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Abstract - Endometrial Cancer (EC) is one of the most prevalent gynecological cancers globally. Accurate preoperative staging
and the subsequent tumor grading are crucial for prognosis, surgical decisions, and treatment plans. Generally, for MRI
evaluation, the radiologists depend totally on their own interpretation, which will be a mixture of subjectivity, a lengthy process,
and inconsistency among different observers. The problems outlined above are addressed by creating a highly capable Artificial
Intelligence (Al) framework that relies on multiple MRI modalities and clinical attributes for the precise identification of Deep
Myometrial Invasion (DMI) and tumor grading. For accurate anatomical segmentation, the framework makes use of the Medical
Segment Anything Model (MedSAM). After that, a Uterine Cavity Line Generation Algorithm (UCLGA) is employed to determine
the depth of myometrial invasion. The Vision Transformer (ViT) model, fine-tuned via Low-Rank Adoption (LoRA), is used for
feature representation and learning. Simultaneously, the agentic reasoning module successively enhances prediction through
self-reflection and clinical knowledge. Furthermore, multiple smart agents are applied for segmentation visualization, report
generation, compliance monitoring, and scheduling to provide a modular and interpretable system. The model is tested on the
EC-MRI dataset, and its overall accuracy reached 96.82%, sensitivity 95.85%, precision 96.77%, F1 score 95.31%, and
specificity 96.64%. The model surpassed the other current models in accuracy. Overall, the findings imply that this model is a
clinically significant, elucidative, and efficient Al system that could support oncologists and radiologists in the preoperative EC
evaluation.

Keywords - Agentic Al, Endometrial Cancer, LoRA, MRI, Myometrial Invasion, MedSAM, Tumor Grading, UCL, Vision
Transformer.

1. Introduction per 100,000 people increased to 45.81 from 39.22,
Endometrial cancer, also known as uterine corpus cancer, ~ underscoring an increasing health issue. In 2020, more than

is considered the most common malignancy of the female
reproductive system in developed countries and has a
worldwide increase in the occurrence rate. This malignancy
predominantly affects postmenopausal and perimenopausal
women. The contemporary lifestyle contributes to the
escalating incidence of obesity and increases the chance of
EC. The yearly risk of mortality for EC patients shows an
increasing pattern [1]. Surgery is generally the most common
treatment for EC, encompassing bilateral salpingo-
oophorectomy, total hysterectomy, and lymph node
evaluation [2]. Reports from 1990 to 2021 indicate a notable
worldwide increase in EC cases among those aged 55 and
above. During these 30 years, the cases doubled, rising to
360,253 in 2021 from 141,173 in 1990. The occurrence rate

417,000 women globally were diagnosed with endometrial
cancer, indicating a 132% increase over the last three decades.
EC instances are projected to increase by around 40% from
2020 to 2040. By 2036, the worldwide occurrence of EC in
postmenopausal individuals aged 55 and the elderly is
anticipated to increase by 6.5%, although the fatality rate is
forecasted to decrease by 8%. Gynecologic malignancies are
a significant worldwide health issue, representing almost 15%
of newly identified tumor cases and fatalities amongst the
female population in 2020. The cervical cancer constituted the
most serious gynecological cancer at 7.70%, then the ovarian
cancer at 4.7%, uterine cancer at 2.2%, and vulvar and vaginal
malignancies [3]. GLOBOCAN estimations indicate that in
2022, there were approximately 1,473,427 new instances of
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gynecologic tumors and 680,372 fatalities globally [4]. The
common diagnostic methods for EC, as depicted in Figure 1,
are Magnetic Resonance Imaging (MRI), Ultrasound (US),
histopathology, and hysteroscopy, which provide crucial
information for clinical decision-making. The assessment of
these methods depends largely on the skill of pathologists and
radiologists. It is a process that was not only time-consuming
and labor-intensive but also prone to inaccuracies due to
human factors. As a result of this interdependence, diagnostic
accuracy may be reduced, and the initiation of critical
therapies may be delayed, both of which would have negative
implications for the patient's health [5].

Early diagnosis is essential for the management and
prognosis of EC. Conventional screening protocols
additionally employ techniques such as Computed
Tomography (CT) and Positron Emission Tomography (PET)
[6]. DML is significant in the preoperative assessment of EC.
For DMI evaluation, a pelvic MRI or a transrectal or
transvaginal US conducted by a specialist is suggested.
Fertility-sparing treatments could be suggested for patients
with grade one, stage |A endometrioid EC, if there are no Ml
and no additional risk factors are present. The evaluation of
MRI or transvaginal US in ascertaining the absence of Ml or
shallow MI relies on extrapolation from data concerning the
diagnosis of DMI [7].

(d)

Fig. 1 Imaging modalities for EC: (a) MRI, (b) Histopathology, (c) US,
and (d) Hysteroscopy.

1.1. FIGO Staging for EC

The International Federation of Gynecology and
Obstetrics (FIGO) staging method indicates that 75% of cases
are diagnosed at stage I, with endometrial carcinoma further
categorized into stages IA and IB based on the extent of MI.
DMI, characterized by infiltration depth of >50% of the
myometrial thickness, is regarded as a critical prognostic
marker in endometrial carcinoma, as tumors exhibiting DMI
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possess an increased likelihood of pelvic lymph node and
paracervical invasion metastases [8]. The FIGO staging
system is employed to ascertain the surgico-pathological
staging of endometrial carcinoma [9].

Table 1. Stages of EC based on FIGO-2023 [8]

SFtIeESs Stage Classes with Description
Early Stage
1ALl Type |, on the polyp or endometrium
1A2 Type |, MI<50%
1A3 Type |, uterus + 1 ovary (intact capsule)
IB Type I, MI>50%
IC Type |1, on polyp or endometrium (MI-)
1A Type |, cervical stroma
11B Type I, LVSI+
IC Type Il, MI+
Advanced Stage
111A1 Adnexa (direct or metastasis) - excluding 1A3
111A2 Uterine serosa
111B1 Vagina or parametria (direct or metastasis)
111B2 Pelvic peritoneum implants
11C1 Pelvic lymph node metastasis
11C2 Infrarenal para-aortic lymph node metastasis
IVA Bladder or intestinal mucosa
IVB Abdominal peritoneum implants
Ve [_)istant metastasis (lung, Iiv_er, _bone_...) or
distant lymph node metastasis (inguinal...)

Note: Type | (non-aggressive histology): low-grade
(G1/G2) endometrioid; Type Il (aggressive histology): high-
grade endometrioid (G3), serous, clear cell, carcinosarcoma,
mesonephric, neuroendocrine, gastro-intestinal mucinous,
mixed, undifferentiated; LVSI: lymphovascular space
involvement. Molecular Subtyping Implications: Il
POLEmut — TAmPOLEmut (MI+/—, LVSI +/—, Type | or 11);
I-11 p53abn— — IICmp53abn (MI+/—, LVSI +/—, Type | or II).

FIGO classifies Grade 1 tumors as well-differentiated,
resembling normal tissue, and typically exhibiting a positive
prognosis. Grade 2 cancers possess a dense feature that varies
from 6% to 50% and are categorized as differentiated. Grade
1-2 endometrial carcinomas are categorized as type I; grade 3
tumors with a dense feature over 50% are characterized as
high grade and poorly differentiated, exhibiting characteristics
distinct from normal endometrial tissue, demonstrating
aggressive behaviour, and correlating with a poor prognosis.
Grade 3 Endometrial Carcinoma (EC) is categorized as type Il
EC, typically affects postmenopausal women, and is not
linked to endocrine abnormalities [10]. The different stages of
EC classified according to FIGO-2023 staging are presented
in Table 1 [11]. MRI is essential for treatment planning, since
it offers critical insights into tumor stages, including
dimensions and invasion depth in the cervical stroma and
myometrium, as well as involvement of pelvic lymph node
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status and anatomical structures. For staging EC, FIGO
employs a surgical staging approach; however, expert
consensus and recent studies suggest that MRI assessment
prior to treatment is necessary to determine the most suitable
therapy [12].

1.2. Al in Cancer Diagnosis

In nuclear medicine and radiology, the medical
applications of Al systems show potential for several tasks,
such as tumor detection, image reconstruction, and the
development of diagnostic biomarkers. This serves as
prognostic assessment, diagnostic assistance, and treatment
efficacy prediction in gynecological oncology [13]. The
integration of radiomic and Deep Learning (DL) models into
pre-operative imaging (US, MRI) provides non-invasive
alternatives for patient staging [14]. Recent advancements in
Al present novel prospects to improve diagnostic accuracy and
therapeutic decision-making. Al is increasingly recognized in
gynecological oncology, where it is utilized to enhance both
diagnostic and therapeutic strategies. Although endometrial
carcinoma is the primary emphasis, recent advancements have
also demonstrated potential in other gynecological
malignancies. Al is explored as an implementation method for
early, non-invasive identification of ovarian cancers and for
the analysis of histopathology images in predicting the
molecular types of EC malignancies. Expanding the range of
Al applications may improve diagnosis accuracy and result in
the detection of gynecological cancers [15].

1.3. Problem Statement

Several clinical challenges exist for medical imaging of
EC for staging and grading preoperatively, despite advances
in medical imaging and Al. Conventional diagnostic processes
require the interpretation of MRI scans that are manually
performed by radiologists and, thus, are subjective and time-
consuming, possessing interobserver variability when
evaluating DMI and tumor grading. Second, most of the deep
learning techniques do not consider clinical data and never
provide explainable output or simulate real-world diagnostic
reasoning, which makes the decision-making process delayed
and inaccurate, potentially leading to under- or overtreatment.
Hence, the need arises for a robust, explainable, and clinically
adaptable Al framework that autonomously analyzes
multimodal MRI and clinical data, enhances the accuracy,
reliability, and efficiency of EC staging and grading, and
assists  clinicians with  unambiguous evidence-based
recommendations.

1.4. Research Gap and Novelty

The significance of this research focuses on resolving the
gaps concerning the accuracy and computation of preoperative
staging and grading in EC, where treatment outcomes greatly
depend on early and accurate diagnosis. Whereas in the
general approaches, manual MRI interpretation dominates,
this research proposes a novel Agentic Al framework that
autonomously integrates medical images and clinical data into
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a single diagnostic system. Thus, its novelty lies in the multi-
agent architecture that combines MedSAM for high-accuracy
segmentation, the UCL generation algorithm for anatomical
assessments, and a ViT fine-tuned with LoRA for feature
extraction and classification. Finally, the system improves
predictions through an agentic reasoning module that uses
self-reflection and clinical knowledge and offers tumor board-
style reports.

1.5. Research Objectives

The research hypothesis is that the proposed agentic Al
model will not only be able to outperform others in diagnosis
but will also be more interpretable, as a result of providing
end-to-end automation, anatomical reasoning, and iterative
clinical knowledge integration. Furthermore, it will lead to a
decrease in variations among observers and subsequently
upgrade the support of decision-making for radiologists and
oncologists. The key objectives of this work are discussed as
follows.

To develop an Agentic Al-based framework that
integrates MRI imaging and clinical data for the precise
diagnosis and staging of EC.

To implement MedSAM for high-precision segmentation
of anatomical regions such as the uterus, myometrium,
and tumor in MRI scans.

To apply the UCLGA for measuring the depth of invasion
within the myometrium and further FIGO staging.

To use a ViT model fine-tuned using LoRA for proficient
visual feature extraction and tumor grade classification.
To integrate an agentic reasoning module supporting
iterative self-reflection and external clinical knowledge
absorption to refine diagnostic predictions.

To develop assistant intelligent agents for report
generation,  compliance  auditing, = segmentation
visualization presentations, and scheduling, assisting in
clinical decision-making.

To evaluate the performance based on standard metrics
with accuracy, sensitivity, precision, F1-score, and
specificity on a curated dataset of EC cases.

To compare the proposed framework to state-of-the-art
models, thereby proving its superiority over them both in
terms of diagnostic accuracy and explainability.

To conclude and discuss the advantages and limitations
of the developed model with further improvements.

The paper is organized as follows: the first section
includes a review of the recent research works proposed for
EC detection and classification. The next section presents the
detailed modelling and implementation of the proposed
MedSAM-VIiT model. Then, the subsequent section presents
the experimentation analysis and results of the model and a
comparison with current models. At last, the research
concludes with the findings and recommendations for future
research initiatives.
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2. Literature Review

This section reviews the recent models developed for the
staging and classification of EC and depth of MI using MRI
with various state-of-the-art techniques. Table 2 highlights the
critical analysis of the reviewed models with their advantages
and limitations. A computer-aided diagnostic method utilizing
a multi-stage DL model was proposed in [16] to diagnose early
EC on sagittal T2-Weight (T2W) images by assessing the
level of MI. The Single Shot multibox Detector (SSD)-based
prediction method and an Attention-based U-Net
segmentation method were developed to choose, crop, and
segment MRI images. The ellipse fitting technique was
employed to create a UCL for the determination of the depth
of the MI for classification. In the independent testing dataset,
the model for detecting the tumor and uterus attained average
precision rates of 98.70% and 87.93%, respectively.

An automated segmentation framework based on DL
using a U-net architecture was developed in [17] to delineate
the tumor and uterus in MRI images. A semantic segmentation
model based on the U-Net architecture was trained to delineate
the tumor and uterine regions in MRI images. The Tumor-to-
Uterine Region (TUR) area ratio was subsequently computed
from the segmentation map. The stage 1A or IB of EC patients
was determined using TUR, and the outcomes of the patient’s
pathological diagnosis, which identified the ideal staging
thresholds for stages IA and IB.

A prediction model in [18] that utilized diffusion-
weighted imaging features derived from DL and radiomics, in
conjunction with clinical data and Apparent Diffusion
Coefficient (ADC) values, to detect microsatellite instability
in EC. Traditional radiomics features and DL features based
on Convolutional Neural Networks (CNN) were extracted
from DWI. Logistic Regression (LR) and Random Forest (RF)
were utilized as classification algorithms. DL features, ADC
values, clinical factors, radiomic features, and their
combination were utilized to develop DL, ADC, clinical,
radiomic, and integrated models. The findings indicated that
the integrated approach led to enhanced risk classifications.

The efficacy of DL algorithms integrated with MRI for
the risk assessment and prediction of EC was analyzed in [19].
Utilizing the DL convolutional neural network architecture
known as residual networks with 101 layers (ResNet-101),
channel attention and spatial attention modules were used to
enhance the model's performance. The model demonstrated
enhanced efficacy in identifying high-risk endometrial
carcinoma, with increased sensitivity and specificity and
exceptional predictive accuracy. The research in [20]
integrated conventional radiomics with DL techniques to
preoperatively assess the risk classifications of uterine
endometrioid cancer and to create personalized treatments
based on the classification. A Densenetl21 model was
employed to ascertain the ROI cross-section for DL image
features. A Multinomial Logistic Regression (MLR) was
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employed to develop a multisequence conventional radiomics
signature based on the selected traditional radiomics
attributes. The results showed that the radiomics nomogram
had the best diagnostic accuracy, and the results were highly
significant.

The paper [21] presented a fully automatic method for the
accurate detection of deep MI on MRI. One of the main
contributions of the study was the introduction of the new
geometric feature called LS, which quantitatively classified
the irregularities of the uterine tissues caused by endometrial
cancer (EC). The authors applied a feature fusion strategy that
merged weak and strong features, in which several
Probabilistic Support Vector Machines (PSVMs) were
connected to geometric feature LS and texture features to
derive more discriminative information, and the resulting
PSVM models were then jointly pooled to create the ensemble
PSVM model EPSVM. The results pointed out that
persistence to the EPSVM model was certainly superior in
terms of failed cases and true positives, or in other words,
specific and sensitive performance.

The research outlined in [22] explored the effectiveness
of the ML radiomics model that utilized multiparametric
MRIs in discriminating stage IA EC from the benign
endometrial lesions, and further investigation was made into
the possible use of different combinations of models, which
included the clinical factors along with the radiomic features.
After performing data dimensionality reduction along with
feature selection, nine different ML algorithms were used
which included Logistic Regression (LR), Random Forest
(RF), Support Vector Machines (SVM), K-Nearest
Neighbours (KNN), Stochastic Gradient Descent (SGD),
Extremely randomized Trees (ET), Light Gradient Boosting
Machines (LightGBM), Decision Trees (DT), and eXtreme
GB (XGBoost). The LR algorithm model was recognized as
the best radiomics model, achieving the highest accuracy.

In [23], the effectiveness of DL in identifying
Carcinosarcomas (CSs) and differentiating them from ECs
using different MRI sequences was affirmed and
authenticated. The DL model convolutional neural network
(CNN) was learned with CS and EC for all the sequences and
then validated. The results demonstrated that the DL model
CNN showed diagnostic performance that was fair and even
better than that of professional radiologists in detecting apart
EC from CS on MRIs.

The research in [24] evaluated the supplementary benefit
of Diffusion-Weighted Imaging (DWI) in comparison to
Dynamic Contrast-Enhanced MRI (DCE-MRI) and T2-
weighted Imaging (T2WI) for the preoperative assessment of
Ml in EC. The study underscored the importance of MRI for
the preliminary staging of EC. It showed that incorporating
DCE or DWI-MRI with T2WI markedly enhanced the
diagnostic efficacy of MRI in evaluating the extent of Ml in
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EC. The study did not measure interobserver variability
among radiology experts in evaluating MRIs.

An artificial intelligence model was implemented in [25]
for the EC MRI imaging, significantly enhancing the accuracy
of feature extraction from images and patient classification.
The ResNet architecture was employed to enhance the
network's performance. The addition of depth enhanced the
model's accuracy, the properties of the network were upgraded
repeatedly, and the damage functions of the reduced networks
were derived. The detection accuracy of MRIs was evaluated
utilizing three architectures: an optimized network, Res-Net,
and a shallow CNN. The findings indicated that the specificity
and accuracy of enhanced scanning and T2W imaging in MRI
were 95% and 88.75% respectively. A Swin transformer-
based methodology for the early diagnosis of EC with multi-
body positions fusion was proposed in [26]. Utilizing the Swin
transformer framework and its developed SW-MSA (shift
windows multiple self-coherences) component, MRI images
across the three areas (transverse, coronal, and sagittal) were
cropped, improved, and classed, while fusion tests in these
planes are conducted concurrently. The findings indicated that
the enhanced Swin transformer model attained superior
performance across all criteria in the EC multi-site fusion
tasks.

The research in [27] assessed the precision of
multiparametric MRIs (mpMRIs) in identifying MI depth in
EC Associated with adenomyosis (EC-A) in comparison to
EC with no adenomyosis, and examined the influence of
various adenomyosis subgroups on the MI depth in EC.
Adenomyosis could decrease the diagnostic efficacy of
interpreting EC-MI. Nonetheless, there was no notable
disparity in the efficiency of diagnosing MI depth between the
endometrial carcinoma groups with and without concurrent
adenomyosis, nor among the various subtypes of
adenomyosis. The predictive efficacy of radiomics models
derived from MRI for the risk classification and grading of
early-stage EC was analyzed in [28]. The 3D radiomic features
were derived from segmented EC images obtained from MRI
images, with features taken from all three modalities.
Subsequently, employing five-fold cross-validation alongside
a multilayer perceptron (MLP) algorithm, these features were
refined utilizing Pearson’s correlation coefficient to construct
a predictive model for risk classification and grading of EC.
Nevertheless, the amalgamation of all three sequences yielded
improved predicted accuracy. The radiomics model of MRI

possessed the capability to precisely predict risk classification
and the early stages of EC. Two new models for predicting
postoperative pathology based on MI of preoperative and
grading in low-risk EC subjects were developed in [29]. Two
predictive models, New Prediction Models (NPM1 & 2), were
introduced. Both models were constructed based on the
primary variables, the MI depth. In NPM1, the MI depth
functioned as the primary variable. The model employed
iterative imputation methods to rectify the inconsistencies
identified in MI diagnosis outcomes. The second model
eliminated the erroneous depth of MI data and employed
labelled smoothing to enhance precision. The findings
validated that NPM2 was a superior method to predict the
groups compared to NPM1. The study in [30] developed
CNNs for identifying EC by utilizing multiple sequences and
cross sections, aiming at validating optimal CNN imaging
instances and comparing their detection accuracy with that of
expert radiologists. CNNs exhibited superior diagnostic
efficacy for identifying EC via MRI. Despite the absence of
significant changes, the inclusion of additional image types
enhanced the diagnostic efficacy for certain individual image
sets. The DL model employing CNNs demonstrated much
superior performance with the axial contrast-enhanced T1-W
images and single set images of axial apparent diffusion
coefficients of water map in comparison to professional
radiologists.

In [31], the DL techniques based on DenseNetl21,
ResNet101, and ResNet50 were applied to characterize deep
transfer learning in predicting EC. The outputs of the multi-
sequence model were consolidated through three decision-
level fusion methods, and the best model was identified. A
clinical model was then constructed by combining univariate
and multivariate logistic regression studies to extract
independent clinical factors. The multiparametric MRI model
exhibits robust efficacy in preoperatively forecasting
aggressive EC. Through the application and validation of an
MDLR-multimodal DL radiomics model using MRI, the
research in [32] has significantly advanced the preoperative
differentiation of Ml in EC cases. By utilizing the Integrated
Sparse Bayes Extreme Learning Machines, a DL-Signature
(DLS) was generated. Furthermore, by combining clinical
features with DLS, a Clinical Model was created that
encompassed both clinical attributes and the MDLR model.
With DLS ensuring the integration of features, the MDLR
model increased the preoperative accuracy in differentiating
between the non-existence and existence of M.

Table 2. Critical analysis of current research models

Ref Approach Applications Advantages Drawbacks
S5D-based detection, MI level detection on High tumor/uterus detection Complex m.ultl-stage
[16] | Attention U-Net, sagittal T2W MRI recision (98.7% / 87.93%) pipeline; lacks
ellipse fitting for UCL g P 01 O1.9970). generalizability evidence.
U-Net for tumor and . . . Limited to 2-stage
[17] | uterus segmentation, EC staging (1A vs IB) Effective staging using the TUR classification; does not
: metric. : L
TUR area ratio integrate clinical data.
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DL and radiomics Microsatellite Multi . Requires complex feature
. i s ulti-modal feature fusion : .

[18] features + ADC instability detection in improved risk classification engineering;

values + LR & RF EC P ' computationally heavy.

[19] ResNet-101 + channel High-risk EC Enhanced sensitivity, specificity, Interpretability of deep

& spatial attention identification and predictive power. features is limited.
Densenet121 for ROI . e L . . No details on real-time
-, Risk classification for Superior diagnostic accuracy via A )
[20] + traditional - s applicability or processing
L personalized treatment radiomics nomogram. )
radiomics + MLR time.
EPSVM using Superior specificity and Traditional ML-based
[21] geometric (LS) + DMI detection on MRI upe ) P yand models lack end-to-end
sensitivity; good feature fusion. .
texture features automation.
Radlo_m_lcs W'th. 9. ML Distinguishing EC LR outperformed others; robust Manual featu_re selectm_n;
[22] | classifiers + clinical § - . . model comparison only in a
rom benign lesions combination models. .
data 2-class setting.
CNN trained on Outperformed radiolodists in Binary classification only;

[23] multiple MRI EC vs CS classification P diagnosis g lacks staging or grading

sequences g ' functionality.

[24] ?gwll-ieguég?ﬁ/l'\élm MI extent evaluation in Enhanced MI assessment with Interobserver variability

T2WI) EC image fusion. was not evaluated.
e . . . e Limited methodological
ResNet + deep EC classification using High specificity (95%) and .
[25] L transparency; the shallow
network optimization MRI accuracy (88.75%). AR
CNN comparison is limited.
Swin Transformer . . . . Req_mres high .
[26] | with SW-MSA across Multi-position fusion Superior performance across computational resources;
lanes for early EC diagnosis | sagittal/coronal/transverse planes. lacks clinical data
P integration.
mpMRI analysis for Evaluating the DMI Detailed subgroup analysis of the No_5|gn|f|_cant advantage in
[27] . . . diagnostic accuracy was
EC-A vs EC cases impact of adenomyosis adenomyosis effect. found
3D radiomics + MLP EC grading and risk High prediction accuracy; Feature selection is h'thy
[28] e C dependent on correlation
+ 5-fold CV classification sequence fusion improved results. filtering
NPM1 & NPM2 using Postoperative NPM2 improved precision via Focused on low-risk EC;

[29] M1 depth and label atholo P rediction IabEI smoo?hin not applicable to broader

smoothing P yp 9. EC cohorts.

[30] seCEel\rllc?an gan (l:JrIct)lss EC detection vs CNNs outperformed experts in Lacks comprehensive
2ection MRIs radiologist performance certain sequences. staging and grading models.
DenseNet121, Preoperative prediction | Multi-sequence fusion; integration CNNsnIgc;(ngigltﬂJna}ICg:)ntext,

[31] | ResNet101, ResNet50 | of aggressive EC using of clinical factors; robust ! X .

o . ’ . - segmentation, static fusion,
and logistic regression | multiparametric MRI predictive performance. S L

and limited explainability.

MDLR multimodal Preoperative Handcrafted radiomics;
DL radiomics with . Op . Effective multimodal fusion; binary Ml only; no end-to-

[32] - differentiation of Ml in ; e o 2
DLS and clinical EC improved MI classification. end automation; limited
feature fusion interpretability.

2.1. Research Gap Analysis

The extensive and methodical literature review has been
discussed to present a detailed background on the subject of
MRI-based EC staging and grading, with a systematic
examination of existing DL, radiomics, transformer-based,
and traditional ML approaches concerning their application
scope, performance, automation, interpretability, and clinical
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integration. The proposed study offers novelty through a
unified agentic Al framework, unlike previous research,
which was confined to specific tasks such as binary staging,
risk classification, or feature-driven prediction, and did not
involve full automation or explainability of the procedure. The
proposed framework is a combination of MedSAM-based
anatomical segmentation, a UCLGA algorithm for accurate
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MI quantification, and a ViT model that has been fine-tuned
using LoRA for tumor grading. Moreover, the reviewed works
do not utilize agentic reasoning, nor do they present multi-
agent clinical support (reporting, compliance, visualization),
or iterative self-reflection in accordance with clinical
guidelines, which are the key points that set apart the proposed
framework. The review comparison has placed the proposed
framework as a novel and comprehensive solution that is also
clinically applicable, and which has advanced the state of the
art in preoperative endometrial cancer assessment, by clearly
indicating the drawbacks of current approaches.

3. Materials and Methods

The developed research model implements an advanced
agentic Al framework for use in the preoperative assessment
of EC for deep MI detection and tumor grading. As shown in
Figure 2, the workflow begins with the acquisition of an EC-
MRI dataset, which involves gathering multi-sequence MRI
data of patients affected by EC. The involved steps in
preprocessing the MRI images are intensity adjustment,
resolution normalization, and alignment with reference
coordinate frames, so that they are of the best possible quality
for subsequent procedures. Each corresponding data point

I

EC-MRI Dataset Preprocessing

|
B3

£ 80AL 'Z 06K '} 801 :UORDIPRIY 5€1D

MedSAM Segmentation

then passes through the MedSAM, which is a generic medical
image segmentation method that renders segmentation masks
from an image encoder and a prompt encoder. MedSAM
autonomously marks anatomical structures such as the
endometrium, myometrium, and tumor region using bounding
box prompts and image embeddings. From the segmentation
output, the UCLGA obtains the UCL, which spatially
references the depth of MI. The DMI calculation relies on
depth measurement for tumor penetration (a) as relative to the
total myometrial thickness (b). Hence, cases wherein >50%
invasion is present are classed under deep MI. The anatomical
attributes from the segmentation maps and tabular clinical
features (patient age, hormonal results, or pathology
diagnoses) are combined into a feature set. The features are
then fed into a ViT that has been fine-tuned with LoRA. This
method allows one to fine-tune parameters with low overhead.
The ViT infers rich contextual representations from flattened
image patches through self-attention operations in several
transformer  encoder  blocks. The  visual-semantic
representation is forwarded to an MLP head that performs an
initial classification into tumor grades of G1, G2, or G3. This
prediction is successively refined in the agentic reasoning
module, which is the base method of this study.

Image .
encoder

Mask decoder
Prompt encoder ..

Image Bounding | 2. Frozen
R, —MMW

)

uoyeadajuy 2anyed |

DMI Calculation

(

fr (:; ViT fine-tuned with LoRA
Agentic Reasoning
Q < Module

i l

Grading ee— N
é é g@ _m_D_llPerformance Evaluation

G3
Fig. 2 Workflow of the developed research model

Gl G2

The standard performance metrics are used to evaluate the
DMI presence and tumor grade prediction results even more.
The depicted process shows how the combination of
segmentation  integration,  anatomical = computation,
transformer-based learning, and agentic reasoning not only
enhances the accuracy and reliability of EC staging and tumor
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stratification but also helps doctors make surgical and
therapeutic decisions with greater confidence.

3.1. Dataset Details
An MRI dataset of EC was gathered from the Jagadguru
Sri Shivarathreeshwara (JSS) Academy of Higher Education
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and Research and JSS Hospitals, Mysuru, Karnataka, India-
570004, for this study. The dataset contains a total of 3500
MRI images showing different views-axial, coronal, and
sagittal. Out of the total, 3100 images are found to be
malignant, and 400 images are labeled as normal. The MRIs
are obtained at a resolution of 256x256 pixels. The images
selected from the acquired dataset are shown in Figure 3. Data
summary of clinical information of EC patients from the
collected dataset is shown in Table 3.

Table 3. Clinical information of the dataset

Parameter Stage IA | Stage IB | p Value
No. of Patients 469 283
Age 48.4+89 | 61.8+9.3 0.99
Endometrioid type 0.54
Grade 1 314 135
Grade 2 141 116
Grade 3 13 32
Max. diameter (cm) 0.54
<3 354 90
>3 115 193
MI Depth 0.74
<50% 456 19
>50% 13 264
Mixed Carcinoma 0.15
Yes 192 149
No 277 134

Fig. 3 Dataset Sample Images

3.1.1. MRI Image Description
Type: T2-weighted MRI (sagittal view). It is critical for
MI assessment.

Annotations

Tumor: Hypointense mass in the endometrium (outlined
in red).

Myometrial Invasion: Depth marked (<50% or >50%)
with a yellow dashed line.

Cervix: Stromal invasion indicated (green outline if
present).

Adnexa/Serosa: Abnormalities highlighted (blue outline).
Lymph Nodes: Suspicious nodes (>1 cm) are circled in
white.
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Visualization: Image shows uterus with tumor extent,
invasion depth, and annotations for FIGO staging (e.g., ""Stage
IB: >50% myometrial invasion").

3.2. Preprocessing

MRI images are often noisy, contain abnormalities, and
have irrelevant information, which greatly reduces their
quality. Therefore, pre-processing is necessary to eliminate
the noise and artifacts that might affect the classification
process while improving image quality and consistency. The
current study uses down-sampling, filtering, enhancement,
and augmentation as methods for MRI preprocessing.

3.2.1. Image Resizing

A digital image is a matrix with two dimensions M x N,
where M represents the number of rows, while N represents
the number of columns. Pixels are the finite number of discrete
image elements that make up a digital image. The down-
sampling method is used to speed up the data processing and
make all the input images compatible with the ViT model at
the same time. The original MRI dataset has a higher image
resolution of 640x350, but it needs to be scaled down to the
VIiT model's input size of 224x224. The down-sampling
process reduces the number of pixels in the image based on
the sampling frequency rate. As a result, the image's
dimensions and quality are reduced.

Interpolation is a technique through which the size of
images is changed. The image interpolation has a bi-
directional character, and its aim is to get the best possible
estimate of a pixel's intensity and color based on the values of
neighboring pixels. In the non-adaptive interpolation
technique, an example being nearest neighbour (NN)
interpolation, pixel manipulations are done directly without
considering the features or the content of the image. Non-
adaptive interpolation methods treat all pixels the same way,
and therefore, they are easy to perform and require less
processing power. The NN method is quite simple to
comprehend, and it also consumes less time for processing
than most other approaches. This method is also characterized
as the point-shift method. It finds the pixel value that is closest
to the surrounding coordinates of the specified interpolation
point. In this way, the method will locate the closest
corresponding pixel in the input image for every single pixel
in the output image. With the increase in size, the pixels or
color dots combine to form a new pixel. It generates edges that
divide curves into angular segments or steps. This kind of
interpolation impacts both the reduction and enlargement of
images. An interpolation kernel for the NN technique is
delineated as follows in equation (1).

(0, x<05
f(x)_{l, x> 0.5

The distance from the grid point to the interpolated point
is represented by x [33].

)



Sumitha B Set al. / IJETT, 74(2), 125-150, 2026

3.2.2. Image Filtering

Digital images are particularly vulnerable to noise, which
originates from inaccuracies in image acquisition and
transmission in image processing. Images captured by MRI
are generally vulnerable to salt-and-pepper noise, speckle
noise, and Gaussian noise, which negatively impact image
quality. The inferior quality of an image generally undermines
the efficacy of subsequent activities, including feature
extraction and reduction, and processed image classification.
The noises must be eradicated before the further phases of
processing. Consequently, a median filter is employed in this
study for denoising purposes.

A median filter is a type of spatial filter that uses a moving
window to replace the center value of the window with the
median of the pixel values that are in the window. Filter
removed noise but also obliterated fine details.

Researches mostly depend on median filters for its results,
due to the filters' ability to provide quite good noise reduction,
yet this is done without excessive blurring or similar effects.
Basically, the filters are effective in different noise types.
Median filters are widely used as smoothing techniques in
signal/image processing and in time series analysis. A
significant benefit of this filtering technique compared to
linear filters is its ability to mitigate the influence of the input
level of noise with an exceptionally high range. The median
filtering is superior to the mean filtering as a non-linear
filtering approach that effectively eliminates noise. It
possesses the capability to eliminate ‘impulse’ noise
(anomalous values that are either too low or too high). It is
commonly asserted to be 'edge-preserving' as it supposedly
maintains step edges without introducing blurring.
Nonetheless, in the case of noise, it can marginally obscure
edges in images.

Z; = med{WN;} = med{Y; + r:r € WN} (2)

The fundamental median filter is defined as (2), whereas
Y; and Z; represent the input and output at location i of the
filter. The [WN;],r = 1,...,2N + 1, represents the rth order
statistic of the samples within the window. WN; is [WN;]; <
[WN;], < --- [WN;],n41. In this research, the filter window
size is 3x3 [34].

3.2.3. Image Enhancement

Incorporating the Quadrant Dynamic Histograms
Equalization (QDHE) approach in this work could
significantly enhance the identification and categorization of
EC utilizing DL. QDHE improves image quality by
addressing contrast changes and highlighting small details in
MRI images, rendering key characteristics, such as lesions and
abnormalities, more detectable. This improvement facilitates
precise diagnosis and assists the deep learning model in
recognizing complex patterns that could be challenging to
identify. The QDHE process commences histogram
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segmentation utilizing the intensity values derived from the
input histograms of the image. The histograms of the original
image are first partitioned into dual sub-histograms. The mean
values of the sub-histograms will serve as partitioning points
to segment all the dual sub-histograms into 4 sub-histograms.
The lower and upper extreme intensity values of the input
histogram were employed as the initial and terminal points for
the segments. There are similarities between the partitioning
technique and the recursive sub-images HE utilized with the
QDHE. The partitioning approach based on the median seeks
to allocate pixel counts among sub-histograms evenly. The
subsequent equation (3) could be employed to ascertain the
position of each dividing point:

by = 0.25 X (Ay X Ay)
b, = 0.50 X (Ay X Ay)
b; = 0.75 X (Ag X Ay)

@)

The intensities b;, b, and b5 are assigned indices of 0.25,
0.50, and 0.75, respectively. These values represent specified
fractions of the overall pixel count in the input histograms.
The variables Ay and Ay, denote the height and width of the
input image. The clipping process controlled the HE
enhancement workflow, which resulted in the images that
were not heavily brightened and that were even. The idea was
to diminish the clipping effect by changing the input
histogram symmetry. This was done by altering the histogram
bin values according to the threshold value, which was related
to the average image intensity values. The grey level dynamic
range of each sub-histogram is calculated as the ratio between
the total gray level spans and the total number of pixels in the
respective sub-histograms. This method ensures that all the
sub-histograms have the same amount of improvement space
available. The whole procedure was expressed mathematically
by the equation (4):

span; = bjy1 — b 4)
factor; = span; X (log,o B;)Y (5)
factor;
range; = (M — 1) % (6)

S}, factor]

In equation (4), span; denotes the dynamic grey level
utilized by the ith sub-histograms of the input. In (5), b;
denotes the ith split point, while B; signifies the total pixels in
the sub-histogram. For the sub-histograms, the dynamic range
in the resultant images is delineated as range;, and the effect
of B; in (6) was measured with y. The y must be adjusted to
precisely determine the level of all the sub-histograms in the
output images. Nonetheless, the QDHE approach utilizes
nearly equivalent overall pixel counts for every sub-
histogram, rendering equation (5) inconsequential to the
resultant dynamic ranges. To streamline QDHE and eliminate
the term v, the subsequent equation (7) could be restructured:
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span;

Zg=1 span,

range; = (M — 1) x @)

The dynamic level updated for the ith sub-histograms, as
delineated by equations (8) and (9), is contained within the
interval [isiare, lenal-

(®)
)

Istare = (I — Depg +1
lena = Ustart + range;

The first value of iy, represents the least intensity in the
updated assigned dynamic level. Upon determining the new
dynamic levels for every quadrant sub-histogram, the
concluding part of QDHE entails the independent equalization
of all the sub-histograms. Once the histogram assigns the grey
level [isiarer tenal, the equalized outcome h(x) for this
segment, the transfer function described in equation (10) could
be utilized.

t(x) = (istart — lena) X A(X)) + irare (10)

Thus, cumulative density functionality for the sub-
histogram was denoted as d (X;) [35].

3.2.4. Data Augmentation

The data augmentation approach encompasses a broader
range of solutions that function at the data level rather than at
the architecture level of the model. It can increase the
performance of DL models by synthetically producing diverse
samples with balanced categories for the training dataset. A
deep learning model demonstrates enhanced performance and
accuracy when the dataset is sufficient in both quantity and
quality. The training data must satisfy two criteria: adequate
diversity and scale, both of which can be achieved by data
augmentation. Important geometric operations, including
random rotation, cropping, and flipping, are persistently in
demand for data augmentation. They frequently increase the
data volume to improve data diversity and are simple to
implement. Geometrical data augmentation methods have
demonstrated significant efficacy in increasing diversity and
expanding data volume. Rotation is one of the basic geometric
data augmentation methods. A set of images is created by
rotating the original image at a specific angle, and the new
images are then used as training samples in combination with
the original images.

The EC MRI dataset consists of 3,500 images and is not
sufficient for the model to be trained and tested properly.
Therefore, the dataset is augmented using the geometric
rotation data augmentation technique. The images are rotated
by 45°, 90°, 135°, 180°, 225°, 270°, and 315°, as shown in
Figure 4. As a result, the dataset is increased to a total of
28,000 images after geometric rotation, including 3,200
images of normal cases and 24,800 images of abnormal cases.
The dataset was split in a ratio of 75:25.
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0° 90° 135°

180°
Fig. 4 Geometric Rotations Applied to the Images

2259 270° 315°

3.3. MedSAM Segmentation

MedSAM is a model based on DL that was created for the
purpose of segmentation of different anatomical lesions and
structures within a variety of medical imaging sources.
MedSAM was trained using a dataset of EC MRI scans. Its
adjustable prompt mechanism gets the best possible balance
between personalized and automatic control. Thus, making
MedSAM a flexible instrument for the usual medical image
segmentation. MedSAM is considered to be a basic model for
full medical image segmentation. A key factor in creating such
a model is the capacity to accommodate different imaging
situations, anatomical characteristics, and clinical conditions.
MedSAM is a segmentation method that allows the user to
determine the segmentation targets by means of bounding
boxes. In addition, drawing a bounding box is very useful,
especially in situations where multi-object segmentation is
needed. The study follows the network architecture proposed
in SAM, which consists of an image encoder, a mask decoder,
and a prompt encoder, as shown in Figure 5.

The image encoder maps the images given as input to a
very large-dimensional embedded space. The prompt encoder
turns the user-drawn box boundaries into feature
representations with the help of positional encoding. After
that, the mask decoder merges image embedding and swift
features through cross-attention. The research network was
built using a transformer model that has shown remarkable
efficiency across a wide range of applications, including
image recognition and natural language processing. The
network deployed a ViT-based image encoding for feature
extraction, a prompt encoder for the integration of user input
via bounding boxes, and a mask decoder that provided
confidence scores and segmentation results by using the
prompt embedding, image embedding, and output tokens [36].

In order to attain a balance between segmentation and
computational efficiencies, the study adopted the foundational
ViT model as the picture encoder, since extensive assessments
showed that bigger ViT models, such as VIiT Large and ViT
Huge, gave only slight improvements in accuracy while
greatly increasing the demand on computational power. The
basic VIT approach has 12 transformer layers, each made up
of the Multilayer Perceptron (MLP) blocks and a multi-head



Sumitha B Set al. / IJETT, 74(2), 125-150, 2026

self-attention block with layer normalization. Pre-training
utilized masked auto-encoder modelling, succeeded by
comprehensive supervised learning on the dataset. The input
image (1024x1024x3) was transformed into a series of

Image
encoder

05
Image
embedding

Input

flattened two-dimensional patches measuring 16x16x%3,
resulting in a feature size of 64x64 in the image embedding
after traversing the image encoder, which is downscaled by a
factor of 16x.

Mask decoder —
f
Prompt encoder %
T F
i rozen
Boﬁgimg %’énetwork

Fig. 5 Architecture of the MedSAM maodel

The prompt encoders translated the bounding box
prompt's corner point into 256-dimensional vectors of
embedded data. All the bounding boxes were denoted by the
embedding pairs consisting of the bottom-right corner and
top-left corner points. A simple mask decoder methodology
was utilized to enable real-time interactions after computing
the image embedding. It comprises two transformer layers for
integrating the prompt encoding and image embedding, along
with two inverted convolutional layers to elevate the
embedded resolution to 256x256. Following that, the
embedding was subjected to sigmoid activation and then
bilinear interpolation following the input dimensions.

The work employed the unweighted sum of the cross-
entropy loss and Dice loss as the last loss function, as it has
demonstrated robustness across several medical image
segmentation challenges. Let SM and GT represent the
segmentation result and the ground truth, respectively. Let
sm; represent the voxel i’s predicted segmentation and gt;
symbolize the ground truth, accordingly. N represents the
voxel count in the image I. The binary cross-entropy loss was
articulated as follows in Equation (11).

Lsge = =~ X[ gt;logsm; + (1 — gt;) log(1 — sm,)]

(11)

Lsy = 1 — - 22l glism 12)
b N (gt)2+3N, (sm;)?

LS = LSBC + LSD (13)

The dice loss and final loss were articulated in the given
Equations (12) and (13). To optimize the training process, the
research presented the loss function as the unweighted
aggregate of cross-entropy loss and Dice loss, thereby
enhancing efficiency. MedSAM’s exceptional generalization
capability renders it a flexible solution for diverse medical

135

image segmentation applications with enhanced efficiency
and accuracy. The utilization of a unique technique to
ascertain the depth of Ml is a significant issue owing to the
variability of uterine morphologies and cancer regions.
Consequently, an approach for the automatic construction of
UCL on a semantic segmentation map was developed to
compute the MI depth. A line is derived as the simulated UCL.
Subsequently, two maximal parallel lines to the UCL are
established. One represents the maximal density of the
myometrium to the UCL, while the other indicates the
maximal extent of the cancer to the UCL. The proportion of
the line's length is equivalent to the MI depth. The standard
equation of an ellipse was shown in (14).

ax?+bxy+cy’+dx+ey+f=0 (14)

The research employed a direct least-squares method to
fit the ellipse to independent data by reducing the algebraic
distances, constrained by the equation 4ac — b2 = 1. It is
simple to execute and highly resilient. Here, a,b,c,d,e, f
represent the fitted ellipse variables derived from the pair of
points (x,y) received from the inputs. The procedure was
implemented on the uterine contour within the segmentation
images, designating the long axis of the fitted ellipse as the
UCL. Vertical lines are drawn at all the points of the UCL, and
the distance ratio of every line perpendicular to the
intersections of the cancer's borders and the uterine border was
computed, with the maximal distance ratio designated as the
depth of MI [37].

3.4. ViT-LoRA Model

VIT has achieved significant success and has proliferated
across numerous vision applications, including semantic
segmentation, image classification, and object identification.
Pretrained ViT algorithms have been extensively utilized in
downstream tasks, yielding exceptional outcomes via transfer
learning. VIiT is a novel DL method that takes the Transformer
architecture, which was first used for Natural Language
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Processing (NLP), and adapts it to the field of computer
vision, especially to the classification of images. ViT is a
novel method that treats images as patch sequences, just as
word tokenization is done in language processing. That means
the whole processing of the image is changed in a way that it
can be considered as an advantage in the vision tasks, due to
the Transformer's power in catching subtle relations among
the sequences. Even though ViT models show high precision
and better generalization over different tasks, their application
in EC classification is still very difficult, particularly in
clinical settings, because of the difficulties involved. This is
mainly because VIiT models, utilizing transformer
architecture, include a substantially greater parameter count
than earlier CNN-based models. Figure 6 depicts the
architectural details of the implemented ViT-LoRA model
[38].

Input Images

LoRA-ViT Transformer
Encoder Block

Transformer
Encoder Block 1

Transformer
Encoder Block 1

sto
Encoder Block 1

SoftMax

!

MatMul

l

Transformer
Encoder Block 1

il

MLP Head

l

Class Pledlctlon Tg'pe 1,
Type 2, Type
Fig. 6 Architecture of ViT-LoRA Model

Transformers have attained significant efficiency in NLP
tasks, mostly due to their attention processes. The ViT has
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developed into a formidable architecture for the classification
of images, building upon this notion. The ViT architecture
consists of three essential components.

The image as input x € R¥*W*C is split into patches with
fixed sizes to provide a sequential illustration of flattened 2D
patches x, € RV x(P*€) where H indicates the height of the
image, W symbolizes the width of the image, C symbolizes
the count of channels, and (P, P) specifies the resolution of all
the image patches. The quantity of patches N could be
determined as follows in equation (15).

HxW
p2

N = (15)

Prior to inputting the patch series into the Transformer,
the linear projection (LP) was executed on the patches. In this
LP, the patches of data were transformed into a D-dimensional
vector space through multiplication with the embedding
matrix E. The result of this LP was termed patch embedding.
Positional embedding E,,s was added to the embeddings of
the patch to allow the model to collect positional data in the
images. Furthermore, the embedded image patches were
combined with the class tokens learnable. x4, Which was
crucial for the classification procedure. The preliminary patch
embedding z,, which includes the embedding image patches
sequence and the class tokens, were calculated using equation
(16):

Zy = [xclass;x;E; E;.. E] + Epos,
E € RVx(»? c)xD s € RWN+1)xD (16)
Here, x; denotes the image patchof n,n € 1,2, ..., N.

The resultant embedded image patches were subsequently
transmitted to the encoder of the Transformer. This encoder
consists of L equivalent encoder blocks, each comprising two
layers: a Multi-head Self-Attention (MSA) and a Fully
Connected (FC) feed-forward Multi-Layer Perceptron (MLP)
layer. In all the encoder blocks, the I-th layer obtains the input
sequences from the preceding layers. z,_;. The input z;_; was
subjected to normalization of layer, which standardizes the
inputs with the dimension of features, enhancing training
efficiency and performance. The result of the normalization
layer was thereafter transmitted to the layer of MSA.

The result of the MSA was subsequently subjected to
layer normalization once again. The result obtained from the
layer normalizing was subsequently input into the layer of the
MLP. Residual or skip connections were utilized in the
encoding blocks to enhance the transmission of data within
non-consecutive layers. These connections facilitate the
propagation of gradients throughout the networks, unaffected
by the non-linear activation function, hence mitigating the
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vanishing gradients problem. The gradients flow in the I-th
encoding layer were delineated as follows in equations (17)
and (18).

7l = MSA(LN(zi_)) + 2,4, 1=1,..,L (17)

z,=MLP(LN(z))+2z, l=1,..,L (18)

Here, LN indicates the normalization of the layer.

The MSA comprises layers such as linear, concatenation,
self-attention, and concluding linear layers. In the MSA,
numerous  self-attention  processes  are  executed
simultaneously according to the count of heads k. In all heads,
the D-dimension patch embeddings z were multiplied by the
matrices of weights like Ug, Uy and U, to derive the key (k),
value (v), and query (q) matrices. The function of
multiplication in all the heads was specified as in (19).

lq,k,v] = [2U,, zUy, 2U,|, U,, Uy, U, € RP*Pr  (19)

The derived matrices q,k, and v are subsequently
estimated into k subspaces, and the weighted average of every
value ¥V was computed. Attention weights were calculated in
every head by evaluating the relation within every set of
elements. (i, ), through the dot product of q° and k/. The
resultant dot products signify the implication of patches in the
sequences. The dot products of q and k were calculated using
equation (20), followed by the application of a softmax layer
to derive the weights for the values.

T
A = soft (ﬂ) A € RNV
softmax N

Here, D, = D /k.

(20)

The matrix structures of the self-attention layers are
concatenated and subsequently processed by a single linear
layer with a trainable weight matrix. U,,, Yielding the
following equation (21).

MSA(z) = [SA,(2); SA,(2); ..., SAL(2) U psas
Rk.DhXD

Umsa €
(21)

The MSA’s every head acquires information from
numerous dimensions and perspectives, enabling the
framework to encode complex properties simultaneously. The
ViT model’s classification is executed using an MLP,
comprising two FC layers utilizing the activation function
called Gaussian error Linear Units (GeLU). The GeLU assigns
a weight to the input depending on its magnitude instead of its
sign. In contrast to the ReLU, GeLU could yield both negative
and positive outputs and demonstrates a greater range of
curvature. This factor enabled the GeLU functions to more
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effectively approximate intricate functions in comparison to
the ReLU. The visual depiction of the sequence is acquired
using the following equation (22):
r = LN(zD) (22)

In the encoding process, the final layer chooses the initial
token of a sequence, z?, and produces the representations of
image r through the application of normalization of the layer.
The resultant » was then processed by a compact MLP head,

comprising a hidden layer utilizing the sigmoid functions for
classification objectives.

LoRA, developed by Microsoft, offers an innovative
solution to this challenge by modifying pre-trained vision
methodologies for effective EC detection systems without
necessitating full fine-tuning. This approach entails fixing the
pre-trained model’s weights and incorporating adaptable rank
decomposition matrix structures into all the layers of the
Transformer architecture. LoRA significantly decreases the
number of parameters trainable in the process of fine-tuning.
This process enhances the feasibility of the training function
with standard medical imaging data sets while optimizing
GPU resource utilization and storage, hence meeting essential
clinical demands for space and speed. The work integrates
weights of LoRA into all self-attention layers of a pre-trained
VIT for the development of the model architecture. During
fine-tuning, the changes to the pre-trained query matrix WQ
and the value projection matrix W, in a self-attention layer,
the constraints are imposed through the incorporated weights
of LoRA. The weights are represented using the low-rank
decomposition and were articulated as follows in equation
(23):

h = Wyx + AW, = Wyx + BAx (23)

Here, x € R7*WXC rgpresents the input, and h € RH*W*C
denotes the features of the output. The weight change AW is
composed of two low-rank matrices, B € R**" and A € R™*¢,

At the commencement of training, the work utilized an
initialization of a random Gaussian for matrix A and initialized
matrix B to zero. Thus, the product of matrices B and A,
referred to as AW, is originally zero. The rank r of these low-
rank matrices is significantly less than the model dimensions
d, and the research experimentally fixed r = 8. Typically, r
should not exceed 8, as the low-rank matrix amplification
capacity is compromised when the rank reaches 64 in the
experiment [39].

3.5. Agentic Al Reasoning Module

The Agentic Al reasoning module in this research
represents a new multi-agent LLM-powered framework for
clinical decision-making in endometrial cancer using
multimodal MRI data. A special Al agent named "Myograde"
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lies at the core of this system, integrating LLM capabilities
and domain-specific reasoning in staging, grading, and
personalized reporting for endometrial carcinoma. The agentic
system is built as a modular, extensible architecture designed
for high-assurance medical use along multiple functional
domains. The framework then initiates an Image Agent tasked

with analyzing the DICOM/MRI, using segmentation outputs
(MedSAM) to localize the tumor, uterus, and important
anatomical landmarks, such as the UCL. Subsequently, from
these, the system computes the depth of myometrial invasion,
involvement of the cervical stroma, and other spatial features
important for staging.

LLM-based Autonomous Al Agent for
Clinical Decision-making in Endometrial

Cancer
- v
Endometrial - =
Scheduler Agent ( A A (Thera;;\y Platnning Melﬂ;‘;\:‘ltuamf
Processes new  [¢ > gen
uploads for evaluation L@) Suggests Performs analysis
- > chemotherapy plans & Evaluation
Endometrial Vision Myograde J
Agent i 2 f e A
Overlays segmentation| l 3 Molecular Marker
on images Agent
Fusion of imaging,
> < s .
Endometrial Report Glinical, & genomic
data
Agent
Generates clinical
reports (TG
P Assistant Agent
Endometrial Packages results
Compliance Agent J for review
Ensures HIPAA/GDPR [+ s \ )
compliance and access
| auditing )

Advanced Tumor Report

Fig. 7 Agentic Al-based reasoning module

As shown in Figure 7, the reasoning module continues
with a network of collaborating sub-agents: the Endometrial
Vision Agent superimposes the segmentation results on top of
the images for visual verification; the Endometrial Report
Agent generates structured clinical reports in patient's terms;
the Endometrial Compliance Agent makes sure that all the
agents in the system comply with HIPAA/GDPR, conduct
access auditing, and the Endometrial Scheduler Agent
constantly evaluates any new upload for processing.

In addition to imaging, lab indices (SIl, PLR, NLR,
platelet counts, etc.) and risk scores are integrated into the
system, allowing for more refined staging classifications
based on both radiologic and systemic biomarkers; it is
equipped with fact-checking and clinical plausibility modules
that simulate a tumor board review, contradicting what would
be clinical integrity in profile. A Molecular Marker Agent
predicts genomic markers such as ER, PR, MSI, POLE, and
p53 based on a fusion of imaging, clinical, and genomic
information. Consequently, on the basis of staging and
molecular profiles, the Therapy Planning Agent offers
personalized chemotherapy cycles, whereas, optionally, the
Nutrition/Treatment Navigator takes care of monitoring for
side effects, fatigue, and diet, thus supporting the patient
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through holistic care. The Meta-Evaluator Agent will compile
insights across agents for the explainable Al outputs,
including risk stratification and treatment recommendations,
while maintaining verification guardrails and actionable
safety warnings. The result would be an autonomous tumor
board assistant with a human-in-the-loop interface, which,
apart from prediction of DMI and tumor grades(G1-G3), can
also generate explainable reports grounded in clinical practice
and suggestions for next-step interventions. This agentic
reasoning module sets the stage for a new paradigm in cancer
diagnostics Al, going from static predictions to dynamic,
context-aware clinical reasoning. In high-stakes clinical
settings, Agentic Al facilitates distributed clinical reasoning
by allocating responsibilities such as diagnosis, treatment
planning, and vital monitoring to specialized agents. For
instance, one agent may obtain patient history, another verifies
findings against diagnostic criteria, and a third suggests
therapy alternatives. These agents coordinate via shared
memory and reasoning chains, providing coherent and secure
suggestions. Applications encompass radiology assessment,
ICU management, and pandemic responses. Despite the
current lack of real-world applications owing to the new stage
of the field, research indicates that Agentic Al has the
potential to transform the healthcare sector [40].
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3.6. Proposed MedSAM-ViT-LoRA  Algorithm &
Hyperparamters

The pseudocode for this developed research model is
presented in the following. The hyperparameters of the
developed model are presented in Table 4. The pseudocode for
the proposed research begins with loading MRI scans and
clinical data from the patient dataset.

Each image is preprocessed by resizing it to 224x224
pixels via NN interpolation, denoising through a median filter,
enhancing with QDHE, and then geometrically augmenting
the data using image rotations at four 45° increments to
maximize the size of the dataset. Preprocessed images are then
fed into the MedSAM model for segmentation of anatomical
regions, such as the tumor, uterus, and myometrium.

Using the segmented maps, the UCL is generated through
the UCLGA, with depths of MI calculated as tumor depth
divided by total myometrial thickness and subsequently
categorized as either shallow or deep invasion (=50%).
Simultaneously, image-derived features and clinical features
are combined to form one unified feature set. These features
are passed to the fine-tuned ViT model via LoRA to tokenize
the inputs and compute initial tumor grade predictions (G1,
G2, G3) through transformer layers and an MLP head.

The agentic reasoning module then improves upon these
predictions by self-reflecting and consulting external clinical
knowledge; the revised outputs should now be more accurate.
The Endometrial Report Agent, Vision Agent, Scheduler
Agent, and Compliance Agent then work together to create
explainable reports, visualize the segmentation overlays,
manage incoming data, and monitor compliance. The final
outputs include DMI classification, tumor grade, and the
complete Al-generated tumor board report.

Algorithm: MedSAM-ViT-LoRA Model
Initialization
Step 1: Load Patient Data
LOAD MRI_images, clinical_features
Step 2: Preprocessing
FOR each MRI_scan IN MRI_scans:
Resize image using Nearest Neighbour Interpolation
resized_image«—nearest_neighbor_interpolation(MRI_sca
n, target_size=(224, 224))
Apply Median Filtering to remove noise
denoised image < apply median_filter(resized image,
window_size=3x3)
Enhance the image using QDHE

enhanced image<—QDHE_enhancement(denoised image)
Data Augmentation via Rotation
FOR angle IN [45, 90, 135, 180, 225, 270, 315]:
rotated image <« rotate_image(enhanced image,
angle)
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augmented_dataset.append(rotated_image)
augmented_dataset.append(enhanced_image)
Step 3: Image Segmentation using MedSAM
FOR each preprocessed_scan:
segmentation map < MedSAM(preprocessed_scan)
STORE segmentation_map
Step 4: Generate Uterine Cavity Line using UCLGA
FOR each segmentation_map:
UCL « UCLGA(segmentation_map)
STORE UCL
Step 5: Compute DMI (Deep Myometrial Invasion)
FOR each UCL, segmentation_map:
a « tumor_depth(segmentation_map, UCL)
b « total myometrial thickness(segmentation map,
UCL)
DMI ratio«—a/b
IF DMI ratio > 0.5:
DMI_label < "DMI+"
ELSE:
DMI_label « "DMI-"
STORE DMI_label
Step 6: Feature Fusion
FOR each patient:
image features«—extract features_from(segmentation ma
P)
combined features <«  CONCAT(image features,
clinical_features[patient])
STORE combined_features
Step 7: Tumor Grading with ViT + LoRA
INITIALIZE VisionTransformer with LORA_tuning
FOR each combined feature:
patch_embeddings < ViT.tokenize(combined_features)
hidden_state < ViT.forward(patch_embeddings)
grade prediction «<— MLP_head(hidden_state)
STORE grade_prediction
Step 8: Agentic Reasoning Module
FOR each prediction IN grade_prediction:
reflection_result — self reflect(prediction,
clinical_features)
external knowledge adjustment«—consult clinical guidel
ines(reflection_result)
final grade — revise_prediction(prediction,
external_knowledge_adjustment)
STORE final_grade
Step 9: Reporting by Agents
CALL  EndometrialReportAgent  with  DMI_label,
final_grade
CALL EndometrialVisionAgent to overlay segmentation
CALL EndometrialComplianceAgent to audit access logs
CALL EndometrialSchedulerAgent to monitor new
uploads
Step 10: Output Results
FOR each patient:
GENERATE results and tumor grade
END
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Table 4. List of research model’s hyperparameters

Component Hyperparameter Value / Setting Remarks
MedSAM Input Image Size 224 x 224 Matches ViT input size after downsampling
Encoder Backbone V|S|or(1F1;(;a;r;if)ormer Pretrained; not fine-tuned during segmentation
Prompt Type Bounding Box Used to segment the tumor and uterus regions
UCLGA Line Fitting Method Ellipse Fitting Generates the uterine cavity line from
segmentation maps
VIT with Patch Size 16 x 16 Standard for ViT-base
LoRA
Number of Transformer 12 ViT-Base configuration
Layers
Embedding Dimension 768 Hidden size of transformer layers
Heads in Multi-head 12 Consistent with ViT-Base
Attention
Dropout Rate 0.1 Helps regularization
LoRA Rank 4 Number of rank fact_ors added to attention
weights
LoRA Alpha 16 Scaling factor for low-rank matrices
Learning Rate 0.0001 Optimized using validation
Optimizer AdamwW Weight decay + adaptive learning
Epochs 50 Number of fine-tuning iterations
Batch Size 32 Adjusted based on GPU memory
MLP Classifier Hidden Layers 2 (512, 256 neurons) Lightweight architecture
Activation Function RelLU For non-linearity
Output Units 3(Gl, G2, G3) Multi-class classification

Loss Function

Cross-Entropy Loss

Suitable for multi-class classification

4. Experiment and Analysis
4.1. Experiment Setup

In this section, the experimentation and analysis of the
proposed EC detection and staging model, ViT-LoRA, are
presented. The developed research model was experimented
with and evaluated utilizing the PYTHON 3.7.12
programming language. The experimentations are conducted
on Google Colab Pro. The ViT model fine-tuned using LoRA
was evaluated for grading the EC stage. As the primary aim of
this research is to find the depth of the MI, the EC stages are
mainly detected as per FIGO guidelines.

4.2. Evaluation Metrics

The performance evaluation of the proposed model was
carried out by conventional classification parameters such as
accuracy, specificity, precision, F1 score, and sensitivity.

Accuracy: The efficiency of a model is assessed by its
accuracy, determined by a ratio of TP and TN relative to all
previous predictions. The following equation (24) is applied
to compute the accuracy.

Accuracy =TP+TN/TP + TN + FP + FN (24)
Precision: The TP rate, indicating the percentage of

correctly predicted positive cases among all predicted
instances, was utilized to evaluate the precision of the model.
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Equation (25) is utilized to assess the precision of the
model.

Precision = TP/TP + FP (25)

F1-Score: Itis a precision and recall’s harmonic mean and

enables a balanced assessment of the performance of a model.
Equation (26) is applied to calculate the F1-score.

F1 = 2 X Precision X Recall /Precision + Recall (26)

Specificity: It is the measure of the model to accurately
identify negative outcomes and is assessed by calculating the
ratio of correctly classified TN. This statistic evaluates the
classifier’s potential to accurately identify and categorize
adverse occurrences. The specificity of the model was
computed by using equation (27).

Specificity = TN/TN + FP 27)

Sensitivity: It refers to the model’s potential to accurately
identify positive instances. It quantifies the proportion of true
positive cases accurately recognized.

It can also be referred to as recall. The following equation
(28) is applied to compute the sensitivity of the model.
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Sensitivity = TP/TP + FN (28)

True Positive (TP) indicates the total instances of images
properly classified as EC. True Negative (TN) characterizes
the total images correctly designated as not stated as EC. False
Positive (FP) is the total count of non-cancerous images
inaccurately classified as EC when they are not. False
Negative (FN) characterizes the overall count of cancerous
image instances incorrectly classified as non-cancerous [16-

Table 5 elaborates on the statistical framework used in the
research, delineating the performance metrics, dataset
division, and control measures that guaranteed the proper and
reproducible methodology. The significance of the differences
among the cases of FIGO Stage IA and IB is shown in Table
6, stating that the applied clinical variables did not reveal any
significant differences (p > 0.05), thus underlining the
database of conventional clinical indicators that the advanced
imaging-based and Al-driven analysis is necessary for

30].

Table 5. Statistical analysis and evaluation methods used in the study

accurate staging.

distributed

Aspect Method / Metric Assumption Details Purpose
Desrptve sattics | e Sunders | CpUSS NS R [ S b
(Clinical Data) Deviation PP y y grap

characteristics

Categorical Data
Analysis

Frequency and Percentage

Independent observations

Describe stage, grade, and
invasion distribution

Dataset Split

75% Training / 25%

Random split; no overlap between

Prevent data leakage and

Testing sets ensure fair evaluation
Accuracy Based on TP, TN,.FP, and.FN from Overall classification
the confusion matrix correctness
Precision TP /(TP + FP) Measure false-positive control

Performance Metrics

Sensitivity (Recall)

TP /(TP + FN)

Measure true-positive
detection capability

Measure true-negative

Significance Level

Specificity TN/ (TN + FP) identification
Harmonic mean of precision and Balanced performance
F1-Score :
recall evaluation
Statistical 0 <0.05 Two-tailed tests Determine meaningful

differences between groups

Group Comparisons
(Stage 1A vs IB)

Inferential statistical tests

Independent samples; normality
assumed

Assess clinical variable
significance

Control Measures i

Fixed preprocessing,

dentical splits, same
metrics

Consistent pipeline across
experiments

Ensure reproducibility and
fairness

Comparative

Same metrics for all

Uniform evaluation protocol

Enable a valid performance

Analysis benchmark models comparison
Table 6. Statistical significance analysis of clinical variables between FIGO stage IA and stage IB
Clinical Variable Stage 1A Stage 1B Statistical Test p-Value
Age (years, mean + SD) 48.4+89 61.8+9.3 Two-tailed t-test 0.99
Tumor Grade Distribution G1-G3 G1-G3 Chi-square test 0.54
Maximum Tumor Diameter (<3 cm />3 cm) 354 /115 90/193 Chi-square test 0.54
Myometrial Invasion Depth (<50% / >50%) 456 /13 19/264 Chi-square test 0.74
Mixed Carcinoma Presence (Yes / No) 192 /277 149 /134 Chi-square test 0.15

Table 7. Mean + standard deviation of clinical variables across FIGO stages

Clinical Variable FIGO Stage IA (Mean + SD) FIGO Stage IB (Mean + SD)
Age (years) 48.4+8.9 61.8+9.3
Tumor Grade (Numerical Encoding™*) 1.34 £ 0.56 1.78+0.71
Maximum Tumor Diameter (cm) 2.41+0.82 3.67+1.14
Myometrial Invasion Depth (%) 18.6+£9.4 67.2+12.1
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In addition to this, Table 7 provides a summary of central
tendency and variability of important continuous variables
using mean + standard deviation, showing the trends in age,
tumor characteristics, and myometrial invasion depth on the
basis of the observable stages, even though these trends are
statistically non-significant.

4.3. Performance Assessment

The performance analysis of the developed research
model is assessed based on both training and test datasets. The
performance of the model is assessed utilizing common
classification metrics like accuracy, specificity, precision, F1
score, and sensitivity. Both these performance assessments are
tabulated individually in the following Tables 8 and 9.

Table 8. Results of proposed model using training dataset

Table 8 depicts the performance of the developed model
using the training dataset, revealing a strong classification
capability for both normal and abnormal endometrial cancer
cases. It exhibits 98.73% accuracy for normal cases and an
accuracy of 97.88% for abnormal cases, hence, correctly
classifying most of the inputs given to it. A precision of
97.86% (normal) and 97.62% (abnormal), which is low on the
false-positive rates, indicates that most of the positive
instances predicted are indeed true. The Fl-score, which
involves balancing the recall and precision functions, was
found to be 98.43% for the normal class and 97.57% for the
abnormal class, confirming that the model equally performs in
the two classes with no bias. Specificity values of 99.26% for
the normal candidate and 98.92% for the abnormal candidate
further reinforce the model's strength in correctly identifying
true negatives, thereby lowering the chance of labelling a

Parameters Normal Abnormal healthy patient as having EC. The sensitivity or recall, or true
Accuracy 98.73 97.88 positive rate, of 98.40% (normal) and 97.86% (abnormal)
Precision 97.86 97.62 reflects the model's ability to detect respective true-positive
F1-score 98.43 97.57 data. The results demonstrate that the model holds robustness,

Specificity 99.26 98.92 reliability, and suitability for situations demanding high

Sensitivity 98.40 97.86 stakes, such as early detection and EC staging. Figure 8

depicts the graphical illustration of the results on training data.
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Fig. 8 Graphical illustration of results on training data

Table 9. Results of proposed model using test dataset

Parameters Normal Abnormal
Accuracy 97.59 96.82
Precision 97.25 96.77
F1-score 96.81 95.31

Specificity 98.74 96.64
Sensitivity 97.38 95.85

Table 9 shows the test performance of the developed
model, consequently  exhibiting its  state-of-the-art
generalizability and diagnostic capabilities in real-world
environments. Accuracy values are 97.59% (normal) and
96.82% (abnormal), indicating that the model does not lose
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reliability in classification even on clinical data never seen
before. The precision values, 97.25% (normal) and 96.77%
(abnormal), prove that the model has a low false alarm rate,
which is again extremely important in clinical applications,
where maintaining reliability in reducing false alarms can be
critical. The F1 values, which consider both precision and
recall, remain at 96.81% (normal) and 95.31% (abnormal),
which shows stability and balance for the performance of both
classes. The specificity values for normal and abnormal cases
are 98.74% and 96.64%. This shows the model's high potential
to meaningfully control the false-positive rate and correctly
declare the non-cancerous cases, avoiding unnecessary
interventions or overdiagnosis. Since the reported sensitivity



Sumitha B Set al. / IJETT, 74(2), 125-150, 2026

scores were 97.38 percent for normal cases and 95.85 percent
for abnormal cases, the model has shown a strong ability to
detect true positives, thus missing fewer cases of actual EC.
Hence, it is evident from the results that the model offers a

steady and clinically dependable performance and is ready for
deployment as a tool for the detection and grading of
preoperative EC in diverse patient populations. Figure 9
depicts the graphical illustration of the results on the test data.
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Fig. 9 Graphical illustration of results on test data

The results of the ablation study in Table 10 highlight the
incremental contribution of each component in the MedSAM-
ViT-LoRA framework and confirm the efficiency of the
integrated design. The base CNN shows a lower performance
in comparison with others, which indicates the drawbacks of
traditional architectures for the complicated tasks of EC
staging. The backbone of ViT is introduced, which contributes
to an overall accuracy of capturing long-range spatial
dependencies, and the addition of anatomical segmentation
based on MedSAM boosts the performance even more by
allowing the exact localization of the uterus and tumor areas.
With the UCLGA integration, sensitivity and F1-score are

boosted, made possible by the precise measurement of Mi
depth, a very important clinical marker. With the
implementation of LoRA-based fine-tuning, the transformer
model is adapted more efficiently with the least amount of
parameters to obtain the surplus benefits as well. The proposed
final model, including the agentic reasoning module, turns out
to be the most effective one according to all metrics, thus
underlining the significance of the processes of iterative self-
reflection, clinical knowledge integration, and multi-agent
collaboration for the generation of strong, clear, and clinically
trustworthy predictions. Figure 10 depicts the graphical
illustration of the ablation study results comparison.

Table 10. Comparison of ablation study results

Model Variant Accuracy Sensitivity Precision F1-Score Specificity
Baseline CNN 89.12 88.40 87.95 88.17 90.03
ViT Only 92.68 91.72 92.15 91.93 93.10
MedSAM + ViT 94.21 93.10 94.02 93.56 94.48
MedSAM + ViT + UCLGA 95.34 94.42 95.10 94.76 95.68
MedSAM + ViT + LoRA 95.71 94.90 95.88 95.38 96.02
MedSAM + ViT + UCLGA + LoRA 96.08 95.30 96.10 95.68 96.21
Proposed Full Model 96.82 95.85 96.77 95.31 96.64

Table 11. Comparison of results with current models

Models Accuracy Sensitivity Precision F1-Score Specificity
SSD-UNet [16] 86.90 81.80 NA NA 91.70
U-Net [17] 88.60 92.30 NA NA 86.40
RF [18] 85.71 95.45 84.00 90.00 69.23
ResNet-101 [19] 92.60 91.80 91.72 92.00 93.58
DenseNet-12+MLR [20] 84.20 94.10 76.20 68.50 74.40
EPSVM [21] 93.70 94.70 81.80 87.80 93.30
LR [22] 85.30 90.30 NA NA 80.00
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CNN [23] 89.00 93.00 NA NA 70.00
Multi-sequence MRI Analysis [24] 90.30 91.70 84.60 NA 89.50
ResNet [25] 88.75 87.50 86.25 NA 95.00
Swin Transformer [26] 96.00 95.00 96.70 NA 96.70
mpMRI Analysis [27] 92.10 86.70 78.80 NA 93.60
MLP [28] 95.60 95.20 96.20 NA 96.90
NPM [29] 86.00 71.60 NA NA 77.70
CNN [30] 91.00 94.00 NA NA 91.00
MedSAM+VIiT-LoRA 96.82 95.85 96.77 95.31 96.64
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Fig. 11 Graphical illustration of results comparison

Table 11 presents a full comparison of the developed
MedSAM+VIiT-LoRA model with the state-of-the-art
variations of EC detection and grading, exhibiting higher
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performance in all key evaluation metrics. The developed
model yields the highest accuracy of 96.82 percent, surpassing
the Swin Transformer with an accuracy of 96.00 percent, MLP
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with 95.60 percent, and EPSVM with 93.70 percent, thus
confirming its strength in generalization and reliability. In
terms of sensitivity (correctly identifying positive cases
[abnormal]), the proposed model scores 95.85 percent,
narrowly better than the Swin Transformer (95.00 percent)
and ResNet-101 (91.80 percent), while markedly better than
older methods, e.g., SSD-UNet (81.80 percent) and NPM
(71.60 percent).

The precision of the developed model is 96.77%,
indicating that fewer false positives exist in the model and that
there is a higher confidence level in its positive predictions,
which surpasses all prior models for which the value is
present, e.g., ResNet-101 (91.72%) and RF (84.00%). Its F1-
score, balancing precision and recall, is 95.31%, the highest
among reported values and indicative of outstanding overall
predictive harmony.

Then, with a specificity of 96.64%, the model performed
well in identifying negatives (normal cases), trailing only
MLP at 96.90% and ahead of EPSVM at 93.30% and U-Net
at 86.40%. This consistent domination across all metrics
underscores the strength of integrating advanced segmentation
(MedSAM), transformer-based learning (ViT), and efficient
fine-tuning (LoRA), alongside agentic reasoning; thus,
positioning the developed model as the most all-inclusive and
clinically viable solution among all compared approaches for
highly accurate diagnosis of EC and tumor grading. Figure 11
depicts the graphical illustration of the results comparison.

The proposed framework outperformed existing state-of-
the-art methods mainly because of the anatomically inspired
and morphologically relevant design. In contrast to traditional
methods that depend on localized characteristics or manually
crafted descriptors like CNN and radiomics, the application of
MedSAM allows for accurate segmentation of the uterus and
tumor, so that the learning is very much concentrated on the
areas of clinical significance.

The automated UCLGA gives a clear and precise
measurement of MI, which is a major prognostic indicator
frequently ignored in earlier studies. Moreover, the ViT model
fine-tuned through LoRA is able to identify long-range spatial
relationships while at the same time minimizing overfitting
and the need for high computing power. An agentic reasoning
module's incorporation results in decision-making consistency
and interpretability improvement by means of iterative
refinement and combining clinical expertise, thus providing a
comprehensive explanation for the performance gains over
traditional methods that were noticed.

4.4. Agentic-Al-based Grading Results

Figure 12 shows the interface of the Image Agent module.
This module is part of the proposed Agentic Al framework for
EC staging. It is an easy and intelligent MRI analysis tool that
helps the clinician or researcher in the FIGO staging of
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endometrial cancer. The interface allows users to upload MRI
scans either through drag-and-drop or click-to-upload in
common file formats such as PNG, JPG, etc. After the MRI
has been uploaded, the Image Agent analyzes the image and
predicts the FIGO stage in an automated fashion by employing
advanced Al models, such as MedSAM for segmentation and
ViT-LoRA for feature extraction.

This module shows how the agentic system is designed
with its users and clinical utility in mind while making
radiological  data-based staging  decisions  quickly,
automatically, and accurately, aiding in timely diagnosis and
treatment planning on a personalized basis.

& @
O
Image Agent
Intelligent MRI Analysis for Endometrial Cancer Staging

(% Upload MRI Scan
Upload an image file to get

stage prediction for

an A

~

Click to upload or drag and droy

PNG JPG

Fig. 12 Image agent module interface

Figure 13 represents the active analysis phase of the
Image Agent module within the Agentic Al system for EC
staging. Here, an MRI image "G_Stage Ill_b.jpg" has been
uploaded, and now the system represents the "Analyzing..."
state, which means the image is in the process of being
handled in the Al pipeline.

The Image Agent, during this stage of analysis, triggers a
downstream chain of operations such as segmentation (using
MedSAM), identification of tumors and anatomical structures,
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and calculation of the depth of Ml by UCLGA, while the ViT
model, fine-tuned with LoRA, simultaneously extracts
features needed for the prediction of the FIGO stage. Figure
14 shows the final output report for sample image 1, generated
by the Image Agent module after analysis of the uploaded
MRI scan, specifying the case as FIGO Stage IA of EC.

The Tumor Board Report section contains an overall
clinical summary stating that myometrial invasion is less than
50%, with no evidence of cervical stroma or serosa or adnexa
or lymph node or distant metastasis involvement scenario
consistent with early-stage disease confined to the
endometrium or inner half of the myometrium.

The system proposes a FIGO Stage IA diagnosis with
95% confidence, reflecting a high certainty in its prediction.
The key findings gleaned from the report are myometrial
invasion <50%, cervical stroma-No, and lymph node-No.

This output gave validation to the Al-based reasoner in
interpreting MRI data and behaves similarly to a virtual tumor
board when summarizing and stratifying patient cases to assist
radiologists and oncologists in making evidence-based and
time-sensitive decisions for early intervention and treatment
planning.

[ Upload MRI Scan

Upload animage file

to get an Al-pow

jered FIGO stage prediction for

endometrial cancer

B 6.Stage.lILbjpg Remove

Fig. 13 Image agent module analysis stage

146

Image Agent Analysis Report

tod anatysss based on e

B summany
U tate

(D References

Tumor Board R

For NA (Age: 0) - Generatied on 62872025, 80835 PM

Overall Summary

Based the provided axial MRI image, here i evidence of myometrial invasion less than 50%
There is no evidence of cenical stroma involvement, serosa o adnexa involvement, peivic or
para-s0rsc lymph node involvement, of distant metastasis Therefore, the suggested stage =
FIGO Stage A undefined

Key Findings

O Stage

Fig. 14 Output report of sample image 1

Figure 15 shows the Al-generated Tumor Report of
sample 2, designated as FIGO Stage Il by Image Agent under
Agentic Al. The Overall Summary states that more than 50%
myometrial invasion and involvement of cervical stroma are
seen on MRI, which are defining criteria for Stage 11 according
to the FIGO classification system. It further states that no
serosa or adnexal involvement is seen, with no lymph node or
distant metastasis, thus discounting possible further
progression to higher stages.

In support of this diagnosis and with a 95% confidence
that indicates strong certainty of the model, the Key Findings
state myometrial invasion >50%, cervical stroma involvement
"Yes", and lymph node involvement "No". Such structured,
clinically correct output demonstrates how the model uses
image features to create accurate staging decisions and
cements its role as a decision support system in preoperative
planning for endometrial cancer management.
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Image Agent Analysis Report
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3 Summary (3 Imaging
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(7 References

Tumor Board Report
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Overall Summary

The shows more than 50% myometrial invasion and involvement of the cervical stroma. There is
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metastasis. These findings suggest FIGO stage |l. undefined

Key Findings
Suggested FIGO Stage Stage Il
Confidence 95%
Myometrial Invasion 250%
Cervical Stroma involvement
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Fig. 15 Output report of sample image 2

Figure 16 shows the Al-generated Tumor Report for the
patient identified under FIGO Stage IVA by the Image Agent
within the Agentic Al framework. According to the Overall
Summary, the MRI shows invasion of the bladder mucosa,
which is the very hallmark of Stage IVA, in that direct
extension of the tumor to adjacent pelvic organs takes place.
The report finds no cervical stroma, serosa/adnexa,
vaginal/parametrial, or lymph node involvement, along with
the absence of distant metastasis.

Interestingly, generous information about myometrial
invasion could not be gathered from this single image, while
it is registered as "<50%" in the Key Findings; cervical stroma
involvement is recorded as "No"; lymph node involvement is
recorded as "N/A" based on the evidence being insufficient.
The Al model gives 100% confidence in the assigned stage
because of the high certainty in the interpretation of bladder
wall invasion. This is an achievement for the model to handle
complex staging decisions apart from offering aid in early
detection and diagnosis of advanced-stage endometrial cancer.
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4.5. Advantages and Limitations

The developed research model includes numerous
unprecedented advantages by way of an agentic Al framework
that simultaneously considers MRI imaging and clinical data
for correct EC staging and tumor grading. Consider the
potential of segmentation through the utilization of MedSAM,;
uterine cavity line generation with UCLGA; and visual feature
learning utilizing a ViT fine-tuned with LoRA, so that the
model performs better classification and outperforms all of the
metrics used by the state-of-the-art models.

The Agentic Al agent-based architecture, comprising
Image Agent, Report Agent, Compliance Agent, and
Scheduler Agent, facilitates automation, transparency,
explainability, and clinical relevance. Meanwhile, the agentic
reasoning module provides self-reflective capabilities along
with the infusion of external knowledge, thereby improving
the robustness of predictions and their contextual
understanding.

However, the main limitation of the research is that it is
related to the quality and diversity of MRI data, with some
staging criteria perhaps not being fully assessable from single
imaging slices (e.g., lymph node metastasis or distant spread).
While recommendations generated via Al are performing best,
they require clinical validation before implementation in a
real-world scenario. The framework has laid a solid base for
smart, explainable, and agent-driven cancer diagnostics.
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5. Conclusion

A novel agentic Al approach performing automated
staging and grading of EC was developed in this research,
based on MRI imaging and clinical data within an end-to-end
deep learning architecture.

The proposed system utilized MedSAM for accurate
medical image segmentation, UCLGA for measuring
myometrial invasion, and a ViT model fine-tuned with LORA
for deep feature extraction to mark significant anatomical and
pathological markers. The agentic reasoning module acts to
create interpretability and robustness by self-reflecting and
incorporating relevant external clinical knowledge. The
experimental results, along with the ablation study, confirm
that all the modules have a significant role in enhancing the
three aspects of accuracy, robustness, and interpretability.

It also reduced the requirements of manual input and
inter-observer variability. The findings proved the model's
superiority, wherein it reached the scores of 96.82% for
accuracy, 95.85% for sensitivity, 96.77% for precision,
95.31% for F1-score, and 96.64% for specificity. The model
was more effective than the recent methods used for the early
detection of EC. In addition to this, the system can produce
outputs in tumor board reports, which comprise FIGO staging,
prognostic biomarkers, and confidence scores to help doctors
in making timely decisions concerning treatment policies.
Therefore, this study marks a milestone in Al-assisted
gynecological oncology with the possibility of wider
deployment of agentic Al systems in clinical trials of real-
world workflows in clinical settings.
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