
International Journal of Engineering Trends and Technology Volume 74 Issue 2, 88-97, February 2026
ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V74I2P106 © 2026 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Pipelined Hardware-Efficient Scalable Complex

Multiplier for High-Performance DSP Applications

A. Lakshmi1, P. Chandrasekhar Reddy2

1,2Department of ECE, JNTUH University, Hyderabad, India.

1Corresponding Author : lakshmi_sk11@yahoo.co.in

Received: 02 June 2025 Revised: 07 January 2026 Accepted: 20 January 2026 Published: 14 February 2026

Abstract - Complex numbers find significant use in Very Large-Scale Integration (VLSI) design, particularly in Digital Signal

Processing (DSP) algorithms and hardware implementations. They are crucial for efficiently performing complex mathematical

operations like the Fast Fourier Transform (FFT) and other signal processing techniques. In any system, multipliers take a

longer time to process due to complexity, and therefore, efficient design of multipliers is crucial in the overall performance of

the system. A 16x18 and a 64x64 Hardware-efficient complex multiplier are designed, which uses fewer multipliers than the

direct approach. The design is suitable for high-speed applications because of its pipelined architecture, and its parameterized

sizes of inputs offer scalability of designs with customized and target applications. This design also offers low power and

minimum area to serve the very purpose of SoC, and even as an IP Core. The design is implemented in 90nm technology using

the Cadence design suite. Thus, the design furnished reduces the number of operations at the architectural level itself and can

save chip area, power, cost, and further increase speed.

Keywords - Complex multiplier, Hardware-efficient, Pipeline, SoC, VLSI.

1. Introduction
The Very Large-Scale Integration (VLSI) design heavily

relies on complex numbers, especially for hardware

implementations and Digital Signal Processing (DSP)

methods. Additionally, AC circuits and electromagnetic

phenomena are represented and analysed using complex

numbers. DSP and more scientific relevance methods rely

heavily on complex number multipliers.

An essential basic function in mathematical operations is

multiplication. Among the commonly used Computation-

Intensive Arithmetic Functions (CIAF) presently employed in

many DSP applications, including Fast Fourier Transform

(FFT), convolution, filtering, ALUs of processors, logic units,

Multiply and Accumulate (MAC), etc. High-speed multipliers

are necessary since multiplication takes up the majority of

DSP algorithms' execution time. The primary determinant of

an instruction cycle time now is still multiplication time in the

DSP block. The growing number of applications has led to an
increase in the need for rapid processing units. In many real-

time applications, arithmetic operations with higher

throughput are necessary to provide the required performance

for image processing applications.

Multiplication is a crucial mathematical operation in

these kinds of applications, and the creation of fast multiplier

circuits has drawn attention for many years. For many

applications, lowering the power usage and time delay are

crucial criteria. In this paper, many multiplier architectures are

presented. One of the quick and low-power multipliers is the

Vedic mathematics-based multiplier [1,2].

The research strategies to decrease the complexity of any

design resulting from increasing process variability, and then

shorten chip production turnaround times, are a clear problem

facing the Integrated Circuit (IC) industry. Conventional

approaches used are largely labour-intensive, time-

consuming, and resource-intensive. On the other hand, the

distinct learning mechanisms of Artificial Intelligence (AI)
offer a variety of fascinating, automated methods for

managing intricate and data-intensive activities in the design

and testing of VLSI designs. The time, along with effort, is

decreased when AI and ML techniques are used in VLSI

manufacturing and design. Consequently, it lowers the

manufacturing turnaround time and increases the IC yield. The

AI/ML automated techniques previously introduced for VLSI

design and manufacture are reviewed in detail. AI/ML

applications could transform VLSI design in the future, with a

focus on fast, highly intelligent, and effective

implementations.

To build and construct Systems-on-Chip (SoCs) that use
complex number arithmetic for certain applications, including

signal processing or specific scientific computations, the term

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:lakshmi_sk11@yahoo.co.in

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

89

"complex number as system on chip" is used. It refers to a

specific aspect of chip architecture; however, it is not as

common as a "system on a chip" [3,4]. Numerous scientific

fields, such as signal processing, control theory, fluid

dynamics, electromagnetic, quantum mechanics, mapping,

and vibration analysis, use complex numbers.

Regular 2n x2n sizes of complex multiplier are unable to

address the customized applications of varied sizes. In this

paper, a customized design size is possible. This SOC can be

used when very high throughput is required, and real-time

processing is mandatory, and where large FFT/filter banks are

used, like SDRs and AI accelerators.

2. Related works
The "Vedas" of ancient Indian mathematics served as an

inspiration to the design of the multiplier, adder, and

subtractor units. These formulas reduce the operations and

supply partial products and the sum in a single step. [5] DSP

methods like FFT frequently use the simple act of multiplying

two complex values. Hundreds of these multipliers are

necessary for large, highly parallel FFT designs. Therefore,

enhancement is applied to all of the complex multipliers in an

architecture; improving one of them results in large savings.

The Structure and Function of Complex Multipliers.

Complex Multiplier IP can be used to accomplish

multiplication. A multiplier (multiplier + adder) is used to

accomplish the complex multiplication in the Gowin Complex

Multiplier IP. Bit width of input data is changeable, and the

resource usage of the complex multiplier varies depending on

the bit width. To save resources when the demand is satisfied,

the user should configure the IP as minimally as possible. The

following are adjustable settings for the Gowin Complex
Multiplier IP: The breadth of the input data, the data entered

is either a signed or unsigned number, and the GUI allows the

user to choose the input data bit width N. Currently, the signed

or unsigned data N up to a maximum of 26 bits, and based on

the bit width of the input data, a resource-efficient technique

to do complex multiplication is selected. Bit width of output

data is 19 bits when the GUI configuration input N<=9; 37 bits

is the output data bit width when 9<N<=18; and 73 bits is the

output data bit width when 18< N<=26. Selecting the data

type and whether the data is signed or unsigned when

configuring the IP core in the GUI interface is chosen.

Selecting the reset mode, can choose between

synchronous and asynchronous reset modes when configuring

the IP core in the GUI interface. The Structure and Function

of a Complex Multiplier IPUG521-1.0E 8 Configures register

parameters. The DSP's registers can be enabled to implement

the delayed output. The minimum delay is zero, and the

maximum delay is three cycles for the output delay period

[6,7]. The microelectronics sector has grown significantly due

to the constant scaling back of transistors across many

technical generations, which has increased device density and

performance [8]. A significant increase in demand for power-

efficient designs with cutting-edge features has resulted from

the growing appreciation of portable gadgets in recent years.

The continually growing demand in the electronics sector is

satisfied by extremely sophisticated and scalable VLSI
designs. A factor propelling the development of IC technology

using enhanced device performance is continuous device

downscaling to sub-3-nm-gate and beyond.

Device engineers now face both new opportunities and

several obstacles because of the aggressive downscaling of

CMOS technology. Devices can suffer from several

performance problems despite their tiny size, including

increased leakage [9–11], lower gain, and greater sensitivity

to changes in the manufacturing process [12]. The circuit

operation is greatly impacted by the huge increase in process

differences, which causes identical-sized transistors to

perform differently [13]. One of the main reasons for
parametric yield loss is growing process variability in the

nanometre range. Aggressive scaling, however, also affects

their performance metrics [14, 15].

To sustain performance, the VLSI design flow must

incorporate sophisticated, reasonably priced design

methodologies that enable finer optimization. The ability of

EDA tools to overcome design restrictions determines a chip's

turnaround time. Furthermore, the conventional methods are

manual, which makes them time-sensitive and resource-

intensive, causing delays in time to market. Furthermore, it

takes a lot of effort and time to comprehend the original
functionalities, that is, the underlying source of problems, to

implement modifications, when necessary, once the data has

been sent back [12]. These days, field-programmable gate

arrays, or FPGAs, are frequently used in the creation of

finished goods. Nevertheless, applications do not always fully

utilize the FPGA's hardware capabilities. More effective

designs result from improved FPGA utilization.

Logic blocks can be used to implement the same on

FPGAs. Nonetheless, specialized modules for computing

arithmetic operations are typically found on FPGAs. These

modules, known as DSP slices, enable higher clock

frequencies in Xilinx FPGAs. The DSP48E1 block is included
in Xilinx's 7 Series FPGAs. A block called DSP48E2 [13] is

found in Xilinx's UltraScale and UltraScale+FPGAs [15].

Two effective complex multiplier implementations that work

with DSP48E1 and DSP48E2 slices are presented in this

research. While the second version seeks a trade-off, the first

implementation aims for maximum throughput, minimum

area, and the greatest speed permitted by design. Development

of SoC devices has been made feasible by significant

developments in the speed, capability, and IC complexity in

recent years, including ASICs, RAMs, and microprocessors.

The suggested architecture attempts to provide a single-chip
solution for the majority of popular high-performance

applications. This minimizes the amount of external logic by

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

90

combining the entire logic design into a single FPGA. The

paper states that the proposed design aims to provide a high-

throughput complex multiplier implementation suitable for

these FPGA architectures.

Numerous issues in a variety of sectors have found
notable answers because of Artificial Intelligence (AI). AI is

human intelligence, illuminated so that a machine can simply

mimic and complete tasks of different complications. AI

includes ML as a subset because learning, reasoning,

predicting, and perceiving are the objectives of AI/ML.

Customers make informed judgments by using AI/ML's rapid

ability to spot patterns. High processing rates can be achieved

by AI/ML algorithms when handling various kinds of data. As

these algorithms continue to learn, their forecast accuracy and

efficiency increase. Additionally, they make decision-making

easier by streamlining pertinent procedures. AI/ML

techniques have been widely used in VLSI design and

technology within the past ten years.

From design entry to fully customized layouts, the

competence of CAD tools determines the performance

assessment of extremely complicated integrated circuits.

With an enormous rise in devices per chip, developing CAD

for VLSI is getting harder and more complicated. For rapid

convergence, there are many chances in semiconductor and

EDA technology to create or integrate AI/ML elucidations to

computerize processes at different abstraction levels of VLSI.

The goal of these clever learning algorithms is to provide

effective, automated chip fabrication solutions with

comparatively quick turnaround times.

In comparison with the existing designs, the work

compares the proposed pipelined hardware-efficient scalable

complex multiplier design with Vedic mathematics-based

multipliers. These Vedic formulas are said to reduce the

number of operations and provide partial products and sums

in a single step. The work also discusses the Gowin Complex

Multiplier IP, which can be used to perform complex

multiplication with a feature that allows the bit width of the

input data to be configurable, with the resource usage varying

depending on the bit width. A high-performance full-custom

12x12 complex multiplier [16] was designed in terms of
power and area. In an efficient pipelined complex multiplier

[18], a pipeline scheme for efficient realization of a complex

multiplier using distributed arithmetic was used. The

pipelined multiplier consists of one conventional multiplier

that is multiplexed and some small additional circuitry on the

boundary.

Overall, the related works section provides a thorough

review of existing complex multiplier architectures and

highlights the key features and contributions of the proposed

design, such as its scalability, hardware efficiency, and

pipelined structure, which aim to address the performance

requirements of DSP applications.

3. Methodology
The proposed Pipelined Hardware-Efficient Scalable

Complex Multiplier is designed in 90nm technology using

Cadence Innovus tools.

The overall methodology consists of six main stages.

1. Firstly, the algorithm formulation and architecture design

are developed

2. Optimized algorithm formulation and architecture are

coded in Verilog HDL

3. The RTL is validated through exhaustive simulations

using NC Launch before synthesis

4. The functionally verified RTL is synthesized using
Cadence Genus

5. The synthesized netlist is imported to Innovus for

complete place and route, DRC, and CTS, Routing

6. Finally, the layout is verified

The design flow is as shown in figure 1. A hierarchical

process is followed by defining and modeling the chip’s

design. System-level is planned, which traverses through

design, verification, and physical realization.

Specifications include the functionality, various hardware

components (processors, memories, etc.), external interfaces

to other hardware (pins, buses, etc.), internal interfaces

between hardware components, and other physical design

details such as area and power. Once the SoC specifications

are done, the architecture is designed.

3.1. Algorithm Formulation and Architecture Design

To reduce the power and area of the complex

multiplication (a+ib) (c+id) is restructured using arithmetic

optimization and sharing of common subexpressions. A

scalable architecture is defined so that the design can be
extended to higher bit widths with minimal architectural

modification. A multistage pipelined architecture is

introduced to achieve higher operating frequency, reduced

critical path, and improved throughput. Pipeline registers are

inserted after each arithmetic stage to balance delay and

maximize clock frequency.

3.2. RTL Design and Functional Verification

The optimized architecture is coded in Verilog HDL, like

a modular RTL design for add/sub blocks, partial product

units, and pipeline registers. Simulation is done using NC

launch to verify functional correctness and then with test
bench generation with multiple corner cases like positive

integers, negative integers, overflow, and complex quadrants,

and hence the RTL is validated through exhaustive

simulations before synthesis.

3.3. Logic Synthesis

Next, the functionally verified RTL is then synthesized

using Cadence Genus with a 90nm standard cell library.

During this stage, Synthesis Design Constraints (SDC) are

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

91

applied to the target clock frequency, area, and power timings

are optimized, and multi-threshold (HVT/LVT) cells are used

where appropriate. The pipelined stages are automatically

preserved using do-not-touch attributes, and hence the output

consists of an optimized gate-level netlist, timing reports, area
and power estimation, and a mapped standard cell netlist for

Innovus. The Logic Synthesis process involves three steps,

which are translation, mapping, and optimization. These steps

convert RTL code into a level netlist. The RTL elements are

mapped into logic gates using standard cell libraries. Libraries

consist of various basic logic gates like AND, OR, NOR, and

complex cells like adders, multiplexers, memory, and flip-

flops, etc. At this stage, often additional test logic is inserted

to support Design For Testability (DFT) features and

capabilities of the device. The DFT logic can be used after

fabrication to test and debug any faults in the design.

3.4. Physical Design
This is done using Cadence Innovus. The synthesized

netlist is imported to Innovus for complete place and route in

90nm technology, like floor planning, where the core area is

defined based on the synthesized cell count, input output pin

placement, macro placement, if any, aspect ratio, and

utilization set to avoid congestion, placement blockages, and

routing channels. Then comes Power planning: VDD/VSS

power rings created, metal stripes added across the core

region, power grid verified using connectivity checks, uniform

IR drop, and robust power delivery.

3.4.1. Placement
Global and detailed placement of all standard cells,

physical constraints applied to preserve pipeline structure,

congestion estimation, and pre-CTS timing optimization

performed.

3.4.2. Clock Tree Synthesis

Clock buffers and inverters inserted; skew and insertion

delay minimized; multistage pipeline structure helps simplify

CTS; Post-CTS timing closure done. Routing: Global routing

followed by detailed routing, DRC clean routing ensured,

cross-talk aware, a timing-driven routing used, and special

routing applied to high fan-out and critical nets.

3.4.3. Post Route Optimization and Extraction
Setup and hold fixes applied, RC parasitics extracted,

accurate power and timing analysis performed.

3.5. Verification and Sign Off

The final layout is verified using DRC design rule

checking. Timing signoff is completed using extracted

parasitics to ensure the design meets timing at the target

operating frequency. Finally, the GDSII file is generated

3.6. Performance Evaluation

The implemented design is evaluated in terms of

operating frequency, latency, throughput, total cell count, and

area. Dynamic, internal, and leakage power, PPA comparison

with non-pipelined and non-optimized architectures. The

methodology ensures a highly efficient, scalable, low-area,

and high-throughput complex multiplier suitable for DSP and

communication applications.

Fig. 1 Semicustom design flow [17]

4. Design of Complex Multiplier
The operations involved in the complex multiplier are

four real multiplications and two real additions. However, by

reordering the operations, real multiplications may be

decreased to three, but the number of additions will increase

to five. Xilinx IP cores have employed and shown several

architectures based on this methodology. These architectural

designs serve as a substitute for multiplier-less rotators. Adder

compression is used in optimization to simplify the circuit.

Lastly, a thorough analysis of the direct computation's

Soc Specification

Architecture Design

High Level Modeling

RTL Design

Functional Simulation and verification

RTL Synthesis and DFT

Gate Level Netlist

Place and Route

Timing Verification and Signoff

Physical Verification

Design GDSII

Soc Design Flow

Front end design

Physical Design

(Back End)

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

92

throughput, power, area, and latency in those structures is

shown in comparison to the three-multiplier approach. The

advantages of a System on a Chip (SoC) are space

optimization, power efficiency, cheaper, reliability, and better

performance. A complex multiplier is designed and

implemented as an SoC.

4.1. Complex Multiplication

(a + ib) and (c + id) are two complex numbers and i is an

imaginary value of -1:√-1.

The equation for this multiplication is given

(a+ib)(c+id) =ac+ibc+iad-bd=(ac-bd)+i(ad+bc) (1)

Where real part, x = (ac-bd) and imaginary part, y =

(ad+bc). The block diagram of a complex multiplier with four

multipliers and two adders is presented in Figure 2.

Fig. 2 Block diagram of complex multiplier

(Xr+jXi) and (Yr+jYi) are two complex numbers, and the

real and imaginary product parts are,

Zr=XrYr−XiYi (2)

Zi=XrYi+YrXi (3)

Zr=Xr(Yr−Yi) +Yi(Xr−Xi) (4)

Zi=Xi(Yr+Yi) +Yi(Xr−Xi) (5)

One computation of Yi(Xr−Xi) is sufficient as it is in both

calculations of Zr and Zi implementations. This will reduce

the area as the multipliers needed are significantly reduced in

overall implementation. The same structure can be redesigned

using three real multipliers and five adders, as shown in Figure

3.

Fig. 3 Complex multiplier

However, the proposed design nullifies the trade-off

among area, power, and speed parameters by optimizing all

three characteristics at the same time, which is discussed
below.

4.2. Hardware-Efficient Complex Multiplier

The low area leading to low cost and low power is

attained by hardware-efficient design with a lower number of

multipliers in the design, occupying minimum silicon area and

consuming lower power. The proposed design uses only three

multipliers instead of four through algebraic manipulation and

pipelines the series of operations over a few clock cycles.

4.3. Pipelined Complex Multiplier

The pipeline concept is used to increase speed for any

design by keeping subsequent data in the registers. In a single
clock cycle, the data is assigned and ready for the next

operation in the pipeline. The high-throughput complex

multiplier is constructed for the highest frequency of operation

required for DSP applications. Figure 4 shows the pipelined

complex multiplier structure with varied sizes of inputs.

4.4. Scalable Complex Multiplier

The proposed complex multiplier works for different

word length considerations, i.e., parameterized inputs,

AWIDTH, and BWIDTH, which can be altered for the desired

size of the design. The proposed implementation has two

inputs with 16 bits and 18 bits. Input values will be in the range
containing negative numbers. When these two numbers are

added together, the output is 34 bits, to cover 16 bits of A and

18 bits of B, resulting in the product in AWIDTH + BWIDTH.

It should be noted that 34 bits cannot include the sign, as

shown for the input sizes mentioned in Figure 4.

Consequently, the range of output values is also 34 bits on

each register, Preal and Pimaginary. Similarly, a 64x64 bit complex

multiplier has two inputs with 64-bit and 128-bit outputs [16,

17].

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

93

Fig. 4 16x18 Complex multiplier using the concept of Pipeline

5. Implementation of Complex Multiplier
Two Complex Multipliers with varied input sizes, for

example, 16x18 and equal sizes 64x64, are designed and

implemented using the Cadence design suite. Verilog HDL is
written to design the complex multipliers and is simulated in

NC Launch. The design is synthesized using Genus, and the

layout is developed using Innovus. The designs are presented

here before and after optimization for power and area. Though

the design of the complex multipliers is meticulously done

during coding, further optimization is done using the EDA

tools. All the results during various stages of the design are

presented below.

5.1. 16x18 complex multiplier

The scalability of input and output registers is explained

in the previous section 4.4. The simulation outputs of the

16x18 multiplier are shown for various combinations of inputs

in Figure 5.

Fig. 5 Simulation outputs of 16x18 complex multiplier

Fig. 6 RTL schematic of 16x18 complex multiplier before optimization

The RTL view of the 16x18 complex multiplier before

and after optimization is shown in Figures 6 and 7. Figures 8

and 9 show the Layout of the 16x18 Complex Multiplier

before and after optimization. Optimization is carried out for

dynamic and leakage power, as well as speed.

Fig. 7 RTL schematic of 16x18 complex multiplier after optimization

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

94

Fig. 8 Layout of 16x18 complex multiplier before optimization

Fig. 9 Layout of 16x18 complex multiplier after optimization

5.2. 64x64 Complex Multiplier

The scalability of the input and output registers is

explained in the previous section 4.4. The simulation outputs

of the 64x64 multiplier for various input combinations are

shown in Figure 10.

The Technology schematic view of the 64x64 complex

multiplier before and after optimization is shown in Figures

11 and 12. Optimization is carried out on power and speed.

Fig. 10 Simulation outputs of 64x64 complex multiplier

Fig. 11 Technology schematic of 64x64 complex multiplier before

optimization

Fig. 12 Technology schematic of 64x64 complex multiplier after

optimization

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

95

Fig. 13 RTL schematic of 64x64 complex multiplier before optimization

Fig. 14 RTL schematic of 64x64 complex multiplier after optimization

Fig. 15 Placement of cells in 64x64 complex multiplier before

optimization

RTL Schematic of 64x64 Complex Multiplier before and

after optimization is shown in Figures 13 and 14. Figures 15

and 16 show the Placement of cells in the 64x64 Complex

Multiplier before and after optimization. Figures 17 and 18

show the Layout of the 64x64 Complex Multiplier before and

after optimization.

Fig. 16 Placement of cells in 64x64 complex multiplier after

optimization

Fig. 17 Layout of 64x64 complex multiplier before optimization

Fig. 18 Layout of 64x64 complex multiplier after optimization

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

96

5. Results and Discussion
The design of 16x18 and 64x64 complex multipliers, and

the implementation is carried out as a single system on a chip

or an IP core, in this work. The design includes efficient

inclusion of hardware and high speed by pipeline method

through effective HDL implementations. The scalable design

allowed us to scale it from a 16x18 complex multiplier to a

64x64 complex multiplier.

The scalability is proved with the advantage of the design

being that the design takes an equal required time to run the

design in both cases, i.e., 16x18 and 64x64 complex

multipliers. When power is concentrated. The standard cell
count is increased by a very minute number to reduce the area

occupied by the design in both cases of 16x18 and 64x64

complex multipliers, which in turn results in the cost of the

chip.

Tables 1 and 2 show the Standard cells used in the design

and the area occupied by these standard cells of 16x18 and

64x64 Complex Multipliers, respectively.

Table 1. Standard cells and area of 16x18 complex multipliers

Design Module

16x18 Complex Multiplier

Std. Cell

Count

Cell Area

(nm2)

Required

time (ns)

Before

Optimization
1717 17832 9793

After

Optimization
1712 17797 9762

Table 2. Standard cells and area of 64x64 complex multipliers

Design Module

64x64 Complex Multiplier

Std. Cell

Count

Cell Area

(nm2)

Required

time (ns)

Before

Optimization
18577 169292 9823

After

optimization
18564 169213 9792

The designs are optimized using Genus(Cadence) with a
constraint of the dynamic power to leakage power ratio being

1:2. This optimization is important because, when the

technology further advances, leakage power dominates the

internal and switching power. Constrained dynamic to leakage

power ratios can give chips customized for power.

Table 3. Power distribution components in 16x18 complex multipliers

Design

Module

16x18 Complex Multiplier

(Power in mW)

Leakage Internal Switching Total

Before

Optimization

0.083

(5.38%)

1.16

(75.71%)

0.2918

(18.91%)

1.54

100%

After

Optimization

0.0765

5.30%

1.09

75.67%

0.274

19.03%
1.44

Table 4. Power distribution components in 64x64 complex multipliers

Design

Module

64x64 Complex Multiplier

(Power in mW)
Leakage Internal Switching Total

Before

Optimization

0.699

(6.1%)

7.97

(68.4%)

2.98

(25.5%)
11.6

After

Optimization

0.638

(6.05%)

7.10

(68.2%)

2.68

(25.75%)
10.4

Tables 3 and 4 represent the power distribution

components in 16x18 and 64x64 Complex Multipliers,

respectively. The percentage contribution of each power
distribution is mentioned in the table below. Total power

reduction after optimization gained 10.3% of the total power.

The proposed complex multipliers are compared with the

17x13 complex multiplier [18]. Table 5 shows the comparison

of the area occupied by the 17x13 complex multiplier and the

proposed 16x18 and 64x64 complex multiplier.

Table 5. Comparison of complex multipliers with respect to Area

Design Module Area in mm2

17x13 Complex multiplier[18] 0.28

16x18 Complex

multiplier[Proposed]
0.0177

64x64 Complex

multiplier[Proposed]
0.169

Finally, complex multipliers of variable sizes were

designed with 2n ± P and 2n ± Q. Power and area were

optimized. Compared to existing work [16,18]. Area is

significantly reduced when compared to the existing works.

6. Limitations
The HDL code is already written for the optimized

design, which addresses the scalability to larger input sizes

and adaptability to various technologies. The work evaluates

key performance factors, such as leakage power, internal

power, and switching power, for scalable complex multiplier
designs. The work proved that the power and area were

optimized. However, the work suggests that further research

can be done to explore additional power reduction techniques.

The area is automatically optimized by adopting advanced

technologies along with the best architectures in the design.

The work focuses on the design and implementation of

complex multipliers, but the extension to other arithmetic

functions can be done. A potential future research direction

could extend the proposed techniques to the design of other

arithmetic functions, such as accumulators, which are also

crucial for DSP applications.

7. Conclusion
For the effective execution of intricate mathematical

operations, such as the Fast Fourier Transform (FFT) and

other signal processing methods, the efficient design of

complex multipliers is critical. Hardware-efficient complex

A. Lakshmi & P. Chandrasekhar Reddy / IJETT, 74(2), 88-97, 2026

97

multipliers with varied sizes of 16x18 and 64x64, resulting in

34-bit and 128-bit product terms, respectively, are designed

that use fewer multipliers than the direct approach. The design

is suitable for high-speed applications because of its pipelined

architecture. The parameterized sizes of inputs offer
scalability of designs with customized and target applications.

This design also offers low power and minimum area to serve

the very purpose of the SoC. The results are analysed before

and after optimization constraints are applied to the power in

the dynamic and leakage power ratios. HDL design to final

layout is discussed in this work, presenting the advantages of

the design being hardware efficient, pipeline, and scalable.

References
[1] B.S. Premananda et al., “Design of Area and Power Efficient Complex Number Multiplier,” Fifth International Conference on Computing,

Communications and Networking Technologies (ICCCNT), Hefei, China, pp. 1-5, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[2] Anuja A. Bhat, and Mangesh N. Thakare, “Review on 32-Bit IEEE 754 Complex Number Multiplier Based on FFT Architecture using

BOOTH Algorithm,” International Journal of Engineering and Computer Science, vol. 6, no. 2, pp. 20308-20312, 2017. [Google Scholar]

[Publisher Link]

[3] Pedro Paz, and Mario Garrido, “Efficient Implementation of Complex Multipliers on FPGAs using DSP Slices,” Journal of Signal

Processing Systems, vol. 95, no. 4, pp. 543-550, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[4] A.P. Pascual, J. Valls, and M.M. Peiro, “Efficient Complex Number Multipliers Mapped on FPGA,” ICECS'99. Proceedings of ICECS

'99. 6th IEEE International Conference on Electronics, Circuits and Systems (Cat. No.99EX357), Paphos, Cyprus, vol. 2, pp. 1123-1126,

1999. [CrossRef] [Google Scholar] [Publisher Link]

[5] Razaidi Hussin et al., “An Efficient Modified Booth Multiplier Architecture,” 2008 International Conference on Electronic Design,

Penang, Malaysia, pp. 1-4, 2008. [CrossRef] [Google Scholar] [Publisher Link]

[6] D. Padma Shri, D. Subba Rao, and G. Vijay Goud, “VLSI Design of High Performance Complex Multiplier,” International Refereed

Journal of Engineering and Science (IRJES), vol. 3, no. 4, pp. 77-84, 2014. [Google Scholar] [Publisher Link]

[7] Marc Belleville et al., “Designing Digital Circuits with Nano-Scale Devices: Challenges and Opportunities,” Solid-State Electronics, vol.

84, pp. 38-45, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[8] Zia Abbas, and Mauro Olivieri, “Impact of Technology Scaling on Leakage Power in Nano-Scale Bulk CMOS Digital Standard Cells,”

Microelectronics Journal, vol. 45, no. 2, pp. 179-195, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Esther Rani Thuraka, Raghava Katreepalli, and Rameshwar Rao, “Design of General-Purpose Microprocessor with an Improved

Performance Self- Sleep Circuit,” 2018 International Conference on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,

pp. 419-424, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[10] T. Esther Rani, Dr. Rameshwar Rao, and and Ch. Akshitha, “Design of Low Power FFT using Self-sleep Buffer with Body bias

Technique,” IOSR Journal of VLSI and Signal Processing (IOSR-JVSP), vol. 2, no. 3, pp. 9-16, 2013. [CrossRef] [Google Scholar]

[Publisher Link]

[11] T. Esther Rani, M. Asha Rani, and Dr. Rameshwar Rao, “Area Optimized Low Power Arithmetic and Logic Unit,” 2011 3rd International

Conference on Electronics Computer Technology (ICECT 2011), Kanyakumari, India, pp. 224-228, 2011. [CrossRef] [Google Scholar]

[Publisher Link]

[12] Juan-Antonio Carballo et al., “ITRS 2.0: Toward a Re-Framing of the Semiconductor Technology Roadmap,” 2014 IEEE 32nd

International Conference on Computer Design (ICCD), Seoul, Korea (South), pp. 139-146, 2014. [CrossRef] [Google Scholar] [Publisher

Link]

[13] Gordon E. Moore, “Cramming More Components Onto Integrated Circuits, Reprinted from Electronics, Volume 38, Number 8, April 19,

1965, pp.114 ff.,” IEEE Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33-35, 2006. [CrossRef] [Google Scholar] [Publisher

Link]

[14] H.-S.P. Wong et al., “Nanoscale CMOS,” Proceedings of the IEEE, vol. 87, no. 4, pp. 537-570, 1999. [CrossRef] [Google Scholar]

[Publisher Link]

[15] What is a System on a Chip (SoC)?, Synopsys, 2025. [Online]. Available: https://www.synopsys.com/glossary/what-is-system-on-a-

chip.html

[16] Ren Ping Wang, “Full-Custom Design and Implementation of High-Performance Multiplier,” Advanced Materials Research, vol. 631-

632, pp. 1445-1451, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[17] A. Lakshmi, P. Chandrasekhar Reddy, Esther Rani Thuraka, “Full Custom Design and Implementation of 12-Bit Complex

Multiplier,” SSRG International Journal of Electronics and Communication Engineering, vol. 12, no. 8, pp. 40-50, 2025. [CrossRef]

[Publisher Link]

[18] SoC Development Overview, AnySilicon, 2020. [Online]. Available: https://anysilicon.com/soc-development-overview

[19] Weidong Li, Shengxian Zhuang, and Lars Wanhammar, “An Efficient Pipelined Complex Multiplier,” 1997. [Google Scholar]

[20] T. Esther Rani and Dr. Rameshwar Rao, “Area and Power Optimized Multipliers with Minimum Leakage,” 2011 3rd International

Conference on Electronics Computer Technology, Kanyakumari, India, 2011. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1109/ICCCNT.2014.6963017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+area+and+power+efficient+complex+number+multiplier&btnG=
https://ieeexplore.ieee.org/document/6963017
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+on+32-Bit+IEEE+754+Complex+Number+Multiplier+Based+on+FFT+Architecture+using+BOOTH+Algorithm&btnG=
https://ijecs.in/index.php/ijecs/article/view/2580
https://doi.org/10.1007/s11265-023-01867-7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+Implementation+of+Complex+Multipliers+on+FPGAs+using+DSP+Slices&btnG=
https://link.springer.com/article/10.1007/s11265-023-01867-7
https://doi.org/10.1109/ICECS.1999.813431
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Efficient+complex+number+multipliers+mapped+on+FPGA&btnG=
https://ieeexplore.ieee.org/abstract/document/813431
https://doi.org/10.1109/ICED.2008.4786767
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Efficient+Modified+Booth+Multiplier+Architecture&btnG=
https://ieeexplore.ieee.org/abstract/document/4786767
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=VLSI+Design+of+High+Performance+Complex+Multiplier%2C%E2%80%9D+International+Refereed+Journal+of+Engineering+and+Science+%28IRJES%29&btnG=
https://www.irjes.com/pages/v3i4.html
https://doi.org/10.1016/j.sse.2013.02.030
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Designing+Digital+Circuits+with+Nano-Scale+Devices%3A+Challenges+and+Opportunities&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0038110113000919
https://doi.org/10.1016/j.mejo.2013.10.013
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Impact+of+technology+scaling+on+leakage+power+in+nano-scale+bulk+CMOS+digital+standard+cells&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S002626921300253X
https://doi.org/10.1109/ICSSIT.2018.8748868
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+General-Purpose+Microprocessor+with+an+Improved+Performance+Self-+Sleep+Circuit&btnG=
https://ieeexplore.ieee.org/abstract/document/8748868
https://doi.org/10.9790/4200-0230916
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Design+of+General-Purpose+Microprocessor+with+an+Improved+Performance+Self-+Sleep+Circuit&btnG=
https://www.iosrjournals.org/iosr-jvlsi/papers/vol2-issue3/B0230916.pdf
https://doi.org/10.1109/ICECTECH.2011.5941742
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Area+Optimized+Low+Power+Arithmetic+and+Logic+Unit&btnG=
https://ieeexplore.ieee.org/abstract/document/5941742
https://doi.org/10.1109/ICCD.2014.6974673
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=ITRS+2.0%3A+Toward+a+re-framing+of+the+Semiconductor+Technology+Roadmap+Moore+G.E.+Cramming+more+components+onto+integrated+circuits&btnG=
https://ieeexplore.ieee.org/abstract/document/6974673
https://ieeexplore.ieee.org/abstract/document/6974673
https://doi.org/10.1109/N-SSC.2006.4785860
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Cramming+more+components+onto+integrated+circuits&btnG=
https://ieeexplore.ieee.org/document/4785860
https://ieeexplore.ieee.org/document/4785860
https://doi.org/10.1109/5.752515
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Nanoscale+CMOS+&btnG=
https://ieeexplore.ieee.org/document/752515
https://www.synopsys.com/glossary/what-is-system-on-a-chip.html
https://www.synopsys.com/glossary/what-is-system-on-a-chip.html
https://doi.org/10.4028/www.scientific.net/AMR.631-632.1445
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Full-Custom+Design+and+Implementation+of+High-Performance+Multiplier&btnG=
https://www.scientific.net/AMR.631-632.1445
https://doi.org/10.14445/23488549/IJECE-V12I8P104
https://www.internationaljournalssrg.org/IJECE/paper-details?Id=954
https://anysilicon.com/soc-development-overview
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Weidong+Li%2C+Shengxian+Zhuang%2C+and+L.+Wanhammar%2C+%E2%80%9CAn+efficient+pipelined+Complex+multiplier%2C+1997&btnG=
https://doi.org/10.1109/ICECTECH.2011.5941755
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Area+and+Power+Optimized+Multipliers+with+Minimum+Leakage&btnG=
https://ieeexplore.ieee.org/abstract/document/5941755

