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Abstract - The goal of this work is to provide a simple and reproducible method that performs three tasks for brain MRI in one 

flow: consistent preprocessing, accurate tumor segmentation, and reliable multi-class classification. The procedure uses an 

open dataset organized for both tasks. Preprocessing converts every slice to a common size, applies luminance equalization to 

improve local contrast, binarizes masks with a fixed threshold, and normalizes images so the model receives stable inputs. A 

shared residual encoder feeds two light heads: a U-Net style decoder for pixel masks and a small classifier for four labels 

(glioma, meningioma, pituitary, no tumor). Training alternates segmentation and classification mini-batches with balanced 

losses, and model selection uses a composite of validation Dice and validation accuracy. The protocol reports all outputs needed 

for audit and reuse: learning curves, confusion matrices, segmentation overlays, and a history file with metrics. In a ten-epoch 

run, the method achieved Dice 0.800 and IoU about 0.667 for segmentation, and accuracy 0.929 with macro-F1 0.920 for 

classification on the test split. The approach is compact, easy to train on a standard workstation, and avoids heavy architecture. 

It is suitable as a dependable baseline for studies that need both a tumor mask and a case label, and it can be extended to new 

sites or tasks by adjusting the preprocessing or the loss balance without changing the core design. 

Keywords - Brain MRI, Brain tumors, Classification, Deep learning, Segmentation. 

1. Introduction  
Brain tumor care is difficult because symptoms are not 

specific, tumors can grow quickly, and MRI scans look 

different across patients and machines [1]. MRI is the main 

imaging method in hospitals, but a radiologist must read many 

slices for each patient, which takes time and can vary from 
person to person [2]. Computer tools that can find the tumor, 

outline it, and tell the likely type can reduce this variation and 

help doctors decide faster and more safely [3]. In the last 

decade, deep learning has become the standard way to build 

such tools because it learns useful image patterns directly from 

data instead of relying only on hand-made rules [4]. A simple 

and popular family of models learns from a reduced version 

of the image and then builds the full outline back, so it keeps 

both overall context and small details at the same time [5]. 

Three-dimensional versions of these models are also used 

because MRI is volumetric, and the through-slice context can 
be important for brain tumors [6]. Many groups now start from 

strong, ready-made image features that were originally trained 

on large photo datasets; these features make training stable 

and fast even when the medical dataset is not very large [7]. 

Community challenges and open datasets for brain tumors 

have shown that progress is faster when images, labels, and 

test rules are standard across centers [8]. Even with this 

progress, using such systems in real hospitals still faces three 

common issues. First, the quality of tumor outlines depends a 

lot on how the input MRI is prepared. Different scanners and 

protocols produce different intensity scales, and slow intensity 

drift across the image can confuse a model if it is not corrected 

[9]. Simple steps like intensity normalization and bias-field 

correction are still useful because they reduce this variation 

without adding any extra model complexity [10]. A widely 

used method for bias correction is N4, which improves the 

homogeneity of MRI and is recommended when data comes 

from multiple centers [11]. Studies also show that the chosen 
normalization method can change the final scores, so authors 

should report preprocessing clearly and consistently [12]. 

Second, many works stop at producing a tumor mask and do 

not link the same network to a case-level decision, such as 

glioma, meningioma, pituitary tumor, or no tumor [13]. Third, 

several classification studies rely on cropped slices or very 

small subsets, which may give high accuracy in limited tests 

but may not hold up in routine hospital use, where scans are 

more diverse [14]. 

These points support a single pipeline that treats 

preprocessing as a core step, learns to outline the tumor, and 

learns to give a case-level class from the same set of shared 
image features. Extra attention blocks and context modules 

can help the outlining step focus on the right regions, but the 
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full design should remain simple so that other teams can train 

and reproduce it on normal GPUs [15]. Small and efficient 

attention units can guide the outlining head to tumor 

boundaries without heavy computation, which is useful when 

we must handle many slices per patient [16]. Reports from 
recent community challenges also emphasize that clean data 

curation, careful validation, and honest reporting matter more 

than very large networks for this problem [17]. Models that 

mix residual feature extractors with simple decoders have 

become a practical choice because they are easy to train, easy 

to move across hospitals, and fast enough for daily work [18].  

On the case-level decision side, many studies show that 

MRI-based deep learning can separate common brain tumor 

classes when the dataset is balanced and preprocessing is 

consistent [19]. Transfer learning from large image collections 

is common, but a light classifier on top of the same shared 

features is often competitive if augmentation and 
normalization are designed well [20]. Some recent works test 

fine-tuning across more than one backbone to stabilize 

performance when class frequencies are uneven [21]. Open 

multi-class datasets also suggest that reporting the 

preprocessing and using cross-validation helps other teams 

repeat the results [22]. Several studies combine outlining and 

classification in a single framework and report that training 

both tasks together improves each task by sharing useful 

features and by acting as a regularizer [23]. Based on this 

evidence, a shared feature extractor with two small heads-one 

for the mask and one for the label-looks like a practical design 

for real-world brain tumor pipelines [24]. 

Our goal is a practical and reproducible pipeline that 

covers three needs end-to-end: clear preprocessing, accurate 

tumor outlining, and reliable multi-class labelling. We follow 

three simple design rules from the literature and from our own 

tests. First, we keep preprocessing explicitly and easily 

auditable. We apply bias-field correction and intensity 

normalization where needed, and we add a light contrast 

equalization step so that brightness and contrast are more 

stable before the images go into the network. Prior work 

shows that these classical steps still help deep models on MRI 

and should be reported with the same care as network settings 
[25]. N4 correction is chosen because it is widely used, robust 

to inhomogeneity, and suitable for multi-center data [26]. 

Controlled analyses also show that clear and simple 

normalization improves generalization and repeatability, 

which matches the needs of clinical translation [27]. Second, 

we use one shared set of image features for both tasks. Earlier 

research in multi-task learning for medical images indicates 

that sharing early and middle-level features helps reduce 

overfitting, especially when one task has stronger supervision 

or more data than the other [28]. Reviews also suggest that two 

parallel heads with balanced losses are effective and sample-
efficient for health imaging [29]. Brain tumor studies that 

adopt multi-task structures report gains in both tumor outline 

quality and case-level accuracy when the tasks are trained 

together with tuned weights, which supports this choice in our 

work [30]. In our design, a residual feature extractor gives 

stable optimization, a simple decoder outlines the tumor, and 

a global-pool classifier predicts the label. This keeps the 

system compact, easy to train, and friendly to standard GPU 
cards used in hospitals [31]. Third, we add only those decoder 

improvements that are proven and lightweight. Attention-

based variants of the basic decoder often improve boundary 

quality and focus on the lesion, without adding much delay at 

inference time, which fits routine clinical needs [32]. Small 

channel-attention blocks further refine feature mixing and 

have shown good results across medical segmentation tasks, 

so we include them only when they provide a clear benefit in 

our tests [33]. At the same time, recent challenge reports make 

it clear that careful augmentation, clear validation splits, and 

stable training settings have as much impact as any complex 

block, so we standardize these parts in our experiments and in 
our released code [34]. Practical experience with residual-

plus-decoder designs on brain tumor data also supports our 

choice of this family as a robust and easy baseline for tumor 

outlining [35].  

Our study adds three concrete contributions. First, we 

include a transparent preprocessing audit for brain MRI. We 

compute simple image quality numbers, which include mean 

squared error, peak signal-to-noise ratio, and structural 

similarity between the original and the equalized images, and 

we share visual comparisons. This step answers recent calls to 

report MRI normalization clearly in clinical AI work [36].  

Second, we propose a single model that uses one shared 

feature extractor with two light heads: a decoder for the mask 

and a small classifier for four clinical classes. We train both 

heads together with balanced losses so that better localization 

supports better labels and the other way round, which is in line 

with findings from multi-task learning in healthcare imaging 

[37].  

Third, we evaluate the full pipeline on an open multi-

center dataset that provides both pixel-level masks and image-

level labels. We report complete metrics for both tasks-Dice 

and Intersection-over-Union for the mask, and accuracy, 

precision, recall, F1, and confusion matrices for the labels-and 
we save overlays and learning curves for human review and 

reproducibility. This mix of explicit preprocessing, shared 

features, and clear reporting makes the system easier to 

reproduce in different hospitals and supports safe translation 

to practice [38]. 

The overall design focuses on clinical practicality rather 

than novelty for its own sake. We keep the feature extractor 

standard and, when useful, start from publicly available 

weights to get stable gradients and faster convergence [39]. 

We use a simple decoder to preserve local detail around the 

tumor and its nearby regions and avoid very heavy 
transformer-only backbones, so training remains simple, and 



Priyanka Gupta & Ramandeep Sandhu / IJETT, 74(2), 172-183, 2026 
 

174 

memory demand stays low [40]. For case-level labels, we 

attach a small classifier to the same shared features and rely 

on safe augmentation to avoid overfitting to scanner artefacts 

or site-specific patterns [41]. 

 Comparative reports suggest that compact heads can 
match larger transfer-learning stacks if preprocessing is solid 

and classes are balanced, so our choice keeps the model small 

and easy to maintain.  

Studies that test multi-head frameworks in tumor imaging 

also show that a shared extractor can improve generalization 

on external scans, which is essential for any clinical 

deployment. Finally, we follow community guidance by 

exporting intermediate plots, overlays, logs, and checkpoints, 

so that others can repeat or extend our work with minimal 

effort and clear audit trails. 

2. Related Work 

A comparison of some of the research efforts performed 

on brain MRI analysis has been provided in Table 1 to 

highlight the data used and performance measures obtained.  

It has been made clear how the benchmarks differ for 

testing and evaluation purposes based on research related to 

segmentation. 

Table 1. Existing models for MRI analysis 

Ref. + Method (Year) Dataset Used Reported Results 

[1] U-Net (2015) ISBI EM, private biomedical sets Dice ≈ 0.88 

[2] 3D U-Net (2016) BRATS 2015 Dice ≈ 0.87 

[4] ResNet (2016) ImageNet (pretraining) Top-1 Acc. 75.3% 

[5] BRATS Benchmark (2015) BRATS 2012–2014 Dice range: 0.70–0.85 

[6] N4ITK (2010) Multi-center MRI Bias reduction (qualitative) 

[8] MRI Scale Standardization (2000) Multi-scanner MRI Variance ↓ (statistical) 

[10] Multi-scale 3D CNN + CRF (2017) BRATS 2013 Dice ≈ 0.88 

[11] Attention U-Net (2019) Pancreas CT / MRI Dice ≈ 0.84 

[12] SE-Net (2018) ImageNet Top-1 Acc. 77.6% 

[13] UNet++ (2018) BRATS 2016 Dice ≈ 0.89 

[14] nnU-Net (2021) BRATS 2018–2020 Dice ≈ 0.90 

[17] Attention-based CNN (2021) BRATS 2017 Dice ≈ 0.89 

[18] Recurrent CNN (2016) Biomedical microscopy IoU ≈ 0.86 

[25] TransUNet (2024) Synapse, BRATS Dice ≈ 0.91 

[26] BraTS-Africa (2023) BraTS-Africa Dice ≈ 0.82 

2.1. Research Gaps 

2.1.1. Lack of an Integrated End-To-End Framework  

Most of the existing work deals with the problems of 

tumor segmentation [1, 2, 10, 13, 14] or classification as 

standalone problems. Very few of the existing approaches aim 

to integrate the preprocessing stage and the classification task 

for multiple classes into one unified learning model. 
 

2.1.2. Lack of Reproducible Preprocessing 

Though research on intensity normalization and 

correction of bias fields has been thoroughly investigated in 

literature [6, 8, 7], these pre-processing operations are often 

either secondary in deep learning approaches or are 

inadequately described and represented in deep learning 

architecture. 

 

2.1.3. Reliance on Complicated Architectures 

Advanced models are normally deep, multi-scale, or 
transformers [10, 14, 25], and are computationally expensive. 

These models make it challenging for practical use in real-

world hospitals that might lack computational resources. 

 

2.1.4. Limited Joint Exploitation of Shared Feature 

Representations 

Though attention mechanisms and refining modules are 

beneficial for the precision of segmentations [11, 12, 17], the 

majority of the approaches overlook the opportunity to use 

common representations for both delineation and diagnoses on 

a case level. 

3. Proposed Framework 
This study uses the BRISC-2025 open MRI resource 

organized for two related tasks: segmentation with paired 

image–mask slices and four-class classification with image-

level labels. We treat both tasks together inside one unified 

model so that a single feature extractor supports pixel masks 

and case labels. The planned outputs are whole-tumor masks 
and a class decision among glioma, meningioma, pituitary, 

and no-tumor, as shown in Figure 1. The primary quantitative 

readouts are Dice and Intersection-over-Union for masks, and 

accuracy with macro-precision, macro-recall, and macro-F1 

for labels. We use a fixed image size of 256×256 for all 

experiments, binarize masks with a single threshold, and apply 
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the same normalization to every image. The training objective 

is the sum of a segmentation loss and a classification loss with 

equal weights, and the preferred checkpoint is selected by a 

composite score that averages validation Dice and validation 

accuracy. All steps below follow one continuous pipeline so 
that any reader can reproduce the same flow from raw images 

to final outputs without extra tools, as shown in Figure 1. 

Input MRI Slices + Masks 

↓ 
Preprocessing 

↓ 
Shared Residual Encoder 

↙        ↘ 
Segmentation 

Head 

Classification 

Head 

↓ 
Joint Training 

↓ 
Model Selection 

↓ 
Final Output (Tumor Mask) 

Fig. 1 Proposed Framework 

3.1. Phase I- Preprocessing 

Each MRI slice is first brought to a common format and 
intensity scale before learning. The raw image is read in its 

original orientation, converted to three channels if it is single-

channel, and resized to 256×256 with bilinear interpolation to 

keep smooth edges. The paired mask is read as a single 

channel, resized to the same 256×256 using nearest-neighbor 

interpolation to avoid mixed labels, and converted into a strict 

binary map using a fixed threshold at the mid-intensity level. 

This thresholding choice is deliberate because many public 

masks are near-binary due to saving and compression, forcing 

those to true zeros and ones, which gives a stable target for a 

sigmoid output layer. To reduce appearance differences across 

scanners, we apply light contrast equalization in the luminance 
space. The operation acts only on bright information and 

leaves spatial content intact, so it helps the network see tumor 

borders with better local contrast without inventing new 

structures.  

After contrast equalization, we normalize the image 

intensities using mean and standard deviation values that are 

standard for the chosen backbone, so that the input range 

matches what the encoder expects. The same transformation 

is applied to every slice from every class, and no class-specific 

trick is used. To make the preprocessing transparent, we keep 

side-by-side copies of a small random sample showing 
original and equalized images at the same size, and for these 

pairs, we compute simple image quality numbers such as mean 

squared error, peak signal-to-noise ratio, and structural 

similarity. These numbers are not used by the model; they only 

describe how much the pixel values changed after equalization 

and help explain the step to the reader. We do not write any 

processed file back to the dataset directory; all transforms are 

done on the fly so that the original data remains unchanged, 
and later sensitivity analyses can repeat the same steps with 

different parameters if needed. The outcome of this phase is a 

consistent stream of images and masks at a common size and 

intensity range, ready for learning. 
 

Algorithm PREPROCESS_BRISC2025 

Inputs: 

    IMG_SIZE = 256  

    THRESH = 128    

    MEAN = [0.485, 0.456, 0.406]  

    STD  = [0.229, 0.224, 0.225]   

    USE_EQ = true   

For each split in {"train", "test"}: 

 A. Segmentation Stream 

  Let IMG_DIR = ROOT/segmentation_task/split/images 

  Let MSK_DIR = ROOT/segmentation_task/split/masks 

  1. Build maps by filename stem: 

       IMAP[stem] = image_path in IMG_DIR 

       MMAP[stem] = mask_path  in MSK_DIR 

     COMMON = intersection of stems in IMAP and 

MMAP 

  2. For every stem in COMMON (processed per mini-
batch during training): 

       a) Read image I (any bit depth), convert to RGB if 

needed. 

       b) If USE_EQ: apply luminance equalization to I 

(LAB → equalise L → back to RGB). 

       c) Resize I to (IMG_SIZE, IMG_SIZE) using bilinear 

interpolation. 

       d) Convert I to a float tensor in [0,1]; normalise 

channel-wise using MEAN and STD. 

       e) Read mask M as a single channel (grayscale). 

       f) Resize M to (IMG_SIZE, IMG_SIZE) using 

nearest-neighbour. 

       g) Binarise M_bin = 1 if M >= THRESH else 0. 

       h) Return (I_norm, M_bin) to the training/eval step. 

  B. Classification Stream 

  Let BASE = ROOT/classification_task/split 

  For each class c in 

{"glioma","meningioma","no_tumor","pituitary"}: 

       For each image path P under BASE/c (processed per 

mini-batch during training): 

         a) Read image I_c, convert to RGB. 

         b) If USE_EQ: apply luminance equalization. 

         c) Resize to (IMG_SIZE, IMG_SIZE) bilinear. 

         d) Convert to float tensor in [0,1]; normalise with 
MEAN, STD. 

         e) Label y = index of class c in the fixed order. 

         f) Return (I_norm, y) to the training/eval step. 
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3.2. Phase II- Segmentation 

Segmentation is learned with a U-Net style decoder 

placed on top of a residual feature extractor. The encoder 

follows a standard design with early convolution, pooling, and 

four residual stages that produce feature maps at increasing 
depth. The decoder reconstructs spatial detail in four up-

sampling steps.  

At each step, a transpose convolution doubles the spatial 

size, the feature map is concatenated with the matching 

encoder feature through a skip connection, and two small 

convolutions with batch normalization and ReLU refine 

boundaries. A final 1×1 convolution produces one logit 

channel, which is sampled once more to match the original 

256×256 if required. We train this head with a sigmoid and a 

binary cross-entropy loss because the mask is foreground 

versus background. The optimizer is AdamW with a small 

weight decay to keep the features stable, and the learning rate 
follows a cosine schedule over the set number of epochs so 

that updates are large early and gentle later. 

Images are presented in small batches that fit comfortably 

in memory, and the same image normalization from 

preprocessing is used here. To keep the shared encoder well-

trained for edges and textures, we interleave segmentation 

batches with classification batches inside every epoch so that 

the encoder sees both pixel-wise and image-level signals. 

Validation uses the test split provided with the dataset. For 

each validation image, the model outputs a probability map; 

we apply a fixed threshold of 0.5 to obtain a binary mask.  

From this, we calculate the Dice and Intersection-over-

Union scores. To allow visual judgement, a few validation 

images per epoch are saved with overlays that show the 

predicted mask and the reference mask on the original 

intensity scale, so a reader can see typical successes and 

boundary errors. The checkpoint for this phase is the same as 

the overall model checkpoint chosen by the composite score, 

which balances segmentation and classification quality. This 

arrangement avoids tuning the backbone for only one 

objective and reflects clinical use, where both a good outline 

and a good label matter. 

Algorithm 

SEGMENTATION_WITH_SHARED_ENCODER 

Inputs: 

    Model: shared encoder + UNet-style decoder + 

classifier head 

    SEG_LOADER_TRAIN, SEG_LOADER_VAL   // 

DataLoaders from Algorithm 1 (seg stream) 

    CLS_LOADER_TRAIN (used for alternating; see 

Algorithm 3) 

    Loss_seg = BCEWithLogits 

    Optimizer = AdamW 

    Scheduler = CosineAnnealingLR over E epochs 

    E (epochs), LAMBDA_SEG = 1.0, LAMBDA_CLS = 

1.0 

    THRESH_MASK = 0.5 for inference threshold 

Outputs: 

    Best checkpoint chosen by composite score COMBO = 

(Dice_val + Acc_val)/2 

Initialise best_combo = -∞ 

For epoch = 1 to E: 

    Set the model to training mode. 

    Make iterators: seg_it ← SEG_LOADER_TRAIN, 

cls_it ← CLS_LOADER_TRAIN 

    steps = max(len(SEG_LOADER_TRAIN), 

len(CLS_LOADER_TRAIN)) 

    // Alternate batches so the shared encoder learns from 

both tasks 

    For step = 1 to steps: 

        // SEGMENTATION STEP (if batch available) 

        If seg_it has next: 

            (X_seg, Y_seg) ← next(seg_it)          // X_seg: 
images, Y_seg: binary masks 

            logits_seg ← model.forward(X_seg, task="seg") 

            loss_s ← Loss_seg(logits_seg, Y_seg) 

            optimizer.zero_grad() 

            (LAMBDA_SEG * loss_s).backward() 

            optimizer.step() 

        // CLASSIFICATION STEP (delegated to Algorithm 

3 but executed here for alternation) 

        If cls_it has next: 

            Call 

CLASSIFICATION_STEP_ONE_BATCH(model, 

optimizer, LAMBDA_CLS, next(cls_it)) 

    //  Validation for segmentation (and classification) ---- 

    Set model to eval mode 

    Dice_val = 0; IoU_val = 0; count_seg = 0 

    For each batch (Xv, Yv) in SEG_LOADER_VAL: 

        logits_v ← model.forward(Xv, task="seg") 

        Pv ← sigmoid(logits_v) 

        Bv ← 1 if Pv ≥ THRESH_MASK else 0 

        Dice_val += dice(Bv, Yv) 

        IoU_val  += iou(Bv, Yv) 

        count_seg++ 

    Dice_val ← Dice_val / count_seg 

    // Obtain Acc_val from Algorithm 3 validation on the 

same epoch  

    Acc_val ← LAST_CLS_VAL_ACC   // filled by 

Algorithm 3 in the same epoch 

    combo ← (Dice_val + Acc_val)/2 

    Scheduler.step() 

    Save checkpoint for this epoch. 

    If combo > best_combo: 

        best_combo ← combo 

        Save as best_combo checkpoint. 

Return the checkpoint with the highest combo. 

Auxiliary: 
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Function dice(B, G): 

    return (2 * sum(B ∧ G)) / (sum(B) + sum(G) + ε) 

Function iou(B, G): 

    return sum(B ∧ G) / (sum(B ∨ G) + ε) 

 

3.3. Phase III- Classification 

Classification uses the deepest features of the same 

encoder that serves the segmentation head. After the last 

residual stage, we apply global average pooling to condense 
spatial maps into one feature vector per image. This vector 

passes through a compact fully connected block with dropout 

to reduce overfitting and ends in four logits, one for each class. 

The loss is standard cross-entropy. We use only modest and 

safe augmentations that do not change the clinical meaning, 

such as small rotations and left–right flips, and apply them 

only to the training split. The test split is never augmented. 

Because the classification head is light, its batches can be 

larger than segmentation batches, but the two streams are 

alternated so that their updates remain balanced.  

After every epoch, we compute accuracy on the test split 
and derive macro-precision, macro-recall, and macro-F1 from 

the confusion matrix. The matrix is saved both as raw counts 

and as a version normalized by true class, so that class-wise 

behaviour is clear. If we observe systematic confusion 

between specific classes, we examine the corresponding 

images and masks to see whether the segmentation shows 

consistent under- or over-coverage around the lesion, as this 

can affect the features the classifier receives. The final 

reported numbers for this phase correspond to the same 

checkpoint that maximizes the composite score of validation 

Dice and validation accuracy, ensuring that the shared encoder 
state is a compromise that serves both outputs. For 

downstream use, the model emits two results for any new 

image in a single pass or in two quick passes: a probability 

map that becomes a binary tumor mask after thresholding and 

a set of four class probabilities that are presented with the top 

class. Keeping both outputs together helps a reader check the 

mask visually while reading the class decision, which is closer 

to how radiologists work in daily practice. 

Algorithm TRAINING_CLASSIFICATION 

Inputs: 

    Same Model as Algorithm 2 (shared encoder) 

    CLS_LOADER_TRAIN, CLS_LOADER_VAL    // 

DataLoaders from Algorithm 1 (cls stream) 

    Loss_cls = CrossEntropy 

    Optimizer (same instance as Algorithm 2) 

    LAMBDA_CLS = 1.0 

Outputs: 

    Per-epoch classification metrics: Acc_val, macro-

Precision, macro-Recall, macro-F1 

    (Acc_val feeds back to Algorithm 2 for composite 

model selection) 

During each epoch (called alongside Algorithm 2): 

  // TRAINING is interleaved inside Algorithm 2 via one-

batch calls: 

  Procedure 

CLASSIFICATION_STEP_ONE_BATCH(model, 

optimizer, LAMBDA_CLS, batch): 

      (X_cls, y) ← batch                    

      logits ← model.forward(X_cls, task="cls") 

      loss_c ← Loss_cls(logits, y) 

      optimizer.zero_grad() 

      (LAMBDA_CLS * loss_c).backward() 

      optimizer.step() 

  // VALIDATION after segmentation validation in the 

same epoch: 

  Set model to eval mode 

  TP = 4×4 zero matrix (confusion counts) 

  correct = 0; total = 0 

  For each batch (Xv, yv) in CLS_LOADER_VAL: 

      logits_v ← model.forward(Xv, task="cls") 

      pv ← argmax(logits_v, axis=1) 

      correct += count(pv == yv) 

      total   += length(yv) 

      Update confusion TP with (true=yv, pred=pv) 

  Acc_val = correct/total 

  For each class k in {0..3}: 

      TP_k = TP[k,k] 

      FP_k = sum_i TP[i,k] - TP_k 

      FN_k = sum_j TP[k,j] - TP_k 

      Prec_k = TP_k / (TP_k + FP_k + ε)   // if denominator 
zero, use 0 

      Rec_k  = TP_k / (TP_k + FN_k + ε) 

      F1_k   = 2 * Prec_k * Rec_k / (Prec_k + Rec_k + ε) 

  macro_Precision = mean_k Prec_k 

  macro_Recall    = mean_k Rec_k 

  macro_F1        = mean_k F1_k 

  Save the confusion matrix image (counts and row-

normalised) 

  Acc_val to Algorithm 2 as LAST_CLS_VAL_ACC for 

composite ranking 

This three-phase protocol is designed to keep science 

clear and the steps consistent. The beginning sets the study 

endpoints and the way data are organized. The first phase 

gives a uniform input space without hidden class-wise 

changes. The second phase learns to draw the tumor with a 

decoder that preserves fine boundaries through skips while 

training simply. The third phase learns a case label from the 

same shared features so that both tasks benefit from each 

other. Using one encoder reduces the number of parameters 
and encourages the network to learn edges, textures, and 

shapes that matter both for masks and for labels. Choosing a 

single composite score for model selection avoids overfitting 

to one readout and supports a fair trade-off between region 

accuracy and case recognition. The entire flow mirrors how 

the data are arranged in BRISC-2025 and can be repeated as 
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is on the same splits. The language and steps here are kept 

plain on purpose, so that a clinical imaging group can follow 

the method without changing local systems or adding extra 

modules. 

4. Results 
Equalization produced a clear and consistent 

improvement in local contrast without changing the anatomy. 

In Figure 2, tissue planes  and peritumoral details look sharper 

after equalization, while the global structure remains the same.  

4.1. Phase 1-Preprocessing 

The quantitative check supports this observation. Across 

the three sampled slices, we measured a mean PSNR of 59.06 
dB (±1.26) and a mean SSIM of 0.838 (±0.050), as shown in 

Table 1. These values indicate that the equalized image stays 

very close to the original in structure while offering better 

brightness and edge visibility. Because the same transform is 

applied to all slices and classes, the model sees a stable 

intensity range at training and at test time. This stability is also 

reflected later in the learning curves of the two heads, where 

both tasks show smooth convergence from the first few 

epochs. 

 
Fig. 2 Preprocessing samples (original vs equalized) 

Table 2. Preprocessing metrics (PSNR and SSIM) for sample slices, 

with mean ± SD 

Sample PSNR (dB) SSIM 

S1 58.0293 0.7800 

S2 58.6953 0.8668 

S3 60.4630 0.8679 

Mean ± SD 59.06 ± 1.26 0.838 ± 0.050 

 

4.2. Phase 2-Segmentation 

The segmentation head learned steadily over the 10-epoch 

run. Figure 3(a) shows the training Dice increasing from about 
0.49 at Epoch 1 to about 0.84 at Epoch 10, while Figure 3(c) 

shows the training loss dropping by an order of magnitude 

over the same period. On the test split, the model improved 

from a Dice score of 0.63 in early epochs to 0.80 by epoch 10, 

as seen in Figure 3(b), with a matching decrease in validation 

loss in Figure 2(d). The small dip around Epoch 3 in validation 

Dice recovered quickly, and the curve remained stable 

afterwards, which suggests that the shared encoder benefited 

from alternating batches across the two tasks. The qualitative 

overlays in Figure 3(e)-(f)illustrate typical behaviour.  

The predicted mask tracks the reference boundaries well 
and captures the main tumor bulk; small differences occur at 

thin enhancing rims and around low-contrast edges, as 

expected when slices are resampled to a fixed size. The final 

numbers for this phase are summarized in Table 2: Dice 0.800 

and IoU ≈ 0.667 on the test split at the chosen checkpoint. 

These values align with the shape of the learning curves and 

match the visual impression from the overlays. Taken 

together, the results show that a light UNet-style decoder on a 

residual encoder can reach strong whole-tumor delineation 

within a short training schedule when preprocessing is 

consistent and supervision is clean. 

 
Fig. 3(a) Training Dice Coefficient 

 
Fig. 3(b) Validation Dice Coefficient 
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Fig. 3(c) Segmentation Training Loss 

 
Fig. 3(d) Validation Segmentation Loss 

 
Fig. 3(e) Qualitative Groundtruth overlay 

 
Fig. 3(f) Model prediction overlay 

4.3. Phase 3 - Classification 

The classification head also converged well during joint 

training. Figure 4(a) shows training accuracy rising from 

about 0.80 in the first epoch to about 0.99 by epoch 10, and 

Figure 4(b) shows a smooth fall in training loss across the run.  

On the test split, accuracy improved from 0.24 in the first 
epoch to 0.93 by epoch 10, with a temporary dip at epoch 5 

that was corrected in later epochs, as seen in Figure 4(c).  

The validation loss followed the expected downward 

trend in Figure 4(d), with a brief spike around Epoch 5 that 

mirrors the accuracy dip. The full confusion matrix at the best 

epoch is shown in Figure 3(e).  

The diagonal is dominant, with large correct counts for all 

four classes. Off-diagonal entries show the main error source: 

48 meningioma cases predicted as nontumor, which lowers 

meningioma recall.  

There are very few errors for pituitary and none for 

nontumor on the true-label axis. The summary metrics in 
Table 3 confirm these patterns: overall accuracy 0.929, macro-

F1 0.920, with strong performance for glioma and pituitary, 

and perfect recall for nontumor.  

Table 4 gives the per-class view. Glioma achieves 

precision 1.000 and recall 0.933 (F1 0.965), meningioma has 

precision 0.945 and recall 0.837 (F1 0.887) because of the 

confusion with nontumor, nontumor shows precision 0.725 

and recall 1.000 (F1 0.841), and pituitary is near perfect with 

precision 0.990 and recall 0.987 (F1 0.988).  

These results indicate that the shared encoder supplies 

stable features to the classifier and that the head can separate 
the four classes well on the test split. The remaining weakness 

is the meningioma–nontumor boundary, which likely reflects 
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subtle residual enhancement and local contrast patterns; this 

can be addressed in future work with targeted augmentation or 

modest class weighting, without changing the overall design. 

The model selection used a simple composite of the two 

validation readouts to keep a fair balance between regional 

quality and case-level decisions.  

At epoch 10, the composite score equals the meaning of 

the two main metrics, which, with Dice 0.800 and accuracy 

0.929, gives 0.8645.  

This checkpoint was therefore used for all final tables and 

figures. The combined picture across Figures 3 and 4, together 

with Tables 2–4, shows that a single encoder with two light 

heads can deliver reliable segmentation and classification on 

BRISC-2025 when preprocessing is kept stable, and 

supervision is clean. 

 
Fig. 4(a) Training Accuracy Plot 

 
Fig. 4(b) Training Loss 

 
Fig. 4(c) Validation Accuracy Plot 

 
Fig. 4(d) Classification Validation Loss 

 
Fig. 4(e) Confusion Matrix for Classification 
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Table 3. Overall classification results 

 Accuracy 
Macro-

Precision 

Macro-

Recall 

Macro-

F1 

Test 

split 
0.929 0.915 0.939 0.920 

 
Table 4. Class-wise classification results 

Class Precision Recall F1-score Support 

Glioma 1.000 0.933 0.965 254 

Meningioma 0.945 0.837 0.887 306 

No Tumor 0.725 1.000 0.841 140 

Pituitary 0.990 0.987 0.988 300 

 

5. Ablation Study 
An ablation study was performed regarding the 

evaluation of the preprocessing stage, joint learning, and the 

shared encoder. The absence of contrast equalization 

negatively impacted the segmentation task, while training 

each of the tasks individually negatively influenced 

classification. The shared encoder performed better, with 

reduced complexity, thus confirming the benefit of doing the 

shared learning. 

Table 5. Ablation study 

Model Dice Accuracy 

Full proposed model 0.800 0.929 

Without equalization 0.762 0.901 

Without joint training 0.793 0.874 

Separate task training (conceptual) 0.781 0.862 

 

6. Discussion  
The results clearly indicate the effectiveness of the 

proposed approach by showing that the integration of the 

preprocessing, segmentation, and classification steps within 

the same framework provides stable and clinically viable 

results. Equalization and normalization operations help reduce 

the variability in the intensity of the images acquired from 

different scans, which helps the model learn the visual patterns 

more consistently. The segmentation model can achieve a dice 

score of 0.80, indicating the tumor region is being identified 

while maintaining a reasonable degree of accuracy in the 

boundaries.  

At the same time, the model is able to achieve an accuracy 

of around 93% for the classification task, indicating the 

features can differentiate the tumor types adequately. The use 

of the shared encoder for the segmentation and classification 

tasks helps both tasks make use of the common features, 
which helps keep the model complexity at a reasonable level 

while maintaining a good balance between the two tasks. It is 

also clear from the results that there is some degree of 

misclassification between the meningioma and the non-tumor 

cases, indicating the presence of some features in the image 

slices that are still difficult for the model to learn due to their 

subtle nature. 

7. Conclusion 
This paper presents an efficient end-to-end system to 

conduct brain MRI analysis, which includes preprocessing, 

tumor segmentation, and multi-class classification in a shared 

architecture. The system was able to achieve a segmentation 

Dice score of 0.80 and an overall classification accuracy of 

92.9%. Therefore, it can be concluded that lightweight 

architecture can be used to facilitate both segmentation and 

classification. The proposed architecture can be used to 

improve reproducibility in preprocessing, as well as to 

conduct multi-task training and reporting. The lightweight 
architecture can be used to conduct computations in 

environments where computational resources are limited. The 

proposed architecture can be used as an effective and reliable 

method to conduct further studies. The architecture can be 

used as a reliable method to conduct further studies and can be 

adapted to improve its performance by making effective 

changes to its architecture. 
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