outputs:

Best checkpoint chosen by composite score COMBO =
(Dice_val + Acc_val)/2

Initialise best_combo = -0

For epoch =1to E:

Set the model to training mode.

Make iterators: seg_it «<— SEG_LOADER TRAIN,
cls it — CLS LOADER TRAIN

steps = max(len(SEG_LOADER_TRAIN),
len(CLS_LOADER_TRAIN))

/I Alternate batches so the shared encoder learns from
both tasks

For step = 1 to steps:

I/ SEGMENTATION STEP (if batch available)

If seg_it has next:

(X _seg, Y_seg) < next(seg_it) /] X_seg:

images, Y_seg: binary masks
logits seg «— model.forward(X_seg, task="seg")

loss s < Loss_seg(logits seg, Y seg)

optimizer.zero_grad()

(LAMBDA SEG * loss_s).backward()

optimizer.step()

/I CLASSIFICATION STEP (delegated to Algorithm
3 but executed here for alternation)

If cls_it has next:

Call
CLASSIFICATION_STEP_ONE_BATCH(model,
optimizer, LAMBDA_CLS, next(cls_it))

/I Validation for segmentation (and classification) ----

Set model to eval mode

Dice val =0; loU val = 0; count_seg =0

For each batch (Xv, YV) in SEG_LOADER_VAL.:

logits v «— model.forward(Xv, task="seg")

Pv « sigmoid(logits v)

Bv < 1 if Pv> THRESH MASK else 0

Dice val += dice(Bv, YV)

loU_val +=iou(Bv, YV)

count_seg++

Dice val « Dice val / count seg

// Obtain Acc_val from Algorithm 3 validation on the
same epoch

Acc_val < LAST CLS VAL ACC // filled by
Algorithm 3 in the same epoch

combo <« (Dice val + Acc val)/2

Scheduler.step()

Save checkpoint for this epoch.

If combo > best_combo:

best combo < combo

Save as best_combo checkpoint.

Return the checkpoint with the highest combo.

Auxiliary:
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Function dice(B, G):
return (2 * sum(B A G)) / (sum(B) + sum(G) + )

/I TRAINING is interleaved inside Algorithm 2 via one-
batch calls:

Function iou(B, G):
return sum(B A G) / (sum(B Vv G) +¢)

3.3. Phase I11- Classification

Classification uses the deepest features of the same
encoder that serves the segmentation head. After the last
residual stage, we apply global average pooling to condense
spatial maps into one feature vector per image. This vector
passes through a compact fully connected block with dropout
to reduce overfitting and ends in four logits, one for each class.
The loss is standard cross-entropy. We use only modest and
safe augmentations that do not change the clinical meaning,
such as small rotations and left-right flips, and apply them
only to the training split. The test split is never augmented.
Because the classification head is light, its batches can be
larger than segmentation batches, but the two streams are
alternated so that their updates remain balanced.

After every epoch, we compute accuracy on the test split
and derive macro-precision, macro-recall, and macro-F1 from
the confusion matrix. The matrix is saved both as raw counts
and as a version normalized by true class, so that class-wise
behaviour is clear. If we observe systematic confusion
between specific classes, we examine the corresponding
images and masks to see whether the segmentation shows
consistent under- or over-coverage around the lesion, as this
can affect the features the classifier receives. The final
reported numbers for this phase correspond to the same
checkpoint that maximizes the composite score of validation
Dice and validation accuracy, ensuring that the shared encoder
state is a compromise that serves both outputs. For
downstream use, the model emits two results for any new
image in a single pass or in two quick passes: a probability
map that becomes a binary tumor mask after thresholding and
a set of four class probabilities that are presented with the top
class. Keeping both outputs together helps a reader check the
mask visually while reading the class decision, which is closer
to how radiologists work in daily practice.

Algorithm TRAINING_CLASSIFICATION
Inputs:
Same Model as Algorithm 2 (shared encoder)
CLS_LOADER_TRAIN, CLS_LOADER_VAL /I
Dataloaders from Algorithm 1 (cls stream)
Loss_cls = CrossEntropy
Optimizer (same instance as Algorithm 2)
LAMBDA CLS=1.0
Outputs:
Per-epoch classification metrics: Acc_val, macro-
Precision, macro-Recall, macro-F1
(Acc_val feeds back to Algorithm 2 for composite
model selection)
During each epoch (called alongside Algorithm 2):
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Procedure
CLASSIFICATION_STEP_ONE_BATCH(model,
optimizer, LAMBDA_CLS, batch):

(X cls, y) « batch

logits «— model.forward(X cls, task="cls")
loss ¢ < Loss_cls(logits, y)
optimizer.zero_grad()

(LAMBDA CLS * loss_c).backward()
optimizer.step()

/I VALIDATION after segmentation validation in the
same epoch:

Set model to eval mode

TP = 4x4 zero matrix (confusion counts)

correct = 0; total =0

For each batch (Xv, yv) in CLS LOADER_VAL:

logits v «— model.forward(Xv, task="cls")
pv «— argmax(logits v, axis=1)

correct += count(pv == yv)

total += length(yv)

Update confusion TP with (true=yv, pred=pv)

Acc_val = correct/total

For each class k in {0..3}:

TP_k = TP[k,K]

FP_k=sum_ i TP[ik] - TP k

FN_k=sum_jTP[k,j]- TP_k

Prec k=TP k/(TP_k+ FP_k+¢) //if denominator
zero, use 0

Rec k =TP k/(TP k+ FN k+¢)

F1 k =2*Prec k*Rec k/(Prec k+ Rec Kk +¢)

macro_Precision = mean_k Prec_k

macro_Recall =mean_k Rec k

macro_F1 =mean kF1 k

Save the confusion matrix image (counts and row-
normalised)

Acc_val to Algorithm 2 as LAST_CLS VAL _ACC for
composite ranking

This three-phase protocol is designed to keep science
clear and the steps consistent. The beginning sets the study
endpoints and the way data are organized. The first phase
gives a uniform input space without hidden class-wise
changes. The second phase learns to draw the tumor with a
decoder that preserves fine boundaries through skips while
training simply. The third phase learns a case label from the
same shared features so that both tasks benefit from each
other. Using one encoder reduces the number of parameters
and encourages the network to learn edges, textures, and
shapes that matter both for masks and for labels. Choosing a
single composite score for model selection avoids overfitting
to one readout and supports a fair trade-off between region
accuracy and case recognition. The entire flow mirrors how
the data are arranged in BRISC-2025 and can be repeated as
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is on the same splits. The language and steps here are kept
plain on purpose, so that a clinical imaging group can follow
the method without changing local systems or adding extra
modules.

4. Results

Equalization produced a clear and consistent
improvement in local contrast without changing the anatomy.
In Figure 2, tissue planes and peritumoral details look sharper
after equalization, while the global structure remains the same.

4.1. Phase 1-Preprocessing

The quantitative check supports this observation. Across
the three sampled slices, we measured a mean PSNR of 59.06
dB (x1.26) and a mean SSIM of 0.838 (+£0.050), as shown in
Table 1. These values indicate that the equalized image stays
very close to the original in structure while offering better
brightness and edge visibility. Because the same transform is
applied to all slices and classes, the model sees a stable
intensity range at training and at test time. This stability is also
reflected later in the learning curves of the two heads, where
both tasks show smooth convergence from the first few
epochs.

Fig. 2 Preprocessing samples (original vs equalized)

Table 2. Preprocessing metrics (PSNR and SSIM) for sample slices,
with mean * SD

Sample PSNR (dB) SSIM

S1 58.0293 0.7800

S2 58.6953 0.8668

S3 60.4630 0.8679
Mean £ SD 59.06 + 1.26 0.838 + 0.050

4.2. Phase 2-Segmentation

The segmentation head learned steadily over the 10-epoch
run. Figure 3(a) shows the training Dice increasing from about
0.49 at Epoch 1 to about 0.84 at Epoch 10, while Figure 3(c)
shows the training loss dropping by an order of magnitude
over the same period. On the test split, the model improved
from a Dice score of 0.63 in early epochs to 0.80 by epoch 10,
as seen in Figure 3(b), with a matching decrease in validation
loss in Figure 2(d). The small dip around Epoch 3 in validation
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Dice recovered quickly, and the curve remained stable
afterwards, which suggests that the shared encoder benefited
from alternating batches across the two tasks. The qualitative
overlays in Figure 3(e)-(f)illustrate typical behaviour.

The predicted mask tracks the reference boundaries well
and captures the main tumor bulk; small differences occur at
thin enhancing rims and around low-contrast edges, as
expected when slices are resampled to a fixed size. The final
numbers for this phase are summarized in Table 2: Dice 0.800
and IoU = 0.667 on the test split at the chosen checkpoint.
These values align with the shape of the learning curves and
match the visual impression from the overlays. Taken
together, the results show that a light UNet-style decoder on a
residual encoder can reach strong whole-tumor delineation
within a short training schedule when preprocessing is
consistent and supervision is clean.

Training Dice Coefficient

0.9
0.85
0.8
0.75
0.7
0.65
0.6
0.55
0.5
0.45
0.4

Dice

10

Epoch

Fig. 3(a) Training Dice Coefficient

Validation Dice Coefficient

0.9

0.8

&
ag

Paantl
—~

-
v e

0.7

0.6

0.5

Dice

0.4

0.3

0.2

0.1

10

Epoch

Fig. 3(b) Validation Dice Coefficient



Priyanka Gupta & Ramandeep Sandhu/ IJETT, 74(2), 172-183, 2026

Segmentation Training Loss
0.08
0.07 ‘\
0.06 \
0.05 \
2 0.04
3 \
0.03
0.01 —
0
2 4 6 8 10
Epoch
Fig. 3(c) Segmentation Training Loss
Segmentation Validation Loss
0.04
0.035 \
0.03 \\
0.025 \N
g o002
- v\\‘
0.015 —
0.01
0.005
0 : : ‘
2 4 6 8 10
Epoch

Fig. 3(d) Validation Segmentation Loss

Fig. 3(e) Qualitative Groundtruth overlay
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Fig. 3(f) Model prediction overlay

4.3. Phase 3 - Classification

The classification head also converged well during joint
training. Figure 4(a) shows training accuracy rising from
about 0.80 in the first epoch to about 0.99 by epoch 10, and
Figure 4(b) shows a smooth fall in training loss across the run.

On the test split, accuracy improved from 0.24 in the first
epoch to 0.93 by epoch 10, with a temporary dip at epoch 5
that was corrected in later epochs, as seen in Figure 4(c).

The validation loss followed the expected downward
trend in Figure 4(d), with a brief spike around Epoch 5 that
mirrors the accuracy dip. The full confusion matrix at the best
epoch is shown in Figure 3(e).

The diagonal is dominant, with large correct counts for all
four classes. Off-diagonal entries show the main error source:
48 meningioma cases predicted as nontumor, which lowers
meningioma recall.

There are very few errors for pituitary and none for
nontumor on the true-label axis. The summary metrics in
Table 3 confirm these patterns: overall accuracy 0.929, macro-
F1 0.920, with strong performance for glioma and pituitary,
and perfect recall for nontumor.

Table 4 gives the per-class view. Glioma achieves
precision 1.000 and recall 0.933 (F1 0.965), meningioma has
precision 0.945 and recall 0.837 (F1 0.887) because of the
confusion with nontumor, nontumor shows precision 0.725
and recall 1.000 (F1 0.841), and pituitary is near perfect with
precision 0.990 and recall 0.987 (F1 0.988).

These results indicate that the shared encoder supplies
stable features to the classifier and that the head can separate
the four classes well on the test split. The remaining weakness
is the meningioma—nontumor boundary, which likely reflects
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subtle residual enhancement and local contrast patterns; this
can be addressed in future work with targeted augmentation or
modest class weighting, without changing the overall design.

The model selection used a simple composite of the two
validation readouts to keep a fair balance between regional
quality and case-level decisions.

At epoch 10, the composite score equals the meaning of
the two main metrics, which, with Dice 0.800 and accuracy
0.929, gives 0.8645.

This checkpoint was therefore used for all final tables and
figures. The combined picture across Figures 3 and 4, together
with Tables 24, shows that a single encoder with two light
heads can deliver reliable segmentation and classification on
BRISC-2025 when preprocessing is kept stable, and
supervision is clean.
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Table 3. Overall classification results

Macro- Macro- | Macro-
Accuracy Precision Recall F1
Test
. 0.929 0.915 0.939 0.920
split
Table 4. Class-wise classification results
Class Precision | Recall | F1-score | Support
Glioma 1.000 0.933 0.965 254
Meningioma 0.945 0.837 0.887 306
No Tumor 0.725 1.000 0.841 140
Pituitary 0.990 0.987 0.988 300

5. Ablation Study

An ablation study was performed regarding the
evaluation of the preprocessing stage, joint learning, and the
shared encoder. The absence of contrast equalization
negatively impacted the segmentation task, while training
each of the tasks individually negatively influenced
classification. The shared encoder performed better, with
reduced complexity, thus confirming the benefit of doing the
shared learning.

Table 5. Ablation study

Model Dice | Accuracy
Full proposed model 0.800 0.929
Without equalization 0.762 0.901
Without joint training 0.793 0.874
Separate task training (conceptual) | 0.781 0.862

6. Discussion

The results clearly indicate the effectiveness of the
proposed approach by showing that the integration of the
preprocessing, segmentation, and classification steps within
the same framework provides stable and clinically viable
results. Equalization and normalization operations help reduce
the variability in the intensity of the images acquired from
different scans, which helps the model learn the visual patterns
more consistently. The segmentation model can achieve a dice
score of 0.80, indicating the tumor region is being identified
while maintaining a reasonable degree of accuracy in the
boundaries.
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At the same time, the model is able to achieve an accuracy
of around 93% for the classification task, indicating the
features can differentiate the tumor types adequately. The use
of the shared encoder for the segmentation and classification
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7. Conclusion

This paper presents an efficient end-to-end system to
conduct brain MRI analysis, which includes preprocessing,
tumor segmentation, and multi-class classification in a shared
architecture. The system was able to achieve a segmentation
Dice score of 0.80 and an overall classification accuracy of
92.9%. Therefore, it can be concluded that lightweight
architecture can be used to facilitate both segmentation and
classification. The proposed architecture can be used to
improve reproducibility in preprocessing, as well as to
conduct multi-task training and reporting. The lightweight
architecture can be used to conduct computations in
environments where computational resources are limited. The
proposed architecture can be used as an effective and reliable
method to conduct further studies. The architecture can be
used as a reliable method to conduct further studies and can be
adapted to improve its performance by making effective
changes to its architecture.
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