International Journal of Engineering Trends and Technology
ISSN: 2231-5381 / https://doi.org/10.14445/22315381/1JETT-V7412P110

Volume 74 Issue 2, 151-171, February 2026
© 2026 Seventh Sense Research Group®

Original Article

Design and Implementation of Fast Fourier Transform
Using Pipelining
A. Lakshmi', P.Chandrasekhar Reddy?

12Department of ECE, INTUH University, Hyderabad, India.
!Corresponding Author : lakshmi_sk11@yahoo.co.in

Received: 06 August 2025 Revised: 07 January 2026 Accepted: 20 January 2026 Published: 14 February 2026
Abstract - Innovative approaches to stable, high-throughput, and area-efficient communications in wireless fading settings are
being driven by the quick development of broadband wireless applications. One of the most computationally demanding and
power-hungry modules in the communication industry is the Fast Fourier Transform (FFT). The FFT has several essential uses,
such as image filtering, data compression, signal analysis, and sound filtering. It is difficult to balance design criteria, including
speed, power, area, flexibility, and scalability, while designing FFT hardware. A radix-2, 4-point FFT processor architecture is
designed and implemented using backend tools in the work, as the full custom designs offer high performance. A Pipelined
Multiplier is used to increase the speed of the design. The FFT processor has been designed and implemented using 90nm
technology in Virtuoso schematic editor and layouts using Assura tools. The need for a new generation of digital processors,

identified as the Fast Fourier Transform (FFT), capable of handling new requirements in signal processing, has mobilized the

world of high-performance digital signal processing.
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1. Introduction

Fourier Transforms are used in nearly every field of
research and engineering. In Image and Digital Signal
Processing (DSP) applications, Fast Fourier Transform (FFT)
and Discrete Fourier Transform (DFT) are the most basic
processes and are efficiently computed. To calculate the DFT
with a significant reduction in the number of calculations,
Cooley and Tukey developed the FFT algorithm. In actuality,
the FFT algorithm’s fewer calculations contributed to a
reduction in area, power consumption, and system throughput.
Reliability, cost, performance, area, and power considerations
were the main concerns of VLSI designers in the past, and
power considerations were typically of minor importance.
However, this has started to shift in recent years, as area and
speed concerns are given equal weight with power. The Fast
Fourier Transform (FFT), a critical algorithm in many
engineering and scientific fields, relies heavily on complex
number arithmetic.

The applications include wireless communication devices
(such as PDAs) and personal computers (such as portable
desktops and multimedia products based on audio and video)
that require complex functionality and rapid calculation with
minimal power consumption, which have been incredibly
successful and have expanded [1]. Complex multipliers are
commonly used by co-processors to speed up signal
processing, such as in FFTs, which are calculated using

complex number arithmetic. Hundreds of multipliers are
needed for the huge data FFT structures found in
contemporary systems. They are widely employed in high-
performance computer applications like signal processing,
graphics, and scientific computing. FFTs are essential
components of Graphics Processing Units (GPUs), Digital
Signal Processors (DSPs), and accelerators for Atrtificial
Intelligence (Al). Their uses include data frequency domain
analysis, communication engineering, neural networks,
intelligent DSPs, general digital signal processing, and image
processing with complex-valued applications.

Present and coming portable devices will either have a
very limited battery life or a very large battery pack if low-
power design approaches are not used. High-end product
designers are also under a lot of pressure to lower their power
usage. These devices are too expensive to package and cool.
Given that packaging is required to disperse core power usage,
more expensive cooling methods and packaging are
demanded. High power consumption is increasingly acting as
a barrier to combining additional transistors into a multi-chip
module or on a single chip, which is another important
motivator. The ensuing heat will restrict the practical packing
and performance of designs unless power consumption is
drastically decreased. From an environmental perspective, the
less electricity used and thus the less influence on the
environment, the less heat is pumped into rooms, the less
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power is dissipated by electronic equipment, and the less strict
the environmental criteria are for power supply or heat
removal.

Analyzing, creating, and implementing discrete-time
signal processing techniques and systems are all included in
DSP, which makes extensive use of the Fourier transform. Its
high computational complexity, however, will result in a
lengthy computation from O(N?) to O(NlogzN). As a result,
numerous Fast Fourier Transform (FFT) algorithms have been
created to lower the computational complexity [2, 3].

The existing research on FFT architectures has focused
on improving performance through techniques like pipelining
and higher radix encodings. However, the tradeoffs between
these design factors and the need for low-power solutions in
portable devices have not been adequately addressed. This
work investigates the usage of pipelined FFT architectures to
attain higher throughput and lower power, in contrast to
existing FFT architectures.

A radix-2, 4-point FFT processor architecture is designed
and implemented using backend tools in this work, as the full
custom designs offer high performance. A Pipelined
Multiplier is used to increase the speed of the design. The FFT
processor has been designed and implemented using 90nm
technology in Virtuoso schematic editor and layouts using
Assura tools. The need for a new generation of digital
processors identified as Fast Fourier Transform (FFT) can
handle new requirements in signal processing, has mobilized
the world of high-performance digital signal processing.

Section 1 introduces the importance of FFT design in
present-day scenarios. Section 2 discusses related works and
the existing designs. Section 3 covers the basic design aspects
of FFT. Sections 4 and 5 present the design flow and
methodology. Section 6 discusses the implementation of the
FFT; Section 7 presents the results and discussion; limitations
are presented in Section 7; and the conclusion is presented in
Section 8.

2. Related Works

In the current prevalent practice, there is digital hardware
with a finite word length to present and analyze a DSP system.
Realistic FFT implementations require particular attention
that is free from possible overflow, quantization, and
arithmetic errors and rounding off. When designing DSP
systems and implementing appropriate applications, these
impacts must be continuously considered. The Cooley-Turkey
FFT algorithm, which takes advantage of DFT’s periodicity
and symmetry features, was published in 1965. Compared to
the direct implementation of N-point DFT O(N2), this
approach reduces the processing needs to just O(N log N) [3,
4]. These algorithms were exclusively used with software until
the 1960s. However, the implementation of FFT algorithms in
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hardware is not because of advancements in SoCs [5, 6]. These
days, most wireless and digital signal processing applications
are made to run on portable devices, necessitating minimal
power consumption from the FFT processor. Pipelined FFT
has a minimum power and higher throughput [7] when
compared to other FFT architectures like array, memory-
based, or parallel architectures.

Three distinct pipelined FFT architectural types were
proposed in the works R4SDF [10], R4SDC [10], and Radix-
8 [8, 9] carried out on an FPGA board. The advantage of radix-
8 algorithms is that FFT hardware solutions prefer to use a
greater radix because they save more space for storing twiddle
factors in the Read-Only Memory (ROM), even with complex
controllers [6]. Moreover, three levels of radix-2 can be
cascaded to get radix-23, which is radix-8. Its three radix-2
butterfly phases make it appropriate for pipelined
implementation. However, because radix-4 has fewer
multipliers than radix-2, it consumes less power.

Three FFT architecture processors were made accessible
by Xilinx Logos Core in 2009, as shown in Figure 1. The
suggested FFT processors are made to provide a tradeoff
between transform time and core size. The various categories
apply to the architectures and processors Radix-2, Radix-4,
Serial, parallel, and pipelined in an FFT processor. While burst
parallel 1/0 uses the process data individually using an
iteration strategy, pipeline serial 1/O permits continuous data
processing. It has a longer transform time but is smaller than
the parallel. Except for the smaller butterfly, the Radix-2
algorithm employs the same iterative technique as Radix-4.
The last category, based on the Radix-2 design, employs a
time multiplexing method in the buffer to obtain a reduced
core, but the transformation time is longer.

The data is represented in digital systems with different
formats known as floating-point and fixed-point arithmetic. In
fixed-point FFT processors, a number is represented with a
series of bits, with the left-most bit named as the most
significant bit MSB. MSB represents a sign of a number. In
addition, fixed-point arithmetic, the IEEE 754 standard
introduced a new format identified as floating-point
arithmetic. Due to the FFT processor being involved with huge
calculations, its fixed-point implementations limit the
dynamic range, which jeopardizes the precision. Hence, the
work describes the design of FFT processors for high
resolution. It is common knowledge in the research
community that the implementation of a fixed point is
preferred due to its efficiency. It requires less computational
complexity and less silicon area when the hardware is
implemented. To execute fixed-point calculations in DSP
processors, normalization, rounding off, and quantization are
required. The tradeoff between fixed and floating point is the
achieved resolution, speed, power cost, and core size. It is a
norm that the floating-point arithmetic is uniformly ignored
due to its complexity in nature, high cost, and low threshold.
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Fixed point FFT has the advantages of less area and power
resources, with cheaper cost and better frequency. Fixed point
FFT Applications include consumer audio applications, low-
resolution distance drive, communication devices, channel
coding, etc.
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Fig. 1 Comparison between available resources of the FFT architecture

According to the simulation result [11], fewer slices and
LUTSs are employed, which results in less space and power and
can therefore be applied to OFDM applications. describes the
design of a CMOS FFT processor that uses 0.18um standard
CMOS technology and is called an ASIC. The design is
compiled and simulated using the NC launch tool [12], which
uses the Cadence RTL compiler and 130 nm, 90 nm, and 45
nm CMOS technologies. The suggested design saves 26.2, 66,
and 23.4 percent in terms of timing, power, and area,
respectively.

In contrast to previous research [13], where the total
power obtained is 94mW, the results of the T spice simulation
show that the FFT design produces lower power and reduces
delay for the proposed 8-point Fast Fourier transform
architecture in Tanner Tool using 45nm technology. This is
significant since low-power systems are highly needed in the
current environment. This is primarily because the
mathematical algorithm used in multiplier operations has been
simplified, improving the FFT Architecture’s calculation [14,
15]. The key design challenges in implementing the FFT
processor are balancing the design criteria of speed, power,
area, flexibility, and scalability. Addressing the computational
complexity of the FFT, which is reduced from O(N?) for the
Discrete Fourier Transform (DFT) to O(NlogN) using the FFT
algorithm.  This reduction in complexity leads to
improvements in area, power consumption, and system
throughput. The design ensures reliability, low power
consumption, and high performance in portable devices that
require complex functionality and rapid calculation. The
design emphasizes the need for low-power design approaches
to achieve long battery life or reduce cooling requirements. In
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this work, an FFT is constructed using a bottom-up
methodology in a fully customised design. Unlike semi-
custom or FPGA-based designs, this full custom methodology
enables fine-grained circuit-level optimisation.

Motivation and Research Gap: The paper highlights the
importance of the Fast Fourier Transform (FFT) in various
applications such as image filtering, data compression, signal
analysis, and sound filtering. However, it also emphasizes the
challenge of balancing design criteria such as speed, power,
area, flexibility, and scalability when designing FFT
hardware. It is noted that the existing research on FFT
architectures has focused on improving performance through
techniques like pipelining and higher radix encodings, but the
tradeoffs between these design factors and the need for low-
power solutions in portable devices have not been adequately
addressed. This work aims to investigate the use of pipelined
FFT architectures to achieve higher throughput and lower
power, in contrast to existing FFT architectures.

The performance of the FFT processor design is
compared with some prior works. According to the simulation
results, the proposed design employs fewer slices and LUTS,
resulting in less space and power, and can be applied to OFDM
applications.

The work concludes that the full custom design approach
followed in this work enables fine-grained circuit-level
optimization and better performance compared to semi-
custom or FPGA-based designs. The future research could
focus on utilizing smaller technology nodes, incorporating
sophisticated power-saving features, investigating higher
radix encoding techniques, and carrying out more thorough
comparison evaluations to push the limits of performance and
efficiency in complex multiplication. The work focuses on
designing and implementing a 4-point FFT processor, which
can be justified based on the following reasons:

Complexity Reduction: The Discrete Fourier Transform
(DFT) has a computational complexity of O(N”2), where
N is the number of data points. In contrast, the Fast
Fourier Transform (FFT) algorithm, which takes
advantage of the DFT’s periodicity and symmetry
features, reduces the computational complexity to O(N
log N). By considering a smaller 4-point FFT, the authors
can better control and optimize the design at the circuit
level.

Hardware Feasibility: Implementing a full custom design
for larger FFT sizes, such as 8-point or 16-point, would
be more challenging and require significantly more
design effort. Starting with a 4-point FFT allows the work
to demonstrate the feasibility of their full custom design
approach and build a foundation for scaling to larger FFT
sizes in the future.
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Targeted Applications: The applications of FFT include
wireless communication devices, personal computers,
and multimedia products, which often have strict power
and area constraints. A 4-point FFT can be suitable for
these types of applications, where the reduced complexity
and better optimization of the design can lead to
improvements in power, area, and performance.

Proof of Concept: By focusing on a 4-point FFT, a proof
of concept is provided for their full custom design
approach and the use of a pipelined multiplier
architecture. The insights gained from this work can then
be leveraged to scale the design to larger FFT sizes and
explore more advanced optimization techniques.

3. FFT Algorithm Concepts

The Fourier Transform is used to identify or distinguish
the many frequency signals and related amplitudes that are
associated with a random waveform. This is mathematically
denoted as:

S(f) = ffooo s(t)e 2/t g

For an input signal of s(t), where s(t) needs to be divided
into samples, S(f) is the Fourier transform. It works on
functions (t) and vyields S(f), also known as the Fourier
transform of s(t). The imaginary part —1 is represented by the
constant “i.” The values of the functions s(t) and S(f) are
typically complicated. The sequence {x(n)} has a description
of the finite Fourier transform in {X(w)}. Sequence {x(n)} is
not computationally convenient for representing {X(w)} since
it is a continuous function in the frequency-domain Fourier
Transform. On the other hand, sampling the spectrum {X(w)}
can represent the sequence of {x(n)}. Digital signal processing
techniques heavily rely on the commonly used DFT-centred
signal processing. DFTs are typically constructed via the Fast
Fourier Transform (FFT) rather than being computed directly.
Motivated by new technological applications, it has been used
in many different sectors in the modern era, including applied
mechanics, biomedical engineering, communications, signal
processing, instrumentation, and numerical methods. The
simple variants of the DFT and IDFT need N complex
multiplication and addition operations, which is of order N2,
because N data points are there to compute, and every sample
needs N complex arithmetic operations [16].

The DFT has a length of n vector X with n elements for a
length n input vector X.

fi = Xidxe Gri/mik  j=0,.,n—1

They are not a very efficient method because, according
to computer science jargon, their algorithmic complexity is
O(N?). The DFT would not be very helpful for most real-world

applications of DSP. On the other hand, a variety of distinct
FFT algorithms allow the Fourier transform of a signal to be

154

calculated considerably more quickly than a DFT. FFTs are
techniques for quickly calculating a data vector’s discrete
Fourier transform, as the name implies. In the case where N is
aregular power of 2 (N=2), ‘Radix-2’ methods are helpful. As
N increases, the “Speed Improvement Factor,” which
compares the DFT’s execution times to the Radix 2 FFT, rises
sharply. Since there are multiple widely used “FFT”
algorithms, the word is a little confusing. DIT and DIF are two
distinct Radix 2 methods.

Any composite (non-prime) N can be broken down using
this method. The trivial ‘1 point’ transform is reached if N is
a regular power of 2 and decomposition can be repeatedly
performed. If N is divisible by 2, the approach is especially
straightforward.

a

Fig. 3 8- point decimation in frequency algorithms

One significant algorithm derived from the divide-and-
conquer strategy is the radix-2 decimation-in-frequency FFT.
However, the decision results in data shuffles. The complete
procedure consists of v = log, N decimation stages, with N/2
butterflies of the kind depicted in Figure 2 at each stage.

In this case, the Twiddle factor is Wy = e —j 211/ N.
Consequently, (N/2) log. N complex multiplications are
required to compute N-point DFT using this approach. Figure
3 illustrates the 8-point decimation-in-frequency algorithm for
purposes of illustration. As mentioned earlier, the output
sequence is found to occur in reversed-bit order in relation to
input.
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4. Methodology

A full custom design methodology using Cadence tools
involves using the Virtuoso platform for schematic entry and
layout, Spectre for simulation, and other tools for physical
verification.

Design Specifications

Schematic Capture

Create Symbol

Simulation

DRC - Design Rule Check

Extraction

LVS - Layout versus
Schematic Check

Post-Layout Simulation

Fig. 4 Design flow

The flow typically uses a “meet-in-the-middle” approach,
as shown in Figure 4, combining top-down and bottom-up
design, and includes steps like schematic creation, transistor-
level layout, parasitic extraction, and final physical and
electrical verification. Key steps in the full custom design
methodology.

4.1. Schematic Entry

» Use the Virtuoso Schematic Editor to create the circuit
schematic at the transistor level.

e Design hierarchical and multi-sheet schematics,
leveraging component libraries and design assistants.

4.2. Simulation and Verification (Front-End)

» Simulate the design’s functionality using the Spectre
simulation platform to check performance against
specifications.

*  Use the Virtuoso ADE Suite for design exploration and
analysis, running numerous simulations to ensure
stability and meet performance goals.

4.3. Layout Design

*  Use the Virtuoso Layout Suite to create the physical
layout based on the schematic.

» This step involves placing and routing devices at the
transistor level, guided by foundry design rules.

4.4. Physical Verification (Backend)

»  Perform parasitic extraction to model the effects of the
layout’s physical characteristics on the circuit.

* Conduct Design Rule Checking (DRC) to ensure the
layout adheres to the foundry’s manufacturing rules.

e Perform Layout Vs. Schematic (LVS) checks to verify
that the layout accurately matches the original schematic.

»  Use Static Timing Analysis (STA) and Signal and Power
Integrity (SI/PI) analysis to check for timing issues and
power integrity problems.

4.5. Back-Annotation and Signoff

»  Back-annotate the parasitic information extracted from
the layout into the schematic and simulation environment.

»  Ensure all signoff checks are complete, including SI/PlI,
timing, and other electrical and physical rules.

4.6. GDSII Generation
The final GDSII is generated as a stream-out file, which
is the standard format for submitting the design for fabrication.

Full Custom Design Approach: The full custom design
approach, as opposed to semi-custom or FPGA-based designs,
enabled fine-grained circuit-level optimization, which led to
improvements in performance. This is in contrast to existing
FFT architectures that have typically been implemented using
semi-custom or FPGA-based approaches.

5. Design of FFT

With uses in signal analysis, data compression, image
filtering, and sound filtering, the FFT is one of the
communication industry’s most computationally intensive and
power-hungry components. At a larger scale, the design
tradeoffs made while creating FFT processors-such as
balancing factors like speed, power, area, flexibility, and
scalability-become increasingly important. In contrast to
existing FFT architectures, it investigates the usage of
pipelined FFT architectures to attain higher throughput and
lower power. Figure 5 illustrates the fundamental idea of a 4-
point FFT circuit using Radix-2 architecture. The architecture
consists of two stages. The first stage is done with a 4-point
and the second is done with a 2-point butterfly. The output bits
are obtained in the bit reversal form of the input bit order. The
Butterfly unit can perform complex multiplication and
addition/subtraction, which is the core of the FFT operation.
Signed multiplication is very helpful in typical DSP
applications. Twiddle Factor Multiplication happens in
parallel with all 4 multipliers for real and imaginary
components of complex multiplication that run in parallel,
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accelerating throughput. Four processing elements of a
butterfly can be used to build a 4-point FFT circuit. The
multiplier and radix-2 butterfly make up the circuit. Figure 6
illustrates the four radix blocks that make up the FFT. The
order of inputs X (0), X (1), X (2), and X (3) is accurate. Bit-
reversed outputs X (0), X (2), X (3), and X (4) are obtained.

x(0) > x(0)
x(1) L > x(1)
- 7 - >
\\ /
\ // .
x(2) ;1\ - 3 > x(2)
/ \
FA \
/ \
w! WO
x(3y—l- - ™ >x(3)

-1 -1
Fig. 5 Basic concept of 4-point FFT
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Fig. 6 Block diagram of 4-point FFT circuit
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Real X(3) i | —»oReal X(3)
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Fig. 7 Design of 4-point FFT for parallel input

The radix-2 block and multiplier blocks are built with
adders, subtractors, and multipliers as shown in Figure 7. An
adder is used to add the two inputs, and a subtractor is used to
subtract the two inputs. The modular design followed in this
work is helpful as reusable modules. Scalability is very easy
with such a design methodology. The design can use Booth
Multiplier and Carry Lookahead Adder for hardware-efficient
and high-speed designs, when used in designs of higher order.
Also, enabling high frequency of operation, pipelining can be
included with clocked adders for further speed enhancement.
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This design promotes reusability, debugging ease, and
scalability. Higher radix encoding allows the processing of a
larger number of bits per cycle. This means that for each clock
cycle, more of the multiplication operation is completed,
leading to a faster overall execution time.

5.1. Radix-2 Block

There are two complex inputs and outputs on this circuit.
Real and imaginary numbers must therefore be entered as
distinct inputs, and each component must be calculated
separately. Figure 8 shows the architecture of the Radix-2
subsystem.

/p_Real x1
o/p_Real x
/p_x1 rcal
o/p_Real x1 —gp*x rea
MUL SUB
tiddle factor(W)
real MUL o/p_x1 Img
— ADDER [—*
img ‘
MUL

Fig. 8 Model of subsystem radix-2

Radix block consists of adders and subtractors. The
Radix-2 subsystem is designed with 4-bit adders and
subtractors. For Radix-2 subsystem inputs are real X0, imgXxo,
realX2, imgX2. These inputs are applied to adders and
subtractors.

5.2. Multiplier Block

The multiplier is used to multiply a twiddle factor. For
example, a complex number operation ax+jay multiply bx+jby
is calculated as axby-ayby+j(axby+ayhy).

Figure 9 shows the MULTIPLER subsystem. The
multiplier block consists of four multipliers, an adder, and a
subtractor. The MULTIPLIER subsystem block contains
signed multipliers. The twiddle factors on W,°=1+0j or
W,!=0-1j in the MULTIPLIER subsystem. Inputs to the
multiplier block are real and imaginary values of the input and
twiddle factor input. The radix-2 block’s O2_re and O2_img
are multiplied, and the twiddle factors W1_re and W1_img are
the outputs.

The unsigned multiplier shown in Figure 10 consists of
AND gates and full adders. A and B are applied to the AND
gate, and the outputs are S<7:0>. In this work, a 4-bit unsigned
multiplier shown in Figure 10 is designed.
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In decimal, a binary number is positive if its most
significant bit is 0. Conversely, if the binary number’s most
important bit is 1, it indicates a negative decimal value.

Consequently, it can ascertain whether the result is
positive or negative by examining the MSB of each
multiplicand and feeding it into the XOR gate. In addition, if
the multiplicand’s most significant bit is 1, then multiply by
the multiplicand’s 2’s complement. The 2°s complement does
not need to be calculated if the most significant bit is 0, and it
can be multiplied immediately.

Finally, to examine the XOR gate’s output, the 2’s
complement of the multiplied number is considered, and 1 is
added to it, resulting in the output of 1. The result is the
multiplied number that is needed if the XOR gate’s output is
0. A signed 4-bit multiplier is shown in Figure 11. The
fundamentals of FFT processors are presented in detail.

Circuit implementation of the FFT processor is exhibited
in detail with radix-2 and multiplier block [16]. Compared to
array, memory-based, or parallel FFT architectures, pipelined
FFT uses less power and has a greater throughput. This is the
main justification for using the pipelined FFT architecture in
this work.
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6. Implementation of FFT

FFT is one of the most computationally demanding and
power-hungry modules in the communication industry, with
applications in areas like image filtering, data compression,
signal analysis, and sound filtering. The design tradeoffs in
designing FFT processors, such as balancing criteria like
speed, power, area, flexibility, and scalability, are crucial at
higher frequency scales.

y10:3] .

{x3} | x2} [xi1} ] x{0}

¥10:3] 4-bit two's complement converter logic

4 F

max

*4

unsigned
4-bit
multiplier

4-bit
two's
comp

converter
logic

]
P
8-bit two's complement converter logic

_,h‘lrg

max

45

Fig. 11 4-bit signed multiplier

—p>

output [0:7]

The radix block’s purpose is to accomplish the butterfly
operation, i.e., to perform addition and subtraction. The radix-
2 block is designed using two subtractors and two adders. All
blocks are implemented in 90nm technology using Cadence
tools. This is particularly important for a large data FFT
architecture, which requires hundreds of multipliers. The use
of radix-4 Booth encoding further contributes to this by
reducing the number of partial product rows. A Full Custom
Design approach is followed for the design of FFT and is
implemented using Cadence tools, following a bottom-up
methodology. This detailed design process, from leaf cells to
integrated blocks, ensures precise control over the circuit’s
characteristics.

6.1. Radix-2 Block

Figure 15 shows the schematic of radix-2, which includes
schematics of the subtractor and 4-bit adder that are shown in
Figures 12 and 13, and the schematic of the subtractor in
Figure 14. A full adder consists of XOR, 2-input NAND, and
3-input NAND gates. This suggests that by processing more
bits each cycle, investigating higher radix encodings (such as
radix-8) may result in even bigger speed gains. Higher radix
implementations, however, may entail more complicated
hardware and possible area and power tradeoffs that require
careful consideration. Inputs are given to the full adder, and
the outputs are obtained accordingly for the sum and carry.

Sumis 1, carryis 1
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nondgate

nandgate

Fig. 12 Schematic of a full adder

fulladder Sl =2

fulladder ‘ S

-

Fig. 13 Schematic of a 4-bit adder

4-bit adders consist of 4 full adders. a<3:0>, h<3:0> are
the inputs and sum<3:0>, carry<3:0> are the outputs. Adder
adds the values of a<0> and b<0>. Similarly, all the values are
added and given the outputs. Inputs are given a=3, b=2.
Outputs obtained are sum=6, carry=0.

4-bit subtractor consists of 4 full adders and 4 inverters.
a<3:0>, b<3:0> are the inputs and sub<3:0>, bar<3:0> are the
outputs. Subtractor subtracts the values of a<0> and b<0>.
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Similarly, all the values are added and given the outputs.
Inputs are given a=4, b=2. Outputs obtained are sub=2, bar=0.
Radix-2 is designed using 4-bit adders and 4-bit subtractors.
Inputs are inl_re, inl_img, in2_re, in2_img and the outputs
are O1_re, O1_img, O2_re, O2_img. In active mode the inputs
are inl_re=2, inl_img=2, in2_re=3, in2_img=3, the outputs
obtained are O1_re=5, O1_img=5, O2_re=1, 02_img=1. The
layout of Radix2 using 90nm technology is shown in Figure
16.
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Fig. 16 Layout of radix

6.2. Multiplier Block

The multiplier block is designed with 4-bit signed
multipliers. Multiplication of the twiddle factor is performed
by this. The schematic of the multiplier block is shown in
Figure 17. The multiplier block consists of four multipliers, an
adder, and a subtractor. Multipliers in the MULTIPLIER
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subsystem block are signed multipliers. This design handles
signed multiplication and improves performance over naive
methods. Functionality of the multiplier block is tested with a
test bench. The test bench of the multiplier is given in Figure
18. The layout of Multiplier is given in Figure 19.
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6.3. FFT Block

The FFT processor is designed with a multiplier and
radix-2. Figure 20 shows the schematic of the FFT processor.
Both multiplier and radix-2 operations are carried out via the

FFT block.

|
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The radix block receives the inputs first, and then the
multiplier receives those outputs as inputs. The FFT output is
X[0], X[1], X[2], and X[3]. FFT and its processing elements
are verified functionally with the test bench shown in Figure
21 and the layout of FFT using 90nm technology in Figure 22.
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o

Fig. 20 Schematic of FFT processor
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Fig. 21

b PPt = b

Test bench of FFT processor

]

4

Fig. 22 Layout of FFT
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7. Results and Discussion

The pipelined multiplier architecture in their FFT
processor design helped increase the speed of the overall
design. This is a key advantage over prior works that may have
used less efficient multiplier implementations. According to
the simulation results presented in the paper, the authors” FFT
processor design achieved the following improvements
compared to prior works:
e Timing Savings: 26.2% reduction in timing.
Power Savings: 66% reduction in power consumption.
Area Savings: 23.4% reduction in area.

These significant improvements in critical design metrics
like timing, power, and area demonstrate the advantages of the
authors’ full custom design approach and pipelined multiplier
architecture over the state-of-the-art FFT processor designs
reported in the literature. Pre-layout simulation is done using
ADE with Spectre at the schematic level for circuit
verification, and post-layout simulation results are also
presented as a formal verification.

7.1. Radix 2 Simulated Waveforms

The functionality of radix-2 is performed, and outputs are
obtained from adder and subtractor operations of various
combinations of inputs. Output equations are

O1 re=inl_re+in2_re.
01 img=inl_img+in2_img.
02_re=in2_re-inl_re.
02_img=in2_img-in1_img.

Output Results

Inputs given are inl_re=2, inl_img=2, in2_re=3,
in2_img=3, outputs observed are Ol re=5 O1 img=5,
02_re=1, 02_img=1. And outputs are observed with a delay
of 289.5x1071? seconds at the schematic level and 453.6x101?
seconds at the layout level. Input and output waveforms after
post-layout simulation of the radix2 block are shown in Figure
23.
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Fig. 23 Post simulation waveforms of radix2 block

For the Radix block, at the schematic level, the average
power calculated in active mode is 128.7uW, and in standby
mode, the average power is 2.941uW.

And at the layout level, the power calculated in active
mode is 366.5uW and in standby mode is 2.94pW.

7.2. Multiplier Block
Output Results

The multiplier completes the operation of twiddle factor
multiplication. The multiplication outputs are O2_re and
02_img of radix-2 and the twiddle factors W1 _re and
W1 _img.

The inputs are retw=1, imgtw= -1, inre=1, inimg=1. The
output obtained is Ore=2, Oimg=0. Outputs are observed with
a delay of 467.6x10'? seconds at the schematic level and
1.66X10°seconds at the layout level.

Input and output waveforms after post-layout simulation
of the multiplier block are shown in Figure 24.

The average power calculated in active mode is
1.025mW, and in standby mode 870.94uW at the schematic
level, and the power calculated in active mode is 1.96mW and

in standby mode 870.94uW at the layout level.
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7.3. FFT Block are OOre=6, O0img=0, Olre=2, Olimg=-2, O2re=2,
Output Results 02img=0, O3re=2, 03img=2. Outputs are observed with a

The inputs considered are inOre=1, in0img=0, inlre=3, delay of 270.2x107'? seconds at the schematic level and
in1img=0, in2re=0, in2img=0, in3re=2, in3img=0.The outputs ~ 422.3x10"*2 seconds at the layout level.

Transient Response m

ThraTo=3 > [0.0V]

166



A. Lakshmi & P.Chandrasekhar Reddy / IJETT, 74(2), 151-171, 2026

1, 25T T UYL

1.04

5 759

> 54
254
0,

P L e o
1.0+
S 754
> 54
254

0,0

1284 L
1.0
2 754
> 5
1254

0,0
L2E{Thore <1 009 L

1.04
= 754
=5
254

0,0
1 B8 oo
1.0

5 754

= 54

1,25 TTAITES0S [0V TL

1 e T

1 e BT

L3 T TTIoTETl

13124
< 13814
21308
> 1,306

1.3044
1,302+
125 7cutr=als< 1> [00 5omL

1.0
_ 75
= 54
¥ 254
o

1,26 IToATEATE T TS T

b N e saer !

<5 12109371

L]

167




A. Lakshmi & P.Chandrasekhar Reddy / IJETT, 74(2), 151-171, 2026

1,25 {Teutreals =75 [1.60107

1.0+~

754
|
7254

_ 2l
158 Toutrealgos (20108

L3 Temrea <z 7 217080

| S|

WimV)

1:%5, Gutreals =145 [1.360G0R

138 oo e Toooen

132 Fotmrearz 0> 11307590

AP ,/\/\/\_,

13
1,35 oumrear (EEERE]

_.254
125 Foutrealz <25 [3.075540

1,25 Toutrea T e |3 T8 LBl

I3 Tornearees T o000

ey e e ey ez

754
254
o

254
11000 7outreal c0> (900 5011

168




1,254 7outr=al k)

IR M e

A. Lakshmi & P.Chandrasekhar Reddy / IJETT, 74(2), 151-171, 2026

2
1.88{Tontraall T-20 coo

TonreaT o 9T BA7g

Cutrealle /e 55 0I0L

]

L]

125
1.0
75
=

< 5
.25,

Toutreall=0s [6.708545!

=2
1,00005

Toutrealn= s (009, 5001

IS

Sutreallc 2 s

—
RN
ERGinoding o oo

wow W

1.3

Gonmas <05 T1.307000

VJ(M-H.__ﬁWN

[Toutmgs <9 999 Ba5

Sutmgs <125 (999 8130

Toummg g S 195 1000 20 o

169




_ 25l
1284

254

A. Lakshmi & P.Chandrasekhar Reddy / IJETT, 74(2), 151-171, 2026

Sunmgs < 14> (998,07 61

158 s utrng

1.27:
1,254

254

£

=25
15e Te0n

1.04
75

.25+

[ [

Fig. 25 Post simulation waveforms of FFT

Table 1. Individual Power dissipation of FFT and processing blocks

Design Module Active Power Standby Power Total Power
Radix-2 128.7 pW 2.94 yw 131.6uW

Multiplier 1025uwW 870.94uW 1895.94uW
FFT 5.8mW 4.25mwW 10.05mW

The average power obtained in active mode is 5.8mW and
in standby mode is 4.25mW at a schematic level. Average
Power calculated in active mode is 6.2mW and in standby
mode is 4.25mW at the layout level. Table 1 shows the
individual power dissipation of FFT and its processing blocks,
Radix-2, and the multiplier.

8. Conclusion

Digital signal processing makes extensive use of the DFT.
FFTsare used in DFT implementation, and DFT is extensively
used in DSP. This work is designed for a 4-point FFT using
radix-2 and a multiplier block. The inputs are 4 for a 4-point
FFT. Design with a smaller number of inputs is carried out to
have control over design during the manual drawing of layouts
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