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Abstract - Endometrial Cancer (EC) is one of the most prevalent gynecological cancers globally. Accurate preoperative staging 

and the subsequent tumor grading are crucial for prognosis, surgical decisions, and treatment plans. Generally, for MRI 

evaluation, the radiologists depend totally on their own interpretation, which will be a mixture of subjectivity, a lengthy process, 

and inconsistency among different observers. The problems outlined above are addressed by creating a highly capable Artificial 

Intelligence (AI) framework that relies on multiple MRI modalities and clinical attributes for the precise identification of Deep 

Myometrial Invasion (DMI) and tumor grading. For accurate anatomical segmentation, the framework makes use of the Medical 

Segment Anything Model (MedSAM). After that, a Uterine Cavity Line Generation Algorithm (UCLGA) is employed to determine 

the depth of myometrial invasion. The Vision Transformer (ViT) model, fine-tuned via Low-Rank Adoption (LoRA), is used for 

feature representation and learning. Simultaneously, the agentic reasoning module successively enhances prediction through 

self-reflection and clinical knowledge. Furthermore, multiple smart agents are applied for segmentation visualization, report 

generation, compliance monitoring, and scheduling to provide a modular and interpretable system. The model is tested on the 

EC-MRI dataset, and its overall accuracy reached 96.82%, sensitivity 95.85%, precision 96.77%, F1 score 95.31%, and 

specificity 96.64%. The model surpassed the other current models in accuracy. Overall, the findings imply that this model is a 

clinically significant, elucidative, and efficient AI system that could support oncologists and radiologists in the preoperative EC 

evaluation. 

Keywords - Agentic AI, Endometrial Cancer, LoRA, MRI, Myometrial Invasion, MedSAM, Tumor Grading, UCL, Vision 

Transformer. 

1. Introduction 
Endometrial cancer, also known as uterine corpus cancer, 

is considered the most common malignancy of the female 

reproductive system in developed countries and has a 

worldwide increase in the occurrence rate. This malignancy 

predominantly affects postmenopausal and perimenopausal 

women. The contemporary lifestyle contributes to the 

escalating incidence of obesity and increases the chance of 

EC. The yearly risk of mortality for EC patients shows an 

increasing pattern [1]. Surgery is generally the most common 

treatment for EC, encompassing bilateral salpingo-

oophorectomy, total hysterectomy, and lymph node 

evaluation [2]. Reports from 1990 to 2021 indicate a notable 

worldwide increase in EC cases among those aged 55 and 

above. During these 30 years, the cases doubled, rising to 

360,253 in 2021 from 141,173 in 1990. The occurrence rate 

per 100,000 people increased to 45.81 from 39.22, 

underscoring an increasing health issue. In 2020, more than 

417,000 women globally were diagnosed with endometrial 

cancer, indicating a 132% increase over the last three decades. 

EC instances are projected to increase by around 40% from 

2020 to 2040. By 2036, the worldwide occurrence of EC in 

postmenopausal individuals aged 55 and the elderly is 

anticipated to increase by 6.5%, although the fatality rate is 

forecasted to decrease by 8%. Gynecologic malignancies are 

a significant worldwide health issue, representing almost 15% 

of newly identified tumor cases and fatalities amongst the 

female population in 2020. The cervical cancer constituted the 

most serious gynecological cancer at 7.70%, then the ovarian 

cancer at 4.7%, uterine cancer at 2.2%, and vulvar and vaginal 

malignancies [3]. GLOBOCAN estimations indicate that in 

2022, there were approximately 1,473,427 new instances of 
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gynecologic tumors and 680,372 fatalities globally [4]. The 

common diagnostic methods for EC, as depicted in Figure 1, 

are Magnetic Resonance Imaging (MRI), Ultrasound (US), 

histopathology, and hysteroscopy, which provide crucial 

information for clinical decision-making. The assessment of 

these methods depends largely on the skill of pathologists and 

radiologists. It is a process that was not only time-consuming 

and labor-intensive but also prone to inaccuracies due to 

human factors. As a result of this interdependence, diagnostic 

accuracy may be reduced, and the initiation of critical 

therapies may be delayed, both of which would have negative 

implications for the patient's health [5].  

Early diagnosis is essential for the management and 

prognosis of EC. Conventional screening protocols 

additionally employ techniques such as Computed 

Tomography (CT) and Positron Emission Tomography (PET) 

[6]. DMI is significant in the preoperative assessment of EC. 

For DMI evaluation, a pelvic MRI or a transrectal or 

transvaginal US conducted by a specialist is suggested. 

Fertility-sparing treatments could be suggested for patients 

with grade one, stage IA endometrioid EC, if there are no MI 

and no additional risk factors are present. The evaluation of 

MRI or transvaginal US in ascertaining the absence of MI or 

shallow MI relies on extrapolation from data concerning the 

diagnosis of DMI [7]. 

 
Fig. 1 Imaging modalities for EC: (a) MRI, (b) Histopathology, (c) US, 

and (d) Hysteroscopy. 

1.1. FIGO Staging for EC 

The International Federation of Gynecology and 

Obstetrics (FIGO) staging method indicates that 75% of cases 

are diagnosed at stage I, with endometrial carcinoma further 

categorized into stages IA and IB based on the extent of MI. 

DMI, characterized by infiltration depth of ≥50% of the 

myometrial thickness, is regarded as a critical prognostic 

marker in endometrial carcinoma, as tumors exhibiting DMI 

possess an increased likelihood of pelvic lymph node and 

paracervical invasion metastases [8]. The FIGO staging 

system is employed to ascertain the surgico-pathological 

staging of endometrial carcinoma [9]. 

Table 1. Stages of EC based on FIGO-2023 [8] 

FIGO 

Stages 
Stage Classes with Description 

Early Stage 

IA1 Type I, on the polyp or endometrium 

IA2 Type I, MI<50% 

IA3 Type I, uterus + 1 ovary (intact capsule) 

IB Type I, MI≥50% 

IC Type II, on polyp or endometrium (MI–) 

IIA Type I, cervical stroma 

IIB Type I, LVSI+ 

IIC Type II, MI+ 

Advanced Stage 

IIIA1 Adnexa (direct or metastasis) - excluding IA3 

IIIA2 Uterine serosa 

IIIB1 Vagina or parametria (direct or metastasis) 

IIIB2 Pelvic peritoneum implants 

IIIC1 Pelvic lymph node metastasis 

IIIC2 Infrarenal para-aortic lymph node metastasis 

IVA Bladder or intestinal mucosa 

IVB Abdominal peritoneum implants 

IVC 
Distant metastasis (lung, liver, bone...) or 

distant lymph node metastasis (inguinal...) 

Note: Type I (non-aggressive histology): low-grade 

(G1/G2) endometrioid; Type II (aggressive histology): high-

grade endometrioid (G3), serous, clear cell, carcinosarcoma, 

mesonephric, neuroendocrine, gastro-intestinal mucinous, 

mixed, undifferentiated; LVSI: lymphovascular space 

involvement. Molecular Subtyping Implications: I–II 

POLEmut → IAmPOLEmut (MI+/–, LVSI +/–, Type I or II); 

I–II p53abn– → IICmp53abn (MI+/–, LVSI +/–, Type I or II). 

FIGO classifies Grade 1 tumors as well-differentiated, 

resembling normal tissue, and typically exhibiting a positive 

prognosis. Grade 2 cancers possess a dense feature that varies 

from 6% to 50% and are categorized as differentiated. Grade 

1–2 endometrial carcinomas are categorized as type I; grade 3 

tumors with a dense feature over 50% are characterized as 

high grade and poorly differentiated, exhibiting characteristics 

distinct from normal endometrial tissue, demonstrating 

aggressive behaviour, and correlating with a poor prognosis. 

Grade 3 Endometrial Carcinoma (EC) is categorized as type II 

EC, typically affects postmenopausal women, and is not 

linked to endocrine abnormalities [10]. The different stages of 

EC classified according to FIGO-2023 staging are presented 

in Table 1 [11]. MRI is essential for treatment planning, since 

it offers critical insights into tumor stages, including 

dimensions and invasion depth in the cervical stroma and 

myometrium, as well as involvement of pelvic lymph node 
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status and anatomical structures. For staging EC, FIGO 

employs a surgical staging approach; however, expert 

consensus and recent studies suggest that MRI assessment 

prior to treatment is necessary to determine the most suitable 

therapy [12]. 

1.2. AI in Cancer Diagnosis 

In nuclear medicine and radiology, the medical 

applications of AI systems show potential for several tasks, 

such as tumor detection, image reconstruction, and the 

development of diagnostic biomarkers. This serves as 

prognostic assessment, diagnostic assistance, and treatment 

efficacy prediction in gynecological oncology [13]. The 

integration of radiomic and Deep Learning (DL) models into 

pre-operative imaging (US, MRI) provides non-invasive 

alternatives for patient staging [14]. Recent advancements in 

AI present novel prospects to improve diagnostic accuracy and 

therapeutic decision-making. AI is increasingly recognized in 

gynecological oncology, where it is utilized to enhance both 

diagnostic and therapeutic strategies. Although endometrial 

carcinoma is the primary emphasis, recent advancements have 

also demonstrated potential in other gynecological 

malignancies. AI is explored as an implementation method for 

early, non-invasive identification of ovarian cancers and for 

the analysis of histopathology images in predicting the 

molecular types of EC malignancies. Expanding the range of 

AI applications may improve diagnosis accuracy and result in 

the detection of gynecological cancers [15]. 

1.3. Problem Statement 

Several clinical challenges exist for medical imaging of 

EC for staging and grading preoperatively, despite advances 

in medical imaging and AI. Conventional diagnostic processes 

require the interpretation of MRI scans that are manually 

performed by radiologists and, thus, are subjective and time-

consuming, possessing interobserver variability when 

evaluating DMI and tumor grading. Second, most of the deep 

learning techniques do not consider clinical data and never 

provide explainable output or simulate real-world diagnostic 

reasoning, which makes the decision-making process delayed 

and inaccurate, potentially leading to under- or overtreatment. 

Hence, the need arises for a robust, explainable, and clinically 

adaptable AI framework that autonomously analyzes 

multimodal MRI and clinical data, enhances the accuracy, 

reliability, and efficiency of EC staging and grading, and 

assists clinicians with unambiguous evidence-based 

recommendations. 

1.4. Research Gap and Novelty 

The significance of this research focuses on resolving the 

gaps concerning the accuracy and computation of preoperative 

staging and grading in EC, where treatment outcomes greatly 

depend on early and accurate diagnosis. Whereas in the 

general approaches, manual MRI interpretation dominates, 

this research proposes a novel Agentic AI framework that 

autonomously integrates medical images and clinical data into 

a single diagnostic system. Thus, its novelty lies in the multi-

agent architecture that combines MedSAM for high-accuracy 

segmentation, the UCL generation algorithm for anatomical 

assessments, and a ViT fine-tuned with LoRA for feature 

extraction and classification. Finally, the system improves 

predictions through an agentic reasoning module that uses 

self-reflection and clinical knowledge and offers tumor board-

style reports.  

1.5. Research Objectives 

The research hypothesis is that the proposed agentic AI 

model will not only be able to outperform others in diagnosis 

but will also be more interpretable, as a result of providing 

end-to-end automation, anatomical reasoning, and iterative 

clinical knowledge integration. Furthermore, it will lead to a 

decrease in variations among observers and subsequently 

upgrade the support of decision-making for radiologists and 

oncologists. The key objectives of this work are discussed as 

follows. 

 To develop an Agentic AI-based framework that 

integrates MRI imaging and clinical data for the precise 

diagnosis and staging of EC. 

 To implement MedSAM for high-precision segmentation 

of anatomical regions such as the uterus, myometrium, 

and tumor in MRI scans. 

 To apply the UCLGA for measuring the depth of invasion 

within the myometrium and further FIGO staging. 

 To use a ViT model fine-tuned using LoRA for proficient 

visual feature extraction and tumor grade classification. 

 To integrate an agentic reasoning module supporting 

iterative self-reflection and external clinical knowledge 

absorption to refine diagnostic predictions. 

 To develop assistant intelligent agents for report 

generation, compliance auditing, segmentation 

visualization presentations, and scheduling, assisting in 

clinical decision-making. 

 To evaluate the performance based on standard metrics 

with accuracy, sensitivity, precision, F1-score, and 

specificity on a curated dataset of EC cases. 

 To compare the proposed framework to state-of-the-art 

models, thereby proving its superiority over them both in 

terms of diagnostic accuracy and explainability. 

 To conclude and discuss the advantages and limitations 

of the developed model with further improvements. 

The paper is organized as follows: the first section 

includes a review of the recent research works proposed for 

EC detection and classification. The next section presents the 

detailed modelling and implementation of the proposed 

MedSAM-ViT model. Then, the subsequent section presents 

the experimentation analysis and results of the model and a 

comparison with current models. At last, the research 

concludes with the findings and recommendations for future 

research initiatives. 
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2. Literature Review 
This section reviews the recent models developed for the 

staging and classification of EC and depth of MI using MRI 

with various state-of-the-art techniques. Table 2 highlights the 

critical analysis of the reviewed models with their advantages 

and limitations. A computer-aided diagnostic method utilizing 

a multi-stage DL model was proposed in [16] to diagnose early 

EC on sagittal T2-Weight (T2W) images by assessing the 

level of MI. The Single Shot multibox Detector (SSD)-based 

prediction method and an Attention-based U-Net 

segmentation method were developed to choose, crop, and 

segment MRI images. The ellipse fitting technique was 

employed to create a UCL for the determination of the depth 

of the MI for classification. In the independent testing dataset, 

the model for detecting the tumor and uterus attained average 

precision rates of 98.70% and 87.93%, respectively. 

An automated segmentation framework based on DL 

using a U-net architecture was developed in [17] to delineate 

the tumor and uterus in MRI images. A semantic segmentation 

model based on the U-Net architecture was trained to delineate 

the tumor and uterine regions in MRI images. The Tumor-to-

Uterine Region (TUR) area ratio was subsequently computed 

from the segmentation map. The stage IA or IB of EC patients 

was determined using TUR, and the outcomes of the patient's 

pathological diagnosis, which identified the ideal staging 

thresholds for stages IA and IB. 

A prediction model in [18] that utilized diffusion-

weighted imaging features derived from DL and radiomics, in 

conjunction with clinical data and Apparent Diffusion 

Coefficient (ADC) values, to detect microsatellite instability 

in EC. Traditional radiomics features and DL features based 

on Convolutional Neural Networks (CNN) were extracted 

from DWI. Logistic Regression (LR) and Random Forest (RF) 

were utilized as classification algorithms. DL features, ADC 

values, clinical factors, radiomic features, and their 

combination were utilized to develop DL, ADC, clinical, 

radiomic, and integrated models. The findings indicated that 

the integrated approach led to enhanced risk classifications. 

The efficacy of DL algorithms integrated with MRI for 

the risk assessment and prediction of EC was analyzed in [19]. 

Utilizing the DL convolutional neural network architecture 

known as residual networks with 101 layers (ResNet-101), 

channel attention and spatial attention modules were used to 

enhance the model's performance. The model demonstrated 

enhanced efficacy in identifying high-risk endometrial 

carcinoma, with increased sensitivity and specificity and 

exceptional predictive accuracy. The research in [20] 

integrated conventional radiomics with DL techniques to 

preoperatively assess the risk classifications of uterine 

endometrioid cancer and to create personalized treatments 

based on the classification. A Densenet121 model was 

employed to ascertain the ROI cross-section for DL image 

features. A Multinomial Logistic Regression (MLR) was 

employed to develop a multisequence conventional radiomics 

signature based on the selected traditional radiomics 

attributes. The results showed that the radiomics nomogram 

had the best diagnostic accuracy, and the results were highly 

significant. 

The paper [21] presented a fully automatic method for the 

accurate detection of deep MI on MRI. One of the main 

contributions of the study was the introduction of the new 

geometric feature called LS, which quantitatively classified 

the irregularities of the uterine tissues caused by endometrial 

cancer (EC). The authors applied a feature fusion strategy that 

merged weak and strong features, in which several 

Probabilistic Support Vector Machines (PSVMs) were 

connected to geometric feature LS and texture features to 

derive more discriminative information, and the resulting 

PSVM models were then jointly pooled to create the ensemble 

PSVM model EPSVM. The results pointed out that 

persistence to the EPSVM model was certainly superior in 

terms of failed cases and true positives, or in other words, 

specific and sensitive performance. 

The research outlined in [22] explored the effectiveness 

of the ML radiomics model that utilized multiparametric 

MRIs in discriminating stage IA EC from the benign 

endometrial lesions, and further investigation was made into 

the possible use of different combinations of models, which 

included the clinical factors along with the radiomic features. 

After performing data dimensionality reduction along with 

feature selection, nine different ML algorithms were used 

which included Logistic Regression (LR), Random Forest 

(RF), Support Vector Machines (SVM), K-Nearest 

Neighbours (KNN), Stochastic Gradient Descent (SGD), 

Extremely randomized Trees (ET), Light Gradient Boosting 

Machines (LightGBM), Decision Trees (DT), and eXtreme 

GB (XGBoost). The LR algorithm model was recognized as 

the best radiomics model, achieving the highest accuracy. 

In [23], the effectiveness of DL in identifying 

Carcinosarcomas (CSs) and differentiating them from ECs 

using different MRI sequences was affirmed and 

authenticated. The DL model convolutional neural network 

(CNN) was learned with CS and EC for all the sequences and 

then validated. The results demonstrated that the DL model 

CNN showed diagnostic performance that was fair and even 

better than that of professional radiologists in detecting apart 

EC from CS on MRIs.  

The research in [24] evaluated the supplementary benefit 

of Diffusion-Weighted Imaging (DWI) in comparison to 

Dynamic Contrast-Enhanced MRI (DCE-MRI) and T2-

weighted Imaging (T2WI) for the preoperative assessment of 

MI in EC. The study underscored the importance of MRI for 

the preliminary staging of EC. It showed that incorporating 

DCE or DWI-MRI with T2WI markedly enhanced the 

diagnostic efficacy of MRI in evaluating the extent of MI in 
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EC. The study did not measure interobserver variability 

among radiology experts in evaluating MRIs. 

An artificial intelligence model was implemented in [25] 

for the EC MRI imaging, significantly enhancing the accuracy 

of feature extraction from images and patient classification. 

The ResNet architecture was employed to enhance the 

network's performance. The addition of depth enhanced the 

model's accuracy, the properties of the network were upgraded 

repeatedly, and the damage functions of the reduced networks 

were derived. The detection accuracy of MRIs was evaluated 

utilizing three architectures: an optimized network, Res-Net, 

and a shallow CNN. The findings indicated that the specificity 

and accuracy of enhanced scanning and T2W imaging in MRI 

were 95% and 88.75% respectively. A Swin transformer-

based methodology for the early diagnosis of EC with multi-

body positions fusion was proposed in [26]. Utilizing the Swin 

transformer framework and its developed SW-MSA (shift 

windows multiple self-coherences) component, MRI images 

across the three areas (transverse, coronal, and sagittal) were 

cropped, improved, and classed, while fusion tests in these 

planes are conducted concurrently. The findings indicated that 

the enhanced Swin transformer model attained superior 

performance across all criteria in the EC multi-site fusion 

tasks.  

The research in [27] assessed the precision of 

multiparametric MRIs (mpMRIs) in identifying MI depth in 

EC Associated with adenomyosis (EC-A) in comparison to 

EC with no adenomyosis, and examined the influence of 

various adenomyosis subgroups on the MI depth in EC. 

Adenomyosis could decrease the diagnostic efficacy of 

interpreting EC-MI. Nonetheless, there was no notable 

disparity in the efficiency of diagnosing MI depth between the 

endometrial carcinoma groups with and without concurrent 

adenomyosis, nor among the various subtypes of 

adenomyosis. The predictive efficacy of radiomics models 

derived from MRI for the risk classification and grading of 

early-stage EC was analyzed in [28]. The 3D radiomic features 

were derived from segmented EC images obtained from MRI 

images, with features taken from all three modalities. 

Subsequently, employing five-fold cross-validation alongside 

a multilayer perceptron (MLP) algorithm, these features were 

refined utilizing Pearson’s correlation coefficient to construct 

a predictive model for risk classification and grading of EC. 

Nevertheless, the amalgamation of all three sequences yielded 

improved predicted accuracy. The radiomics model of MRI 

possessed the capability to precisely predict risk classification 

and the early stages of EC. Two new models for predicting 

postoperative pathology based on MI of preoperative and 

grading in low-risk EC subjects were developed in [29]. Two 

predictive models, New Prediction Models (NPM1 & 2), were 

introduced. Both models were constructed based on the 

primary variables, the MI depth. In NPM1, the MI depth 

functioned as the primary variable. The model employed 

iterative imputation methods to rectify the inconsistencies 

identified in MI diagnosis outcomes. The second model 

eliminated the erroneous depth of MI data and employed 

labelled smoothing to enhance precision. The findings 

validated that NPM2 was a superior method to predict the 

groups compared to NPM1. The study in [30] developed 

CNNs for identifying EC by utilizing multiple sequences and 

cross sections, aiming at validating optimal CNN imaging 

instances and comparing their detection accuracy with that of 

expert radiologists. CNNs exhibited superior diagnostic 

efficacy for identifying EC via MRI. Despite the absence of 

significant changes, the inclusion of additional image types 

enhanced the diagnostic efficacy for certain individual image 

sets. The DL model employing CNNs demonstrated much 

superior performance with the axial contrast-enhanced T1-W 

images and single set images of axial apparent diffusion 

coefficients of water map in comparison to professional 

radiologists. 

In [31], the DL techniques based on DenseNet121, 

ResNet101, and ResNet50 were applied to characterize deep 

transfer learning in predicting EC. The outputs of the multi-

sequence model were consolidated through three decision-

level fusion methods, and the best model was identified. A 

clinical model was then constructed by combining univariate 

and multivariate logistic regression studies to extract 

independent clinical factors. The multiparametric MRI model 

exhibits robust efficacy in preoperatively forecasting 

aggressive EC. Through the application and validation of an 

MDLR-multimodal DL radiomics model using MRI, the 

research in [32] has significantly advanced the preoperative 

differentiation of MI in EC cases. By utilizing the Integrated 

Sparse Bayes Extreme Learning Machines, a DL-Signature 

(DLS) was generated. Furthermore, by combining clinical 

features with DLS, a Clinical Model was created that 

encompassed both clinical attributes and the MDLR model. 

With DLS ensuring the integration of features, the MDLR 

model increased the preoperative accuracy in differentiating 

between the non-existence and existence of MI. 

Table 2. Critical analysis of current research models 

Ref Approach Applications Advantages Drawbacks 

[16] 

SSD-based detection, 

Attention U-Net, 

ellipse fitting for UCL 

MI level detection on 

sagittal T2W MRI 

High tumor/uterus detection 

precision (98.7% / 87.93%). 

Complex multi-stage 

pipeline; lacks 

generalizability evidence. 

[17] 

U-Net for tumor and 

uterus segmentation, 

TUR area ratio 

EC staging (IA vs IB) 
Effective staging using the TUR 

metric. 

Limited to 2-stage 

classification; does not 

integrate clinical data. 
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[18] 

DL and radiomics 

features + ADC 

values + LR & RF 

Microsatellite 

instability detection in 

EC 

Multi-modal feature fusion 

improved risk classification. 

Requires complex feature 

engineering; 

computationally heavy. 

[19] 
ResNet-101 + channel 

& spatial attention 

High-risk EC 

identification 

Enhanced sensitivity, specificity, 

and predictive power. 

Interpretability of deep 

features is limited. 

[20] 

Densenet121 for ROI 

+ traditional 

radiomics + MLR 

Risk classification for 

personalized treatment 

Superior diagnostic accuracy via 

radiomics nomogram. 

No details on real-time 

applicability or processing 

time. 

[21] 

EPSVM using 

geometric (LS) + 

texture features 

DMI detection on MRI 
Superior specificity and 

sensitivity; good feature fusion. 

Traditional ML-based 

models lack end-to-end 

automation. 

[22] 

Radiomics with 9 ML 

classifiers + clinical 

data 

Distinguishing EC 

from benign lesions 

LR outperformed others; robust 

combination models. 

Manual feature selection; 

model comparison only in a 

2-class setting. 

[23] 

CNN trained on 

multiple MRI 

sequences 

EC vs CS classification 
Outperformed radiologists in 

diagnosis. 

Binary classification only; 

lacks staging or grading 

functionality. 

[24] 

Multi-sequence MRI 

(DWI + DCE-MRI + 

T2WI) 

MI extent evaluation in 

EC 

Enhanced MI assessment with 

image fusion. 

Interobserver variability 

was not evaluated. 

[25] 
ResNet + deep 

network optimization 

EC classification using 

MRI 

High specificity (95%) and 

accuracy (88.75%). 

Limited methodological 

transparency; the shallow 

CNN comparison is limited. 

[26] 

Swin Transformer 

with SW-MSA across 

planes 

Multi-position fusion 

for early EC diagnosis 

Superior performance across 

sagittal/coronal/transverse planes. 

Requires high 

computational resources; 

lacks clinical data 

integration. 

[27] 
mpMRI analysis for 

EC-A vs EC cases 

Evaluating the DMI 

impact of adenomyosis 

Detailed subgroup analysis of the 

adenomyosis effect. 

No significant advantage in 

diagnostic accuracy was 

found. 

[28] 
3D radiomics + MLP 

+ 5-fold CV 

EC grading and risk 

classification 

High prediction accuracy; 

sequence fusion improved results. 

Feature selection is highly 

dependent on correlation 

filtering. 

[29] 

NPM1 & NPM2 using 

MI depth and label 

smoothing 

Postoperative 

pathology prediction 

NPM2 improved precision via 

label smoothing. 

Focused on low-risk EC; 

not applicable to broader 

EC cohorts. 

[30] 

CNN on multi-

sequence & cross-

section MRIs 

EC detection vs 

radiologist performance 

CNNs outperformed experts in 

certain sequences. 

Lacks comprehensive 

staging and grading models. 

[31] 

DenseNet121, 

ResNet101, ResNet50 

and logistic regression 

Preoperative prediction 

of aggressive EC using 

multiparametric MRI 

Multi-sequence fusion; integration 

of clinical factors; robust 

predictive performance. 

CNNs lack global context, 

no anatomical 

segmentation, static fusion, 

and limited explainability. 

[32] 

MDLR multimodal 

DL radiomics with 

DLS and clinical 

feature fusion 

Preoperative 

differentiation of MI in 

EC 

Effective multimodal fusion; 

improved MI classification. 

Handcrafted radiomics; 

binary MI only; no end-to-

end automation; limited 

interpretability. 

 

2.1.  Research Gap Analysis 

The extensive and methodical literature review has been 

discussed to present a detailed background on the subject of 

MRI-based EC staging and grading, with a systematic 

examination of existing DL, radiomics, transformer-based, 

and traditional ML approaches concerning their application 

scope, performance, automation, interpretability, and clinical 

integration. The proposed study offers novelty through a 

unified agentic AI framework, unlike previous research, 

which was confined to specific tasks such as binary staging, 

risk classification, or feature-driven prediction, and did not 

involve full automation or explainability of the procedure. The 

proposed framework is a combination of MedSAM-based 

anatomical segmentation, a UCLGA algorithm for accurate 
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MI quantification, and a ViT model that has been fine-tuned 

using LoRA for tumor grading. Moreover, the reviewed works 

do not utilize agentic reasoning, nor do they present multi-

agent clinical support (reporting, compliance, visualization), 

or iterative self-reflection in accordance with clinical 

guidelines, which are the key points that set apart the proposed 

framework. The review comparison has placed the proposed 

framework as a novel and comprehensive solution that is also 

clinically applicable, and which has advanced the state of the 

art in preoperative endometrial cancer assessment, by clearly 

indicating the drawbacks of current approaches. 

3. Materials and Methods 
The developed research model implements an advanced 

agentic AI framework for use in the preoperative assessment 

of EC for deep MI detection and tumor grading. As shown in 

Figure 2, the workflow begins with the acquisition of an EC-

MRI dataset, which involves gathering multi-sequence MRI 

data of patients affected by EC. The involved steps in 

preprocessing the MRI images are intensity adjustment, 

resolution normalization, and alignment with reference 

coordinate frames, so that they are of the best possible quality 

for subsequent procedures. Each corresponding data point 

then passes through the MedSAM, which is a generic medical 

image segmentation method that renders segmentation masks 

from an image encoder and a prompt encoder. MedSAM 

autonomously marks anatomical structures such as the 

endometrium, myometrium, and tumor region using bounding 

box prompts and image embeddings. From the segmentation 

output, the UCLGA obtains the UCL, which spatially 

references the depth of MI. The DMI calculation relies on 

depth measurement for tumor penetration (a) as relative to the 

total myometrial thickness (b). Hence, cases wherein ≥50% 

invasion is present are classed under deep MI. The anatomical 

attributes from the segmentation maps and tabular clinical 

features (patient age, hormonal results, or pathology 

diagnoses) are combined into a feature set. The features are 

then fed into a ViT that has been fine-tuned with LoRA. This 

method allows one to fine-tune parameters with low overhead. 

The ViT infers rich contextual representations from flattened 

image patches through self-attention operations in several 

transformer encoder blocks. The visual-semantic 

representation is forwarded to an MLP head that performs an 

initial classification into tumor grades of G1, G2, or G3. This 

prediction is successively refined in the agentic reasoning 

module, which is the base method of this study. 

 
Fig. 2 Workflow of the developed research model 

The standard performance metrics are used to evaluate the 

DMI presence and tumor grade prediction results even more. 

The depicted process shows how the combination of 

segmentation integration, anatomical computation, 

transformer-based learning, and agentic reasoning not only 

enhances the accuracy and reliability of EC staging and tumor 

stratification but also helps doctors make surgical and 

therapeutic decisions with greater confidence. 

3.1. Dataset Details 

An MRI dataset of EC was gathered from the Jagadguru 

Sri Shivarathreeshwara (JSS) Academy of Higher Education 
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and Research and JSS Hospitals, Mysuru, Karnataka, India-

570004, for this study. The dataset contains a total of 3500 

MRI images showing different views-axial, coronal, and 

sagittal. Out of the total, 3100 images are found to be 

malignant, and 400 images are labeled as normal. The MRIs 

are obtained at a resolution of 256x256 pixels. The images 

selected from the acquired dataset are shown in Figure 3. Data 

summary of clinical information of EC patients from the 

collected dataset is shown in Table 3. 

Table 3. Clinical information of the dataset  

Parameter Stage IA Stage IB p Value 

No. of Patients 469 283  

Age 48.4 ± 8.9 61.8 ± 9.3 0.99 

Endometrioid type   0.54 

Grade 1 314 135  

Grade 2 141 116  

Grade 3 13 32  

Max. diameter (cm)   0.54 

< 3 354 90  

≥3 115 193  

MI Depth   0.74 

<50% 456 19  

≥50% 13 264  

Mixed Carcinoma   0.15 

Yes 192 149  

No 277 134  

 

 
Fig. 3 Dataset Sample Images 

3.1.1. MRI Image Description 

Type: T2-weighted MRI (sagittal view). It is critical for 

MI assessment.  

Annotations 

 Tumor: Hypointense mass in the endometrium (outlined 

in red). 

 Myometrial Invasion: Depth marked (<50% or ≥50%) 

with a yellow dashed line. 

 Cervix: Stromal invasion indicated (green outline if 

present). 

 Adnexa/Serosa: Abnormalities highlighted (blue outline). 

 Lymph Nodes: Suspicious nodes (>1 cm) are circled in 

white. 

Visualization: Image shows uterus with tumor extent, 

invasion depth, and annotations for FIGO staging (e.g., "Stage 

IB: ≥50% myometrial invasion").  

3.2. Preprocessing 

MRI images are often noisy, contain abnormalities, and 

have irrelevant information, which greatly reduces their 

quality. Therefore, pre-processing is necessary to eliminate 

the noise and artifacts that might affect the classification 

process while improving image quality and consistency. The 

current study uses down-sampling, filtering, enhancement, 

and augmentation as methods for MRI preprocessing. 

3.2.1. Image Resizing 

A digital image is a matrix with two dimensions M x N, 

where M represents the number of rows, while N represents 

the number of columns. Pixels are the finite number of discrete 

image elements that make up a digital image. The down-

sampling method is used to speed up the data processing and 

make all the input images compatible with the ViT model at 

the same time. The original MRI dataset has a higher image 

resolution of 640x350, but it needs to be scaled down to the 

ViT model's input size of 224x224. The down-sampling 

process reduces the number of pixels in the image based on 

the sampling frequency rate. As a result, the image's 

dimensions and quality are reduced. 

Interpolation is a technique through which the size of 

images is changed. The image interpolation has a bi-

directional character, and its aim is to get the best possible 

estimate of a pixel's intensity and color based on the values of 

neighboring pixels. In the non-adaptive interpolation 

technique, an example being nearest neighbour (NN) 

interpolation, pixel manipulations are done directly without 

considering the features or the content of the image. Non-

adaptive interpolation methods treat all pixels the same way, 

and therefore, they are easy to perform and require less 

processing power. The NN method is quite simple to 

comprehend, and it also consumes less time for processing 

than most other approaches. This method is also characterized 

as the point-shift method. It finds the pixel value that is closest 

to the surrounding coordinates of the specified interpolation 

point. In this way, the method will locate the closest 

corresponding pixel in the input image for every single pixel 

in the output image. With the increase in size, the pixels or 

color dots combine to form a new pixel. It generates edges that 

divide curves into angular segments or steps. This kind of 

interpolation impacts both the reduction and enlargement of 

images. An interpolation kernel for the NN technique is 

delineated as follows in equation (1). 

𝑓(𝑥) = {
0,   𝑥 < 0.5
1,   𝑥 > 0.5

  (1) 

The distance from the grid point to the interpolated point 

is represented by 𝑥 [33]. 
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3.2.2. Image Filtering 

Digital images are particularly vulnerable to noise, which 

originates from inaccuracies in image acquisition and 

transmission in image processing. Images captured by MRI 

are generally vulnerable to salt-and-pepper noise, speckle 

noise, and Gaussian noise, which negatively impact image 

quality. The inferior quality of an image generally undermines 

the efficacy of subsequent activities, including feature 

extraction and reduction, and processed image classification. 

The noises must be eradicated before the further phases of 

processing. Consequently, a median filter is employed in this 

study for denoising purposes. 

A median filter is a type of spatial filter that uses a moving 

window to replace the center value of the window with the 

median of the pixel values that are in the window. Filter 

removed noise but also obliterated fine details.  

Researches mostly depend on median filters for its results, 

due to the filters' ability to provide quite good noise reduction, 

yet this is done without excessive blurring or similar effects. 

Basically, the filters are effective in different noise types. 

Median filters are widely used as smoothing techniques in 

signal/image processing and in time series analysis. A 

significant benefit of this filtering technique compared to 

linear filters is its ability to mitigate the influence of the input 

level of noise with an exceptionally high range. The median 

filtering is superior to the mean filtering as a non-linear 

filtering approach that effectively eliminates noise. It 

possesses the capability to eliminate 'impulse' noise 

(anomalous values that are either too low or too high). It is 

commonly asserted to be 'edge-preserving' as it supposedly 

maintains step edges without introducing blurring. 

Nonetheless, in the case of noise, it can marginally obscure 

edges in images. 

𝑍𝑖 = 𝑚𝑒𝑑{𝑊𝑁𝑖} = 𝑚𝑒𝑑{𝑌𝑖 + 𝑟: 𝑟 ∈ 𝑊𝑁} (2) 

The fundamental median filter is defined as (2), whereas 

𝑌𝑖 and 𝑍𝑖 represent the input and output at location 𝑖 of the 

filter. The [𝑊𝑁𝑖]𝑟𝑟 = 1, … ,2𝑁 + 1, represents the rth order 

statistic of the samples within the window. 𝑊𝑁𝑖 is [𝑊𝑁𝑖]1 <
[𝑊𝑁𝑖]2 < ⋯ [𝑊𝑁𝑖]2𝑁+1. In this research, the filter window 

size is 3x3 [34]. 

3.2.3. Image Enhancement 

Incorporating the Quadrant Dynamic Histograms 

Equalization (QDHE) approach in this work could 

significantly enhance the identification and categorization of 

EC utilizing DL. QDHE improves image quality by 

addressing contrast changes and highlighting small details in 

MRI images, rendering key characteristics, such as lesions and 

abnormalities, more detectable. This improvement facilitates 

precise diagnosis and assists the deep learning model in 

recognizing complex patterns that could be challenging to 

identify. The QDHE process commences histogram 

segmentation utilizing the intensity values derived from the 

input histograms of the image. The histograms of the original 

image are first partitioned into dual sub-histograms. The mean 

values of the sub-histograms will serve as partitioning points 

to segment all the dual sub-histograms into 4 sub-histograms. 

The lower and upper extreme intensity values of the input 

histogram were employed as the initial and terminal points for 

the segments. There are similarities between the partitioning 

technique and the recursive sub-images HE utilized with the 

QDHE. The partitioning approach based on the median seeks 

to allocate pixel counts among sub-histograms evenly. The 

subsequent equation (3) could be employed to ascertain the 

position of each dividing point: 

𝑏1 = 0.25 × (𝐴𝐻 × 𝐴𝑊)

𝑏2 = 0.50 × (𝐴𝐻 × 𝐴𝑊)

𝑏3 = 0.75 × (𝐴𝐻 × 𝐴𝑊)
}  (3) 

The intensities 𝑏1, 𝑏2 and 𝑏3 are assigned indices of 0.25, 

0.50, and 0.75, respectively. These values represent specified 

fractions of the overall pixel count in the input histograms. 

The variables 𝐴𝐻 and 𝐴𝑊 denote the height and width of the 

input image. The clipping process controlled the HE 

enhancement workflow, which resulted in the images that 

were not heavily brightened and that were even. The idea was 

to diminish the clipping effect by changing the input 

histogram symmetry. This was done by altering the histogram 

bin values according to the threshold value, which was related 

to the average image intensity values. The grey level dynamic 

range of each sub-histogram is calculated as the ratio between 

the total gray level spans and the total number of pixels in the 

respective sub-histograms. This method ensures that all the 

sub-histograms have the same amount of improvement space 

available. The whole procedure was expressed mathematically 

by the equation (4): 

𝑠𝑝𝑎𝑛𝑖 = 𝑏𝑖+1 − 𝑏𝑖  (4) 

𝑓𝑎𝑐𝑡𝑜𝑟𝑖 = 𝑠𝑝𝑎𝑛𝑖 × (log10 𝐵𝑖)𝛾 (5) 

𝑟𝑎𝑛𝑔𝑒𝑖 = (𝑀 − 1) ×
𝑓𝑎𝑐𝑡𝑜𝑟𝑖

∑ 𝑓𝑎𝑐𝑡𝑜𝑟𝑙
4
𝑏=1

  (6) 

In equation (4), 𝑠𝑝𝑎𝑛𝑖  denotes the dynamic grey level 

utilized by the ith sub-histograms of the input. In (5), 𝑏𝑖 

denotes the ith split point, while 𝐵𝑖  signifies the total pixels in 

the sub-histogram. For the sub-histograms, the dynamic range 

in the resultant images is delineated as 𝑟𝑎𝑛𝑔𝑒𝑖 , and the effect 

of 𝐵𝑖  in (6) was measured with γ. The γ must be adjusted to 

precisely determine the level of all the sub-histograms in the 

output images. Nonetheless, the QDHE approach utilizes 

nearly equivalent overall pixel counts for every sub-

histogram, rendering equation (5) inconsequential to the 

resultant dynamic ranges. To streamline QDHE and eliminate 

the term γ, the subsequent equation (7) could be restructured: 
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𝑟𝑎𝑛𝑔𝑒𝑖 = (𝑀 − 1) ×
𝑠𝑝𝑎𝑛𝑖

∑ 𝑠𝑝𝑎𝑛𝑙
4
𝑏=1

 (7) 

The dynamic level updated for the ith sub-histograms, as 

delineated by equations (8) and (9), is contained within the 

interval [𝑖𝑠𝑡𝑎𝑟𝑡, 𝑖𝑒𝑛𝑑]. 

𝑖𝑠𝑡𝑎𝑟𝑡 = (𝑖 − 1)𝑒𝑛𝑑 + 1 (8) 

𝑖𝑒𝑛𝑑 = 𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑟𝑎𝑛𝑔𝑒𝑖  (9) 

The first value of 𝑖𝑠𝑡𝑎𝑟𝑡 represents the least intensity in the 

updated assigned dynamic level. Upon determining the new 

dynamic levels for every quadrant sub-histogram, the 

concluding part of QDHE entails the independent equalization 

of all the sub-histograms. Once the histogram assigns the grey 

level [𝑖𝑠𝑡𝑎𝑟𝑡, 𝑖𝑒𝑛𝑑], the equalized outcome ℎ(𝑥) for this 

segment, the transfer function described in equation (10) could 

be utilized. 

𝑡(𝑥) = (𝑖𝑠𝑡𝑎𝑟𝑡 − 𝑖𝑒𝑛𝑑) × 𝑑(𝑋𝑙) + 𝑖𝑠𝑡𝑎𝑟𝑡 (10) 

Thus, cumulative density functionality for the sub-

histogram was denoted as 𝑑(𝑋𝑙) [35]. 

3.2.4.  Data Augmentation 

The data augmentation approach encompasses a broader 

range of solutions that function at the data level rather than at 

the architecture level of the model. It can increase the 

performance of DL models by synthetically producing diverse 

samples with balanced categories for the training dataset. A 

deep learning model demonstrates enhanced performance and 

accuracy when the dataset is sufficient in both quantity and 

quality. The training data must satisfy two criteria: adequate 

diversity and scale, both of which can be achieved by data 

augmentation. Important geometric operations, including 

random rotation, cropping, and flipping, are persistently in 

demand for data augmentation. They frequently increase the 

data volume to improve data diversity and are simple to 

implement. Geometrical data augmentation methods have 

demonstrated significant efficacy in increasing diversity and 

expanding data volume. Rotation is one of the basic geometric 

data augmentation methods. A set of images is created by 

rotating the original image at a specific angle, and the new 

images are then used as training samples in combination with 

the original images. 

The EC MRI dataset consists of 3,500 images and is not 

sufficient for the model to be trained and tested properly. 

Therefore, the dataset is augmented using the geometric 

rotation data augmentation technique. The images are rotated 

by 45°, 90°, 135°, 180°, 225°, 270°, and 315°, as shown in 

Figure 4. As a result, the dataset is increased to a total of 

28,000 images after geometric rotation, including 3,200 

images of normal cases and 24,800 images of abnormal cases. 

The dataset was split in a ratio of 75:25. 

 
Fig. 4 Geometric Rotations Applied to the Images 

3.3. MedSAM Segmentation 

MedSAM is a model based on DL that was created for the 

purpose of segmentation of different anatomical lesions and 

structures within a variety of medical imaging sources. 

MedSAM was trained using a dataset of EC MRI scans. Its 

adjustable prompt mechanism gets the best possible balance 

between personalized and automatic control. Thus, making 

MedSAM a flexible instrument for the usual medical image 

segmentation. MedSAM is considered to be a basic model for 

full medical image segmentation. A key factor in creating such 

a model is the capacity to accommodate different imaging 

situations, anatomical characteristics, and clinical conditions. 

MedSAM is a segmentation method that allows the user to 

determine the segmentation targets by means of bounding 

boxes. In addition, drawing a bounding box is very useful, 

especially in situations where multi-object segmentation is 

needed. The study follows the network architecture proposed 

in SAM, which consists of an image encoder, a mask decoder, 

and a prompt encoder, as shown in Figure 5. 

The image encoder maps the images given as input to a 

very large-dimensional embedded space. The prompt encoder 

turns the user-drawn box boundaries into feature 

representations with the help of positional encoding. After 

that, the mask decoder merges image embedding and swift 

features through cross-attention. The research network was 

built using a transformer model that has shown remarkable 

efficiency across a wide range of applications, including 

image recognition and natural language processing. The 

network deployed a ViT-based image encoding for feature 

extraction, a prompt encoder for the integration of user input 

via bounding boxes, and a mask decoder that provided 

confidence scores and segmentation results by using the 

prompt embedding, image embedding, and output tokens [36]. 

In order to attain a balance between segmentation and 

computational efficiencies, the study adopted the foundational 

ViT model as the picture encoder, since extensive assessments 

showed that bigger ViT models, such as ViT Large and ViT 

Huge, gave only slight improvements in accuracy while 

greatly increasing the demand on computational power. The 

basic ViT approach has 12 transformer layers, each made up 

of the Multilayer Perceptron (MLP) blocks and a multi-head 
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self-attention block with layer normalization. Pre-training 

utilized masked auto-encoder modelling, succeeded by 

comprehensive supervised learning on the dataset. The input 

image (1024×1024×3) was transformed into a series of 

flattened two-dimensional patches measuring 16×16×3, 

resulting in a feature size of 64×64 in the image embedding 

after traversing the image encoder, which is downscaled by a 

factor of 16x. 

 
Fig. 5 Architecture of the MedSAM model 

The prompt encoders translated the bounding box 

prompt's corner point into 256-dimensional vectors of 

embedded data. All the bounding boxes were denoted by the 

embedding pairs consisting of the bottom-right corner and 

top-left corner points. A simple mask decoder methodology 

was utilized to enable real-time interactions after computing 

the image embedding. It comprises two transformer layers for 

integrating the prompt encoding and image embedding, along 

with two inverted convolutional layers to elevate the 

embedded resolution to 256×256. Following that, the 

embedding was subjected to sigmoid activation and then 

bilinear interpolation following the input dimensions. 

The work employed the unweighted sum of the cross-

entropy loss and Dice loss as the last loss function, as it has 

demonstrated robustness across several medical image 

segmentation challenges. Let 𝑆𝑀 and 𝐺𝑇 represent the 

segmentation result and the ground truth, respectively. Let 

𝑠𝑚𝑖 represent the voxel 𝑖’s predicted segmentation and 𝑔𝑡𝑖 

symbolize the ground truth, accordingly. 𝑁 represents the 

voxel count in the image 𝐼. The binary cross-entropy loss was 

articulated as follows in Equation (11). 

𝐿𝑠𝐵𝐶 = −
1

𝑁
∑ [𝑔𝑡𝑖 log 𝑠𝑚𝑖 + (1 − 𝑔𝑡𝑖) log(1 − 𝑠𝑚𝑖)]𝑁

𝑖=1   

 (11) 

𝐿𝑠𝐷 = 1 −
2 ∑ 𝑔𝑡𝑖𝑠𝑚𝑖

𝑁
𝑖=1

∑ (𝑔𝑡𝑖)2𝑁
𝑖=1 +∑ (𝑠𝑚𝑖)2𝑁

𝑖=1

  (12) 

𝐿𝑠 = 𝐿𝑠𝐵𝐶 + 𝐿𝑠𝐷 (13) 

The dice loss and final loss were articulated in the given 

Equations (12) and (13). To optimize the training process, the 

research presented the loss function as the unweighted 

aggregate of cross-entropy loss and Dice loss, thereby 

enhancing efficiency. MedSAM’s exceptional generalization 

capability renders it a flexible solution for diverse medical 

image segmentation applications with enhanced efficiency 

and accuracy. The utilization of a unique technique to 

ascertain the depth of MI is a significant issue owing to the 

variability of uterine morphologies and cancer regions. 

Consequently, an approach for the automatic construction of 

UCL on a semantic segmentation map was developed to 

compute the MI depth. A line is derived as the simulated UCL. 

Subsequently, two maximal parallel lines to the UCL are 

established. One represents the maximal density of the 

myometrium to the UCL, while the other indicates the 

maximal extent of the cancer to the UCL. The proportion of 

the line's length is equivalent to the MI depth. The standard 

equation of an ellipse was shown in (14). 

𝑎𝑥2 + 𝑏𝑥𝑦 + 𝑐𝑦2 + 𝑑𝑥 + 𝑒𝑦 + 𝑓 = 0   (14) 

The research employed a direct least-squares method to 

fit the ellipse to independent data by reducing the algebraic 

distances, constrained by the equation 4𝑎𝑐 − 𝑏2 = 1. It is 

simple to execute and highly resilient. Here, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 

represent the fitted ellipse variables derived from the pair of 

points (𝑥, 𝑦) received from the inputs. The procedure was 

implemented on the uterine contour within the segmentation 

images, designating the long axis of the fitted ellipse as the 

UCL. Vertical lines are drawn at all the points of the UCL, and 

the distance ratio of every line perpendicular to the 

intersections of the cancer's borders and the uterine border was 

computed, with the maximal distance ratio designated as the 

depth of MI [37]. 

3.4. ViT-LoRA Model 

ViT has achieved significant success and has proliferated 

across numerous vision applications, including semantic 

segmentation, image classification, and object identification. 

Pretrained ViT algorithms have been extensively utilized in 

downstream tasks, yielding exceptional outcomes via transfer 

learning. ViT is a novel DL method that takes the Transformer 

architecture, which was first used for Natural Language 
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Processing (NLP), and adapts it to the field of computer 

vision, especially to the classification of images. ViT is a 

novel method that treats images as patch sequences, just as 

word tokenization is done in language processing. That means 

the whole processing of the image is changed in a way that it 

can be considered as an advantage in the vision tasks, due to 

the Transformer's power in catching subtle relations among 

the sequences. Even though ViT models show high precision 

and better generalization over different tasks, their application 

in EC classification is still very difficult, particularly in 

clinical settings, because of the difficulties involved. This is 

mainly because ViT models, utilizing transformer 

architecture, include a substantially greater parameter count 

than earlier CNN-based models. Figure 6 depicts the 

architectural details of the implemented ViT-LoRA model 

[38]. 

 
Fig. 6 Architecture of ViT-LoRA Model 

Transformers have attained significant efficiency in NLP 

tasks, mostly due to their attention processes. The ViT has 

developed into a formidable architecture for the classification 

of images, building upon this notion. The ViT architecture 

consists of three essential components.  

The image as input 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 is split into patches with 

fixed sizes to provide a sequential illustration of flattened 2D 

patches 𝑥𝑝 ∈ 𝑅𝑁×(𝑝2∙𝐶), where 𝐻 indicates the height of the 

image, 𝑊 symbolizes the width of the image, 𝐶 symbolizes 

the count of channels, and (𝑃, 𝑃) specifies the resolution of all 

the image patches. The quantity of patches 𝑁 could be 

determined as follows in equation (15). 

𝑁 =
𝐻×𝑊

𝑃2   (15) 

Prior to inputting the patch series into the Transformer, 

the linear projection (LP) was executed on the patches. In this 

LP, the patches of data were transformed into a D-dimensional 

vector space through multiplication with the embedding 

matrix 𝐸. The result of this LP was termed patch embedding. 

Positional embedding 𝐸𝑝𝑜𝑠 was added to the embeddings of 

the patch to allow the model to collect positional data in the 

images. Furthermore, the embedded image patches were 

combined with the class tokens learnable. 𝑥𝑐𝑙𝑎𝑠𝑠, which was 

crucial for the classification procedure. The preliminary patch 

embedding 𝑧0, which includes the embedding image patches 

sequence and the class tokens, were calculated using equation 

(16): 

𝑧0 = [𝑥𝑐𝑙𝑎𝑠𝑠; 𝑥𝑝
1𝐸; 𝐸; … ; 𝑥𝑝

𝑁𝐸] + 𝐸𝑝𝑜𝑠,  

𝐸 ∈ 𝑅𝑁×(𝑝2∙𝐶)×𝐷, 𝐸𝑝𝑜𝑠 ∈ 𝑅(𝑁+1)×𝐷 (16) 

Here, 𝑥𝑝
𝑁 denotes the image patch of n, 𝑛 ∈ 1,2, … , 𝑁. 

The resultant embedded image patches were subsequently 

transmitted to the encoder of the Transformer. This encoder 

consists of 𝐿 equivalent encoder blocks, each comprising two 

layers: a Multi-head Self-Attention (MSA) and a Fully 

Connected (FC) feed-forward Multi-Layer Perceptron (MLP) 

layer. In all the encoder blocks, the 𝑙-th layer obtains the input 

sequences from the preceding layers. 𝑧𝑙−1. The input 𝑧𝑙−1 was 

subjected to normalization of layer, which standardizes the 

inputs with the dimension of features, enhancing training 

efficiency and performance. The result of the normalization 

layer was thereafter transmitted to the layer of MSA.  

The result of the MSA was subsequently subjected to 

layer normalization once again. The result obtained from the 

layer normalizing was subsequently input into the layer of the 

MLP. Residual or skip connections were utilized in the 

encoding blocks to enhance the transmission of data within 

non-consecutive layers. These connections facilitate the 

propagation of gradients throughout the networks, unaffected 

by the non-linear activation function, hence mitigating the 
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vanishing gradients problem. The gradients flow in the 𝑙-th 

encoding layer were delineated as follows in equations (17) 

and (18). 

𝑧𝑙
′ = 𝑀𝑆𝐴(𝐿𝑁(𝑧𝑙−1)) + 𝑧𝑙−1,   𝑙 = 1, … , 𝐿 (17) 

𝑧𝑙 = 𝑀𝐿𝑃(𝐿𝑁(𝑧𝑙
′)) + 𝑧𝑙

′,   𝑙 = 1, … , 𝐿 (18) 

Here, 𝐿𝑁 indicates the normalization of the layer. 

The MSA comprises layers such as linear, concatenation, 

self-attention, and concluding linear layers. In the MSA, 

numerous self-attention processes are executed 

simultaneously according to the count of heads 𝑘. In all heads, 

the D-dimension patch embeddings 𝑧 were multiplied by the 

matrices of weights like 𝑈𝑞 , 𝑈𝑘 and 𝑈𝑣 to derive the key (𝑘), 

value (𝑣), and query (𝑞) matrices. The function of 

multiplication in all the heads was specified as in (19). 

[𝑞, 𝑘, 𝑣] = [𝑧𝑈𝑞 , 𝑧𝑈𝑘 , 𝑧𝑈𝑣],    𝑈𝑞 , 𝑈𝑘 , 𝑈𝑣 ∈ 𝑅𝐷×𝐷ℎ  (19) 

The derived matrices 𝑞, 𝑘, and 𝑣 are subsequently 

estimated into 𝑘 subspaces, and the weighted average of every 

value 𝑉 was computed. Attention weights were calculated in 

every head by evaluating the relation within every set of 

elements. (𝑖, 𝑗), through the dot product of 𝑞𝑖 and 𝑘𝑗. The 

resultant dot products signify the implication of patches in the 

sequences. The dot products of 𝑞 and 𝑘 were calculated using 

equation (20), followed by the application of a softmax layer 

to derive the weights for the values. 

𝐴 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑞𝑘𝑇

√𝐷ℎ
) ,   𝐴 ∈ 𝑅𝑁×𝑁    (20) 

Here, 𝐷ℎ = 𝐷/𝑘. 

The matrix structures of the self-attention layers are 

concatenated and subsequently processed by a single linear 

layer with a trainable weight matrix. 𝑈𝑚𝑠𝑎, yielding the 

following equation (21). 

𝑀𝑆𝐴(𝑧) = [𝑆𝐴1(𝑧); 𝑆𝐴2(𝑧); … , 𝑆𝐴𝑘(𝑧)]𝑈𝑚𝑠𝑎 ,    𝑈𝑚𝑠𝑎 ∈
𝑅𝑘.𝐷ℎ×𝐷       (21) 

The MSA’s every head acquires information from 

numerous dimensions and perspectives, enabling the 

framework to encode complex properties simultaneously. The 

ViT model’s classification is executed using an MLP, 

comprising two FC layers utilizing the activation function 

called Gaussian error Linear Units (GeLU). The GeLU assigns 

a weight to the input depending on its magnitude instead of its 

sign. In contrast to the ReLU, GeLU could yield both negative 

and positive outputs and demonstrates a greater range of 

curvature. This factor enabled the GeLU functions to more 

effectively approximate intricate functions in comparison to 

the ReLU. The visual depiction of the sequence is acquired 

using the following equation (22): 

𝑟 = 𝐿𝑁(𝑧𝐿
0)      (22) 

In the encoding process, the final layer chooses the initial 

token of a sequence, 𝑧𝐿
0, and produces the representations of 

image 𝑟 through the application of normalization of the layer. 

The resultant 𝑟 was then processed by a compact MLP head, 

comprising a hidden layer utilizing the sigmoid functions for 

classification objectives. 

LoRA, developed by Microsoft, offers an innovative 

solution to this challenge by modifying pre-trained vision 

methodologies for effective EC detection systems without 

necessitating full fine-tuning. This approach entails fixing the 

pre-trained model’s weights and incorporating adaptable rank 

decomposition matrix structures into all the layers of the 

Transformer architecture. LoRA significantly decreases the 

number of parameters trainable in the process of fine-tuning. 

This process enhances the feasibility of the training function 

with standard medical imaging data sets while optimizing 

GPU resource utilization and storage, hence meeting essential 

clinical demands for space and speed. The work integrates 

weights of LoRA into all self-attention layers of a pre-trained 

ViT for the development of the model architecture. During 

fine-tuning, the changes to the pre-trained query matrix WQ 

and the value projection matrix 𝑊𝑉 in a self-attention layer, 

the constraints are imposed through the incorporated weights 

of LoRA. The weights are represented using the low-rank 

decomposition and were articulated as follows in equation 

(23):  

ℎ = 𝑊0𝑥 + ∆𝑊𝑥 = 𝑊0𝑥 + 𝐵𝐴𝑥    (23) 

Here, 𝑥 ∈ 𝑅𝐻×𝑊×𝐶 represents the input, and ℎ ∈ 𝑅𝐻×𝑊×𝐶  

denotes the features of the output. The weight change ∆𝑊 is 

composed of two low-rank matrices, 𝐵 ∈ 𝑅𝑑×𝑟 and 𝐴 ∈ 𝑅𝑟×𝑑.  

At the commencement of training, the work utilized an 

initialization of a random Gaussian for matrix 𝐴 and initialized 

matrix 𝐵 to zero. Thus, the product of matrices 𝐵 and 𝐴, 

referred to as ∆𝑊, is originally zero. The rank 𝑟 of these low-

rank matrices is significantly less than the model dimensions 

𝑑, and the research experimentally fixed 𝑟 = 8. Typically, 𝑟 

should not exceed 8, as the low-rank matrix amplification 

capacity is compromised when the rank reaches 64 in the 

experiment [39]. 

3.5. Agentic AI Reasoning Module 

The Agentic AI reasoning module in this research 

represents a new multi-agent LLM-powered framework for 

clinical decision-making in endometrial cancer using 

multimodal MRI data. A special AI agent named "Myograde" 
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lies at the core of this system, integrating LLM capabilities 

and domain-specific reasoning in staging, grading, and 

personalized reporting for endometrial carcinoma. The agentic 

system is built as a modular, extensible architecture designed 

for high-assurance medical use along multiple functional 

domains. The framework then initiates an Image Agent tasked 

with analyzing the DICOM/MRI, using segmentation outputs 

(MedSAM) to localize the tumor, uterus, and important 

anatomical landmarks, such as the UCL. Subsequently, from 

these, the system computes the depth of myometrial invasion, 

involvement of the cervical stroma, and other spatial features 

important for staging. 

 
Fig. 7 Agentic AI-based reasoning module 

As shown in Figure 7, the reasoning module continues 

with a network of collaborating sub-agents: the Endometrial 

Vision Agent superimposes the segmentation results on top of 

the images for visual verification; the Endometrial Report 

Agent generates structured clinical reports in patient's terms; 

the Endometrial Compliance Agent makes sure that all the 

agents in the system comply with HIPAA/GDPR, conduct 

access auditing, and the Endometrial Scheduler Agent 

constantly evaluates any new upload for processing.  

In addition to imaging, lab indices (SII, PLR, NLR, 

platelet counts, etc.) and risk scores are integrated into the 

system, allowing for more refined staging classifications 

based on both radiologic and systemic biomarkers; it is 

equipped with fact-checking and clinical plausibility modules 

that simulate a tumor board review, contradicting what would 

be clinical integrity in profile. A Molecular Marker Agent 

predicts genomic markers such as ER, PR, MSI, POLE, and 

p53 based on a fusion of imaging, clinical, and genomic 

information. Consequently, on the basis of staging and 

molecular profiles, the Therapy Planning Agent offers 

personalized chemotherapy cycles, whereas, optionally, the 

Nutrition/Treatment Navigator takes care of monitoring for 

side effects, fatigue, and diet, thus supporting the patient 

through holistic care. The Meta-Evaluator Agent will compile 

insights across agents for the explainable AI outputs, 

including risk stratification and treatment recommendations, 

while maintaining verification guardrails and actionable 

safety warnings. The result would be an autonomous tumor 

board assistant with a human-in-the-loop interface, which, 

apart from prediction of DMI and tumor grades(G1-G3), can 

also generate explainable reports grounded in clinical practice 

and suggestions for next-step interventions. This agentic 

reasoning module sets the stage for a new paradigm in cancer 

diagnostics AI, going from static predictions to dynamic, 

context-aware clinical reasoning. In high-stakes clinical 

settings, Agentic AI facilitates distributed clinical reasoning 

by allocating responsibilities such as diagnosis, treatment 

planning, and vital monitoring to specialized agents. For 

instance, one agent may obtain patient history, another verifies 

findings against diagnostic criteria, and a third suggests 

therapy alternatives. These agents coordinate via shared 

memory and reasoning chains, providing coherent and secure 

suggestions. Applications encompass radiology assessment, 

ICU management, and pandemic responses. Despite the 

current lack of real-world applications owing to the new stage 

of the field, research indicates that Agentic AI has the 

potential to transform the healthcare sector [40].  
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3.6. Proposed MedSAM-ViT-LoRA Algorithm & 

Hyperparamters 

The pseudocode for this developed research model is 

presented in the following. The hyperparameters of the 

developed model are presented in Table 4. The pseudocode for 

the proposed research begins with loading MRI scans and 

clinical data from the patient dataset.  

Each image is preprocessed by resizing it to 224×224 

pixels via NN interpolation, denoising through a median filter, 

enhancing with QDHE, and then geometrically augmenting 

the data using image rotations at four 45° increments to 

maximize the size of the dataset. Preprocessed images are then 

fed into the MedSAM model for segmentation of anatomical 

regions, such as the tumor, uterus, and myometrium.  

Using the segmented maps, the UCL is generated through 

the UCLGA, with depths of MI calculated as tumor depth 

divided by total myometrial thickness and subsequently 

categorized as either shallow or deep invasion (≥50%). 

Simultaneously, image-derived features and clinical features 

are combined to form one unified feature set. These features 

are passed to the fine-tuned ViT model via LoRA to tokenize 

the inputs and compute initial tumor grade predictions (G1, 

G2, G3) through transformer layers and an MLP head. 

The agentic reasoning module then improves upon these 

predictions by self-reflecting and consulting external clinical 

knowledge; the revised outputs should now be more accurate. 

The Endometrial Report Agent, Vision Agent, Scheduler 

Agent, and Compliance Agent then work together to create 

explainable reports, visualize the segmentation overlays, 

manage incoming data, and monitor compliance. The final 

outputs include DMI classification, tumor grade, and the 

complete AI-generated tumor board report. 

Algorithm: MedSAM-ViT-LoRA Model 

Initialization 

Step 1: Load Patient Data 

LOAD MRI_images, clinical_features 

Step 2: Preprocessing 

FOR each MRI_scan IN MRI_scans: 

Resize image using Nearest Neighbour Interpolation 

resized_image←nearest_neighbor_interpolation(MRI_sca

n, target_size=(224, 224)) 

Apply Median Filtering to remove noise 

    denoised_image ← apply_median_filter(resized_image, 

window_size=3x3) 

Enhance the image using QDHE 

  

enhanced_image←QDHE_enhancement(denoised_image) 

Data Augmentation via Rotation 

    FOR angle IN [45, 90, 135, 180, 225, 270, 315]: 

        rotated_image ← rotate_image(enhanced_image, 

angle) 

        augmented_dataset.append(rotated_image) 

    augmented_dataset.append(enhanced_image) 

Step 3: Image Segmentation using MedSAM 

FOR each preprocessed_scan: 

    segmentation_map ← MedSAM(preprocessed_scan) 

    STORE segmentation_map 

Step 4: Generate Uterine Cavity Line using UCLGA 

FOR each segmentation_map: 

    UCL ← UCLGA(segmentation_map) 

    STORE UCL 

Step 5: Compute DMI (Deep Myometrial Invasion) 

FOR each UCL, segmentation_map: 

    a ← tumor_depth(segmentation_map, UCL) 

    b ← total_myometrial_thickness(segmentation_map, 

UCL) 

    DMI_ratio ← a / b 

    IF DMI_ratio ≥ 0.5: 

        DMI_label ← "DMI+" 

    ELSE: 

        DMI_label ← "DMI-" 

    STORE DMI_label 

Step 6: Feature Fusion 

FOR each patient: 

image_features←extract_features_from(segmentation_ma

p) 

    combined_features ← CONCAT(image_features, 

clinical_features[patient]) 

    STORE combined_features 

Step 7: Tumor Grading with ViT + LoRA 

INITIALIZE VisionTransformer with LoRA_tuning 

FOR each combined feature: 

    patch_embeddings ← ViT.tokenize(combined_features) 

    hidden_state ← ViT.forward(patch_embeddings) 

    grade_prediction ← MLP_head(hidden_state) 

    STORE grade_prediction 

Step 8: Agentic Reasoning Module 

FOR each prediction IN grade_prediction: 

    reflection_result ← self_reflect(prediction, 

clinical_features) 

external_knowledge_adjustment←consult_clinical_guidel

ines(reflection_result) 

    final_grade ← revise_prediction(prediction, 

external_knowledge_adjustment) 

    STORE final_grade 

Step 9: Reporting by Agents 

CALL EndometrialReportAgent with DMI_label, 

final_grade 

CALL EndometrialVisionAgent to overlay segmentation 

CALL EndometrialComplianceAgent to audit access logs 

CALL EndometrialSchedulerAgent to monitor new 

uploads 

Step 10: Output Results 

FOR each patient: 

    GENERATE results and tumor grade 

END 
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Table 4. List of research model’s hyperparameters  

Component Hyperparameter Value / Setting Remarks 

MedSAM Input Image Size 224 × 224 Matches ViT input size after downsampling 

 Encoder Backbone 
Vision Transformer 

(Frozen) 
Pretrained; not fine-tuned during segmentation 

 Prompt Type Bounding Box Used to segment the tumor and uterus regions 

UCLGA Line Fitting Method Ellipse Fitting 
Generates the uterine cavity line from 

segmentation maps 

ViT with 

LoRA 
Patch Size 16 × 16 Standard for ViT-base 

 
Number of Transformer 

Layers 
12 ViT-Base configuration 

 Embedding Dimension 768 Hidden size of transformer layers 

 
Heads in Multi-head 

Attention 
12 Consistent with ViT-Base 

 Dropout Rate 0.1 Helps regularization 

 LoRA Rank 4 
Number of rank factors added to attention 

weights 

 LoRA Alpha 16 Scaling factor for low-rank matrices 

 Learning Rate 0.0001 Optimized using validation 

 Optimizer AdamW Weight decay + adaptive learning 

 Epochs 50 Number of fine-tuning iterations 

 Batch Size 32 Adjusted based on GPU memory 

MLP Classifier Hidden Layers 2 (512, 256 neurons) Lightweight architecture 

 Activation Function ReLU For non-linearity 

 Output Units 3 (G1, G2, G3) Multi-class classification 

 Loss Function Cross-Entropy Loss Suitable for multi-class classification 

 

4. Experiment and Analysis 
4.1.  Experiment Setup 

In this section, the experimentation and analysis of the 

proposed EC detection and staging model, ViT-LoRA, are 

presented. The developed research model was experimented 

with and evaluated utilizing the PYTHON 3.7.12 

programming language. The experimentations are conducted 

on Google Colab Pro. The ViT model fine-tuned using LoRA 

was evaluated for grading the EC stage. As the primary aim of 

this research is to find the depth of the MI, the EC stages are 

mainly detected as per FIGO guidelines. 

4.2.  Evaluation Metrics 

The performance evaluation of the proposed model was 

carried out by conventional classification parameters such as 

accuracy, specificity, precision, F1 score, and sensitivity. 

Accuracy: The efficiency of a model is assessed by its 

accuracy, determined by a ratio of TP and TN relative to all 

previous predictions. The following equation (24) is applied 

to compute the accuracy. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁 𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁⁄   (24) 

Precision: The TP rate, indicating the percentage of 

correctly predicted positive cases among all predicted 

instances, was utilized to evaluate the precision of the model.  

Equation (25) is utilized to assess the precision of the 

model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑃⁄     (25) 

F1-Score: It is a precision and recall’s harmonic mean and 

enables a balanced assessment of the performance of a model. 

Equation (26) is applied to calculate the F1-score. 

𝐹1 = 2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙⁄   (26) 

Specificity: It is the measure of the model to accurately 

identify negative outcomes and is assessed by calculating the 

ratio of correctly classified TN. This statistic evaluates the 

classifier’s potential to accurately identify and categorize 

adverse occurrences. The specificity of the model was 

computed by using equation (27). 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 𝑇𝑁 + 𝐹𝑃⁄     (27) 

Sensitivity: It refers to the model’s potential to accurately 

identify positive instances. It quantifies the proportion of true 

positive cases accurately recognized.  

It can also be referred to as recall. The following equation 

(28) is applied to compute the sensitivity of the model. 
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𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃 𝑇𝑃 + 𝐹𝑁⁄     (28) 

True Positive (TP) indicates the total instances of images 

properly classified as EC. True Negative (TN) characterizes 

the total images correctly designated as not stated as EC. False 

Positive (FP) is the total count of non-cancerous images 

inaccurately classified as EC when they are not. False 

Negative (FN) characterizes the overall count of cancerous 

image instances incorrectly classified as non-cancerous [16-

30]. 

Table 5 elaborates on the statistical framework used in the 

research, delineating the performance metrics, dataset 

division, and control measures that guaranteed the proper and 

reproducible methodology. The significance of the differences 

among the cases of FIGO Stage IA and IB is shown in Table 

6, stating that the applied clinical variables did not reveal any 

significant differences (p > 0.05), thus underlining the 

database of conventional clinical indicators that the advanced 

imaging-based and AI-driven analysis is necessary for 

accurate staging.  

Table 5. Statistical analysis and evaluation methods used in the study 

Aspect Method / Metric Assumption Details Purpose 

Descriptive Statistics 

(Clinical Data) 
Mean ± Standard 

Deviation 

Continuous variables are assumed 

to be approximately normally 

distributed 

Summarize patient 

demographics and clinical 

characteristics 
Categorical Data 

Analysis 
Frequency and Percentage Independent observations 

Describe stage, grade, and 

invasion distribution 

Dataset Split 
75% Training / 25% 

Testing 
Random split; no overlap between 

sets 
Prevent data leakage and 

ensure fair evaluation 

Performance Metrics 

Accuracy 
Based on TP, TN, FP, and FN from 

the confusion matrix 
Overall classification 

correctness 
Precision TP / (TP + FP) Measure false-positive control 

Sensitivity (Recall) TP / (TP + FN) 
Measure true-positive 

detection capability 

Specificity TN / (TN + FP) 
Measure true-negative 

identification 

F1-Score 
Harmonic mean of precision and 

recall 
Balanced performance 

evaluation 
Statistical 

Significance Level 
p < 0.05 Two-tailed tests 

Determine meaningful 

differences between groups 
Group Comparisons 

(Stage IA vs IB) 
Inferential statistical tests 

Independent samples; normality 

assumed 
Assess clinical variable 

significance 

Control Measures 
Fixed preprocessing, 

identical splits, same 

metrics 

Consistent pipeline across 

experiments 
Ensure reproducibility and 

fairness 

Comparative 

Analysis 
Same metrics for all 

benchmark models 
Uniform evaluation protocol 

Enable a valid performance 

comparison 
 

Table 6. Statistical significance analysis of clinical variables between FIGO stage IA and stage IB 

Clinical Variable Stage IA Stage IB Statistical Test p-Value 

Age (years, mean ± SD) 48.4 ± 8.9 61.8 ± 9.3 Two-tailed t-test 0.99 

Tumor Grade Distribution G1–G3 G1–G3 Chi-square test 0.54 

Maximum Tumor Diameter (<3 cm / ≥3 cm) 354 / 115 90 / 193 Chi-square test 0.54 

Myometrial Invasion Depth (<50% / ≥50%) 456 / 13 19 / 264 Chi-square test 0.74 

Mixed Carcinoma Presence (Yes / No) 192 / 277 149 / 134 Chi-square test 0.15 

 
Table 7. Mean ± standard deviation of clinical variables across FIGO stages 

Clinical Variable FIGO Stage IA (Mean ± SD) FIGO Stage IB (Mean ± SD) 
Age (years) 48.4 ± 8.9 61.8 ± 9.3 

Tumor Grade (Numerical Encoding*) 1.34 ± 0.56 1.78 ± 0.71 

Maximum Tumor Diameter (cm) 2.41 ± 0.82 3.67 ± 1.14 

Myometrial Invasion Depth (%) 18.6 ± 9.4 67.2 ± 12.1 
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In addition to this, Table 7 provides a summary of central 

tendency and variability of important continuous variables 

using mean ± standard deviation, showing the trends in age, 

tumor characteristics, and myometrial invasion depth on the 

basis of the observable stages, even though these trends are 

statistically non-significant. 

4.3. Performance Assessment 

The performance analysis of the developed research 

model is assessed based on both training and test datasets. The 

performance of the model is assessed utilizing common 

classification metrics like accuracy, specificity, precision, F1 

score, and sensitivity. Both these performance assessments are 

tabulated individually in the following Tables 8 and 9. 

Table 8. Results of proposed model using training dataset  

Parameters Normal Abnormal 

Accuracy 98.73 97.88 

Precision 97.86 97.62 

F1-score 98.43 97.57 

Specificity 99.26 98.92 

Sensitivity 98.40 97.86 

 

Table 8 depicts the performance of the developed model 

using the training dataset, revealing a strong classification 

capability for both normal and abnormal endometrial cancer 

cases. It exhibits 98.73% accuracy for normal cases and an 

accuracy of 97.88% for abnormal cases, hence, correctly 

classifying most of the inputs given to it. A precision of 

97.86% (normal) and 97.62% (abnormal), which is low on the 

false-positive rates, indicates that most of the positive 

instances predicted are indeed true. The F1-score, which 

involves balancing the recall and precision functions, was 

found to be 98.43% for the normal class and 97.57% for the 

abnormal class, confirming that the model equally performs in 

the two classes with no bias. Specificity values of 99.26% for 

the normal candidate and 98.92% for the abnormal candidate 

further reinforce the model's strength in correctly identifying 

true negatives, thereby lowering the chance of labelling a 

healthy patient as having EC. The sensitivity or recall, or true 

positive rate, of 98.40% (normal) and 97.86% (abnormal) 

reflects the model's ability to detect respective true-positive 

data. The results demonstrate that the model holds robustness, 

reliability, and suitability for situations demanding high 

stakes, such as early detection and EC staging. Figure 8 

depicts the graphical illustration of the results on training data. 

 
Fig. 8 Graphical illustration of results on training data 

Table 9. Results of proposed model using test dataset  

Parameters Normal Abnormal 

Accuracy 97.59 96.82 

Precision 97.25 96.77 

F1-score 96.81 95.31 

Specificity 98.74 96.64 

Sensitivity 97.38 95.85 

 
Table 9 shows the test performance of the developed 

model, consequently exhibiting its state-of-the-art 

generalizability and diagnostic capabilities in real-world 

environments. Accuracy values are 97.59% (normal) and 

96.82% (abnormal), indicating that the model does not lose 

reliability in classification even on clinical data never seen 

before. The precision values, 97.25% (normal) and 96.77% 

(abnormal), prove that the model has a low false alarm rate, 

which is again extremely important in clinical applications, 

where maintaining reliability in reducing false alarms can be 

critical. The F1 values, which consider both precision and 

recall, remain at 96.81% (normal) and 95.31% (abnormal), 

which shows stability and balance for the performance of both 

classes. The specificity values for normal and abnormal cases 

are 98.74% and 96.64%. This shows the model's high potential 

to meaningfully control the false-positive rate and correctly 

declare the non-cancerous cases, avoiding unnecessary 

interventions or overdiagnosis. Since the reported sensitivity 
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scores were 97.38 percent for normal cases and 95.85 percent 

for abnormal cases, the model has shown a strong ability to 

detect true positives, thus missing fewer cases of actual EC. 

Hence, it is evident from the results that the model offers a 

steady and clinically dependable performance and is ready for 

deployment as a tool for the detection and grading of 

preoperative EC in diverse patient populations. Figure 9 

depicts the graphical illustration of the results on the test data. 

 
Fig. 9 Graphical illustration of results on test data 

The results of the ablation study in Table 10 highlight the 

incremental contribution of each component in the MedSAM-

ViT-LoRA framework and confirm the efficiency of the 

integrated design. The base CNN shows a lower performance 

in comparison with others, which indicates the drawbacks of 

traditional architectures for the complicated tasks of EC 

staging. The backbone of ViT is introduced, which contributes 

to an overall accuracy of capturing long-range spatial 

dependencies, and the addition of anatomical segmentation 

based on MedSAM boosts the performance even more by 

allowing the exact localization of the uterus and tumor areas. 

With the UCLGA integration, sensitivity and F1-score are 

boosted, made possible by the precise measurement of MI 

depth, a very important clinical marker. With the 

implementation of LoRA-based fine-tuning, the transformer 

model is adapted more efficiently with the least amount of 

parameters to obtain the surplus benefits as well. The proposed 

final model, including the agentic reasoning module, turns out 

to be the most effective one according to all metrics, thus 

underlining the significance of the processes of iterative self-

reflection, clinical knowledge integration, and multi-agent 

collaboration for the generation of strong, clear, and clinically 

trustworthy predictions. Figure 10 depicts the graphical 

illustration of the ablation study results comparison. 

Table 10. Comparison of ablation study results  

Model Variant Accuracy Sensitivity Precision F1-Score Specificity 
Baseline CNN 89.12 88.40 87.95 88.17 90.03 

ViT Only 92.68 91.72 92.15 91.93 93.10 
MedSAM + ViT 94.21 93.10 94.02 93.56 94.48 

MedSAM + ViT + UCLGA 95.34 94.42 95.10 94.76 95.68 
MedSAM + ViT + LoRA 95.71 94.90 95.88 95.38 96.02 

MedSAM + ViT + UCLGA + LoRA 96.08 95.30 96.10 95.68 96.21 
Proposed Full Model 96.82 95.85 96.77 95.31 96.64 

 
Table 11. Comparison of results with current models  

Models Accuracy Sensitivity Precision F1-Score Specificity 

SSD-UNet [16] 86.90 81.80 NA NA 91.70 

U-Net [17] 88.60 92.30 NA NA 86.40 

RF [18] 85.71 95.45 84.00 90.00 69.23 

ResNet-101 [19] 92.60 91.80 91.72 92.00 93.58 

DenseNet-12+MLR [20] 84.20 94.10 76.20 68.50 74.40 

EPSVM [21] 93.70 94.70 81.80 87.80 93.30 

LR [22] 85.30 90.30 NA NA 80.00 
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CNN [23] 89.00 93.00 NA NA 70.00 

Multi-sequence MRI Analysis [24] 90.30 91.70 84.60 NA 89.50 

ResNet [25] 88.75 87.50 86.25 NA 95.00 

Swin Transformer [26] 96.00 95.00 96.70 NA 96.70 

mpMRI Analysis [27] 92.10 86.70 78.80 NA 93.60 

MLP [28] 95.60 95.20 96.20 NA 96.90 

NPM [29] 86.00 71.60 NA NA 77.70 

CNN [30] 91.00 94.00 NA NA 91.00 

MedSAM+ViT-LoRA 96.82 95.85 96.77 95.31 96.64 

 

 
Fig. 10 Graphical illustration of ablation study results comparison 

 
Fig. 11 Graphical illustration of results comparison 

Table 11 presents a full comparison of the developed 

MedSAM+ViT-LoRA model with the state-of-the-art 

variations of EC detection and grading, exhibiting higher 

performance in all key evaluation metrics. The developed 

model yields the highest accuracy of 96.82 percent, surpassing 

the Swin Transformer with an accuracy of 96.00 percent, MLP 
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with 95.60 percent, and EPSVM with 93.70 percent, thus 

confirming its strength in generalization and reliability. In 

terms of sensitivity (correctly identifying positive cases 

[abnormal]), the proposed model scores 95.85 percent, 

narrowly better than the Swin Transformer (95.00 percent) 

and ResNet-101 (91.80 percent), while markedly better than 

older methods, e.g., SSD-UNet (81.80 percent) and NPM 

(71.60 percent).  

The precision of the developed model is 96.77%, 

indicating that fewer false positives exist in the model and that 

there is a higher confidence level in its positive predictions, 

which surpasses all prior models for which the value is 

present, e.g., ResNet-101 (91.72%) and RF (84.00%). Its F1-

score, balancing precision and recall, is 95.31%, the highest 

among reported values and indicative of outstanding overall 

predictive harmony.  

Then, with a specificity of 96.64%, the model performed 

well in identifying negatives (normal cases), trailing only 

MLP at 96.90% and ahead of EPSVM at 93.30% and U-Net 

at 86.40%. This consistent domination across all metrics 

underscores the strength of integrating advanced segmentation 

(MedSAM), transformer-based learning (ViT), and efficient 

fine-tuning (LoRA), alongside agentic reasoning; thus, 

positioning the developed model as the most all-inclusive and 

clinically viable solution among all compared approaches for 

highly accurate diagnosis of EC and tumor grading. Figure 11 

depicts the graphical illustration of the results comparison. 

The proposed framework outperformed existing state-of-

the-art methods mainly because of the anatomically inspired 

and morphologically relevant design. In contrast to traditional 

methods that depend on localized characteristics or manually 

crafted descriptors like CNN and radiomics, the application of 

MedSAM allows for accurate segmentation of the uterus and 

tumor, so that the learning is very much concentrated on the 

areas of clinical significance.  

The automated UCLGA gives a clear and precise 

measurement of MI, which is a major prognostic indicator 

frequently ignored in earlier studies. Moreover, the ViT model 

fine-tuned through LoRA is able to identify long-range spatial 

relationships while at the same time minimizing overfitting 

and the need for high computing power. An agentic reasoning 

module's incorporation results in decision-making consistency 

and interpretability improvement by means of iterative 

refinement and combining clinical expertise, thus providing a 

comprehensive explanation for the performance gains over 

traditional methods that were noticed. 

4.4. Agentic-AI-based Grading Results 

Figure 12 shows the interface of the Image Agent module. 

This module is part of the proposed Agentic AI framework for 

EC staging. It is an easy and intelligent MRI analysis tool that 

helps the clinician or researcher in the FIGO staging of 

endometrial cancer. The interface allows users to upload MRI 

scans either through drag-and-drop or click-to-upload in 

common file formats such as PNG, JPG, etc. After the MRI 

has been uploaded, the Image Agent analyzes the image and 

predicts the FIGO stage in an automated fashion by employing 

advanced AI models, such as MedSAM for segmentation and 

ViT-LoRA for feature extraction.  

This module shows how the agentic system is designed 

with its users and clinical utility in mind while making 

radiological data-based staging decisions quickly, 

automatically, and accurately, aiding in timely diagnosis and 

treatment planning on a personalized basis. 

 
Fig. 12 Image agent module interface 

Figure 13 represents the active analysis phase of the 

Image Agent module within the Agentic AI system for EC 

staging. Here, an MRI image "G_Stage_III_b.jpg" has been 

uploaded, and now the system represents the "Analyzing..." 

state, which means the image is in the process of being 

handled in the AI pipeline.  

The Image Agent, during this stage of analysis, triggers a 

downstream chain of operations such as segmentation (using 

MedSAM), identification of tumors and anatomical structures, 
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and calculation of the depth of MI by UCLGA, while the ViT 

model, fine-tuned with LoRA, simultaneously extracts 

features needed for the prediction of the FIGO stage. Figure 

14 shows the final output report for sample image 1, generated 

by the Image Agent module after analysis of the uploaded 

MRI scan, specifying the case as FIGO Stage IA of EC.  

The Tumor Board Report section contains an overall 

clinical summary stating that myometrial invasion is less than 

50%, with no evidence of cervical stroma or serosa or adnexa 

or lymph node or distant metastasis involvement scenario 

consistent with early-stage disease confined to the 

endometrium or inner half of the myometrium.  

The system proposes a FIGO Stage IA diagnosis with 

95% confidence, reflecting a high certainty in its prediction. 

The key findings gleaned from the report are myometrial 

invasion <50%, cervical stroma-No, and lymph node-No.  

This output gave validation to the AI-based reasoner in 

interpreting MRI data and behaves similarly to a virtual tumor 

board when summarizing and stratifying patient cases to assist 

radiologists and oncologists in making evidence-based and 

time-sensitive decisions for early intervention and treatment 

planning. 

 
Fig. 13 Image agent module analysis stage 

 
Fig. 14 Output report of sample image 1 

Figure 15 shows the AI-generated Tumor Report of 

sample 2, designated as FIGO Stage II by Image Agent under 

Agentic AI. The Overall Summary states that more than 50% 

myometrial invasion and involvement of cervical stroma are 

seen on MRI, which are defining criteria for Stage II according 

to the FIGO classification system. It further states that no 

serosa or adnexal involvement is seen, with no lymph node or 

distant metastasis, thus discounting possible further 

progression to higher stages.  

In support of this diagnosis and with a 95% confidence 

that indicates strong certainty of the model, the Key Findings 

state myometrial invasion ≥50%, cervical stroma involvement 

"Yes", and lymph node involvement "No". Such structured, 

clinically correct output demonstrates how the model uses 

image features to create accurate staging decisions and 

cements its role as a decision support system in preoperative 

planning for endometrial cancer management. 
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Fig. 15 Output report of sample image 2 

Figure 16 shows the AI-generated Tumor Report for the 

patient identified under FIGO Stage IVA by the Image Agent 

within the Agentic AI framework. According to the Overall 

Summary, the MRI shows invasion of the bladder mucosa, 

which is the very hallmark of Stage IVA, in that direct 

extension of the tumor to adjacent pelvic organs takes place. 

The report finds no cervical stroma, serosa/adnexa, 

vaginal/parametrial, or lymph node involvement, along with 

the absence of distant metastasis. 

Interestingly, generous information about myometrial 

invasion could not be gathered from this single image, while 

it is registered as "<50%" in the Key Findings; cervical stroma 

involvement is recorded as "No"; lymph node involvement is 

recorded as "N/A" based on the evidence being insufficient. 

The AI model gives 100% confidence in the assigned stage 

because of the high certainty in the interpretation of bladder 

wall invasion. This is an achievement for the model to handle 

complex staging decisions apart from offering aid in early 

detection and diagnosis of advanced-stage endometrial cancer. 

 
Fig. 16 Output report of sample image 3 

4.5. Advantages and Limitations 

The developed research model includes numerous 

unprecedented advantages by way of an agentic AI framework 

that simultaneously considers MRI imaging and clinical data 

for correct EC staging and tumor grading. Consider the 

potential of segmentation through the utilization of MedSAM; 

uterine cavity line generation with UCLGA; and visual feature 

learning utilizing a ViT fine-tuned with LoRA, so that the 

model performs better classification and outperforms all of the 

metrics used by the state-of-the-art models.  

The Agentic AI agent-based architecture, comprising 

Image Agent, Report Agent, Compliance Agent, and 

Scheduler Agent, facilitates automation, transparency, 

explainability, and clinical relevance. Meanwhile, the agentic 

reasoning module provides self-reflective capabilities along 

with the infusion of external knowledge, thereby improving 

the robustness of predictions and their contextual 

understanding. 

However, the main limitation of the research is that it is 

related to the quality and diversity of MRI data, with some 

staging criteria perhaps not being fully assessable from single 

imaging slices (e.g., lymph node metastasis or distant spread). 

While recommendations generated via AI are performing best, 

they require clinical validation before implementation in a 

real-world scenario. The framework has laid a solid base for 

smart, explainable, and agent-driven cancer diagnostics. 
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5. Conclusion 
A novel agentic AI approach performing automated 

staging and grading of EC was developed in this research, 

based on MRI imaging and clinical data within an end-to-end 

deep learning architecture.  

The proposed system utilized MedSAM for accurate 

medical image segmentation, UCLGA for measuring 

myometrial invasion, and a ViT model fine-tuned with LoRA 

for deep feature extraction to mark significant anatomical and 

pathological markers. The agentic reasoning module acts to 

create interpretability and robustness by self-reflecting and 

incorporating relevant external clinical knowledge. The 

experimental results, along with the ablation study, confirm 

that all the modules have a significant role in enhancing the 

three aspects of accuracy, robustness, and interpretability.  

It also reduced the requirements of manual input and 

inter-observer variability. The findings proved the model's 

superiority, wherein it reached the scores of 96.82% for 

accuracy, 95.85% for sensitivity, 96.77% for precision, 

95.31% for F1-score, and 96.64% for specificity. The model 

was more effective than the recent methods used for the early 

detection of EC. In addition to this, the system can produce 

outputs in tumor board reports, which comprise FIGO staging, 

prognostic biomarkers, and confidence scores to help doctors 

in making timely decisions concerning treatment policies. 

Therefore, this study marks a milestone in AI-assisted 

gynecological oncology with the possibility of wider 

deployment of agentic AI systems in clinical trials of real-

world workflows in clinical settings. 

In the future, the research will focus on expanding the 

dataset to multi-institutional and multi-ethnic populations to 

improve generalizability, incorporating additional imaging 

modalities such as PET-CT for more comprehensive staging, 

and including longitudinal patient data to assist in predicting 

treatment outcomes. The study will primarily target large-

scale multi-center validation, the incorporation of other 

imaging modalities and genome data, the creation of real-time 

clinical deployment tools, and the application of the agentic 

framework to personalized therapy response prediction, 

thereby extending the translational impact of the research. The 

further enhancement of the agentic reasoning module will 

consider clinician feedback in real time and validation to 

facilitate clinical acceptance and deployment in real-world 

diagnostic workflows. 
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