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Abstract - Complex numbers find significant use in Very Large-Scale Integration (VLSI) design, particularly in Digital Signal 

Processing (DSP) algorithms and hardware implementations. They are crucial for efficiently performing complex mathematical 

operations like the Fast Fourier Transform (FFT) and other signal processing techniques.  In any system, multipliers take a 

longer time to process due to complexity, and therefore, efficient design of multipliers is crucial in the overall performance of 

the system. A 16x18 and a 64x64 Hardware-efficient complex multiplier are designed, which uses fewer multipliers than the 

direct approach. The design is suitable for high-speed applications because of its pipelined architecture, and its parameterized 

sizes of inputs offer scalability of designs with customized and target applications. This design also offers low power and 

minimum area to serve the very purpose of SoC, and even as an IP Core. The design is implemented in 90nm technology using 

the Cadence design suite. Thus, the design furnished reduces the number of operations at the architectural level itself and can 

save chip area, power, cost, and further increase speed. 

Keywords - Complex multiplier, Hardware-efficient, Pipeline, SoC, VLSI. 

1. Introduction  
The Very Large-Scale Integration (VLSI) design heavily 

relies on complex numbers, especially for hardware 

implementations and Digital Signal Processing (DSP) 

methods.   Additionally, AC circuits and electromagnetic 

phenomena are represented and analysed using complex 

numbers.  DSP and more scientific relevance methods rely 

heavily on complex number multipliers. 

An essential basic function in mathematical operations is 

multiplication.  Among the commonly used Computation-

Intensive Arithmetic Functions (CIAF) presently employed in 

many DSP applications, including Fast Fourier Transform 

(FFT), convolution, filtering, ALUs of processors, logic units, 

Multiply and Accumulate (MAC), etc.  High-speed multipliers 

are necessary since multiplication takes up the majority of 

DSP algorithms' execution time.  The primary determinant of 

an instruction cycle time now is still multiplication time in the 

DSP block.  The growing number of applications has led to an 
increase in the need for rapid processing units.  In many real-

time applications, arithmetic operations with higher 

throughput are necessary to provide the required performance 

for image processing applications.  

Multiplication is a crucial mathematical operation in 

these kinds of applications, and the creation of fast multiplier 

circuits has drawn attention for many years.  For many 

applications, lowering the power usage and time delay are 

crucial criteria. In this paper, many multiplier architectures are 

presented.  One of the quick and low-power multipliers is the 

Vedic mathematics-based multiplier [1,2]. 

The research strategies to decrease the complexity of any 

design resulting from increasing process variability, and then 

shorten chip production turnaround times, are a clear problem 

facing the Integrated Circuit (IC) industry.  Conventional 

approaches used are largely labour-intensive, time-

consuming, and resource-intensive.  On the other hand, the 

distinct learning mechanisms of Artificial Intelligence (AI) 
offer a variety of fascinating, automated methods for 

managing intricate and data-intensive activities in the design 

and testing of VLSI designs.  The time, along with effort, is 

decreased when AI and ML techniques are used in VLSI 

manufacturing and design.  Consequently, it lowers the 

manufacturing turnaround time and increases the IC yield. The 

AI/ML automated techniques previously introduced for VLSI 

design and manufacture are reviewed in detail. AI/ML 

applications could transform VLSI design in the future, with a 

focus on fast, highly intelligent, and effective 

implementations.  

To build and construct Systems-on-Chip (SoCs) that use 
complex number arithmetic for certain applications, including 

signal processing or specific scientific computations, the term 
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"complex number as system on chip" is used.  It refers to a 

specific aspect of chip architecture; however, it is not as 

common as a "system on a chip" [3,4].  Numerous scientific 

fields, such as signal processing, control theory, fluid 

dynamics, electromagnetic, quantum mechanics, mapping, 

and vibration analysis, use complex numbers. 

Regular 2n x2n sizes of complex multiplier are unable to 

address the customized applications of varied sizes. In this 

paper, a customized design size is possible. This SOC can be 

used when very high throughput is required, and real-time 

processing is mandatory, and where large FFT/filter banks are 

used, like SDRs and AI accelerators. 

2. Related works 
The "Vedas" of ancient Indian mathematics served as an 

inspiration to the design of the multiplier, adder, and 

subtractor units.  These formulas reduce the operations and 

supply partial products and the sum in a single step. [5] DSP 

methods like FFT frequently use the simple act of multiplying 

two complex values.  Hundreds of these multipliers are 

necessary for large, highly parallel FFT designs.  Therefore, 

enhancement is applied to all of the complex multipliers in an 

architecture; improving one of them results in large savings. 

The Structure and Function of Complex Multipliers. 

Complex Multiplier IP can be used to accomplish 

multiplication.  A multiplier (multiplier + adder) is used to 

accomplish the complex multiplication in the Gowin Complex 

Multiplier IP. Bit width of input data is changeable, and the 

resource usage of the complex multiplier varies depending on 

the bit width.  To save resources when the demand is satisfied, 

the user should configure the IP as minimally as possible.  The 

following are adjustable settings for the Gowin Complex 
Multiplier IP: The breadth of the input data, the data entered 

is either a signed or unsigned number, and the GUI allows the 

user to choose the input data bit width N. Currently, the signed 

or unsigned data N up to a maximum of 26 bits, and based on 

the bit width of the input data, a resource-efficient technique 

to do complex multiplication is selected. Bit width of output 

data is 19 bits when the GUI configuration input N<=9; 37 bits 

is the output data bit width when 9<N<=18; and 73 bits is the 

output data bit width when 18< N<=26.  Selecting the data 

type and whether the data is signed or unsigned when 

configuring the IP core in the GUI interface is chosen. 

Selecting the reset mode, can choose between 

synchronous and asynchronous reset modes when configuring 

the IP core in the GUI interface. The Structure and Function 

of a Complex Multiplier IPUG521-1.0E 8 Configures register 

parameters.  The DSP's registers can be enabled to implement 

the delayed output.  The minimum delay is zero, and the 

maximum delay is three cycles for the output delay period 

[6,7]. The microelectronics sector has grown significantly due 

to the constant scaling back of transistors across many 

technical generations, which has increased device density and 

performance [8]. A significant increase in demand for power-

efficient designs with cutting-edge features has resulted from 

the growing appreciation of portable gadgets in recent years. 

The continually growing demand in the electronics sector is 

satisfied by extremely sophisticated and scalable VLSI 
designs. A factor propelling the development of IC technology 

using enhanced device performance is continuous device 

downscaling to sub-3-nm-gate and beyond. 

Device engineers now face both new opportunities and 

several obstacles because of the aggressive downscaling of 

CMOS technology. Devices can suffer from several 

performance problems despite their tiny size, including 

increased leakage [9–11], lower gain, and greater sensitivity 

to changes in the manufacturing process [12]. The circuit 

operation is greatly impacted by the huge increase in process 

differences, which causes identical-sized transistors to 

perform differently [13]. One of the main reasons for 
parametric yield loss is growing process variability in the 

nanometre range. Aggressive scaling, however, also affects 

their performance metrics [14, 15]. 

To sustain performance, the VLSI design flow must 

incorporate sophisticated, reasonably priced design 

methodologies that enable finer optimization.  The ability of 

EDA tools to overcome design restrictions determines a chip's 

turnaround time.  Furthermore, the conventional methods are 

manual, which makes them time-sensitive and resource-

intensive, causing delays in time to market.  Furthermore, it 

takes a lot of effort and time to comprehend the original 
functionalities, that is, the underlying source of problems, to 

implement modifications, when necessary, once the data has 

been sent back [12]. These days, field-programmable gate 

arrays, or FPGAs, are frequently used in the creation of 

finished goods. Nevertheless, applications do not always fully 

utilize the FPGA's hardware capabilities. More effective 

designs result from improved FPGA utilization. 

Logic blocks can be used to implement the same on 

FPGAs. Nonetheless, specialized modules for computing 

arithmetic operations are typically found on FPGAs. These 

modules, known as DSP slices, enable higher clock 

frequencies in Xilinx FPGAs. The DSP48E1 block is included 
in Xilinx's 7 Series FPGAs. A block called DSP48E2 [13] is 

found in Xilinx's UltraScale and UltraScale+FPGAs [15]. 

Two effective complex multiplier implementations that work 

with DSP48E1 and DSP48E2 slices are presented in this 

research. While the second version seeks a trade-off, the first 

implementation aims for maximum throughput, minimum 

area, and the greatest speed permitted by design. Development 

of SoC devices has been made feasible by significant 

developments in the speed, capability, and IC complexity in 

recent years, including ASICs, RAMs, and microprocessors. 

The suggested architecture attempts to provide a single-chip 
solution for the majority of popular high-performance 

applications. This minimizes the amount of external logic by 
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combining the entire logic design into a single FPGA. The 

paper states that the proposed design aims to provide a high-

throughput complex multiplier implementation suitable for 

these FPGA architectures. 

Numerous issues in a variety of sectors have found 
notable answers because of Artificial Intelligence (AI).  AI is 

human intelligence, illuminated so that a machine can simply 

mimic and complete tasks of different complications. AI 

includes ML as a subset because learning, reasoning, 

predicting, and perceiving are the objectives of AI/ML. 

Customers make informed judgments by using AI/ML's rapid 

ability to spot patterns. High processing rates can be achieved 

by AI/ML algorithms when handling various kinds of data. As 

these algorithms continue to learn, their forecast accuracy and 

efficiency increase. Additionally, they make decision-making 

easier by streamlining pertinent procedures. AI/ML 

techniques have been widely used in VLSI design and 

technology within the past ten years. 

From design entry to fully customized layouts, the 

competence of CAD tools determines the performance 

assessment of extremely complicated integrated circuits.  

With an enormous rise in devices per chip, developing CAD 

for VLSI is getting harder and more complicated.  For rapid 

convergence, there are many chances in semiconductor and 

EDA technology to create or integrate AI/ML elucidations to 

computerize processes at different abstraction levels of VLSI.  

The goal of these clever learning algorithms is to provide 

effective, automated chip fabrication solutions with 

comparatively quick turnaround times. 

In comparison with the existing designs, the work 

compares the proposed pipelined hardware-efficient scalable 

complex multiplier design with Vedic mathematics-based 

multipliers. These Vedic formulas are said to reduce the 

number of operations and provide partial products and sums 

in a single step. The work also discusses the Gowin Complex 

Multiplier IP, which can be used to perform complex 

multiplication with a feature that allows the bit width of the 

input data to be configurable, with the resource usage varying 

depending on the bit width. A high-performance full-custom 

12x12 complex multiplier [16] was designed in terms of 
power and area. In an efficient pipelined complex multiplier 

[18], a pipeline scheme for efficient realization of a complex 

multiplier using distributed arithmetic was used. The 

pipelined multiplier consists of one conventional multiplier 

that is multiplexed and some small additional circuitry on the 

boundary. 

Overall, the related works section provides a thorough 

review of existing complex multiplier architectures and 

highlights the key features and contributions of the proposed 

design, such as its scalability, hardware efficiency, and 

pipelined structure, which aim to address the performance 

requirements of DSP applications. 

3. Methodology 
The proposed Pipelined Hardware-Efficient Scalable 

Complex Multiplier is designed in 90nm technology using 

Cadence Innovus tools. 

The overall methodology consists of six main stages. 

1. Firstly, the algorithm formulation and architecture design 

are developed 

2. Optimized algorithm formulation and architecture are 

coded in Verilog HDL 

3. The RTL is validated through exhaustive simulations 

using NC Launch before synthesis 

4. The functionally verified RTL is synthesized using 
Cadence Genus 

5. The synthesized netlist is imported to Innovus for 

complete place and route, DRC, and CTS, Routing 

6. Finally, the layout is verified 

The design flow is as shown in figure 1. A hierarchical 

process is followed by defining and modeling the chip’s 

design. System-level is planned, which traverses through 

design, verification, and physical realization. 

Specifications include the functionality, various hardware 

components (processors, memories, etc.), external interfaces 

to other hardware (pins, buses, etc.), internal interfaces 

between hardware components, and other physical design 

details such as area and power. Once the SoC specifications 

are done, the architecture is designed.  

3.1. Algorithm Formulation and Architecture Design 

To reduce the power and area of the complex 

multiplication (a+ib) (c+id) is restructured using arithmetic 

optimization and sharing of common subexpressions. A 

scalable architecture is defined so that the design can be 
extended to higher bit widths with minimal architectural 

modification. A multistage pipelined architecture is 

introduced to achieve higher operating frequency, reduced 

critical path, and improved throughput. Pipeline registers are 

inserted after each arithmetic stage to balance delay and 

maximize clock frequency. 

3.2. RTL Design and Functional Verification 

The optimized architecture is coded in Verilog HDL, like 

a modular RTL design for add/sub blocks, partial product 

units, and pipeline registers. Simulation is done using NC 

launch to verify functional correctness and then with test 
bench generation with multiple corner cases like positive 

integers, negative integers, overflow, and complex quadrants, 

and hence the RTL is validated through exhaustive 

simulations before synthesis. 

3.3. Logic Synthesis 

Next, the functionally verified RTL is then synthesized 

using Cadence Genus with a 90nm standard cell library. 

During this stage, Synthesis Design Constraints (SDC) are 
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applied to the target clock frequency, area, and power timings 

are optimized, and multi-threshold (HVT/LVT) cells are used 

where appropriate. The pipelined stages are automatically 

preserved using do-not-touch attributes, and hence the output 

consists of an optimized gate-level netlist, timing reports, area 
and power estimation, and a mapped standard cell netlist for 

Innovus. The Logic Synthesis process involves three steps, 

which are translation, mapping, and optimization. These steps 

convert RTL code into a level netlist. The RTL elements are 

mapped into logic gates using standard cell libraries. Libraries 

consist of various basic logic gates like AND, OR, NOR, and 

complex cells like adders, multiplexers, memory, and flip-

flops, etc. At this stage, often additional test logic is inserted 

to support Design For Testability (DFT) features and 

capabilities of the device. The DFT logic can be used after 

fabrication to test and debug any faults in the design. 

3.4. Physical Design 
This is done using Cadence Innovus. The synthesized 

netlist is imported to Innovus for complete place and route in 

90nm technology, like floor planning, where the core area is 

defined based on the synthesized cell count, input output pin 

placement, macro placement, if any, aspect ratio, and 

utilization set to avoid congestion, placement blockages, and 

routing channels. Then comes Power planning: VDD/VSS 

power rings created, metal stripes added across the core 

region, power grid verified using connectivity checks, uniform 

IR drop, and robust power delivery. 

3.4.1. Placement 
Global and detailed placement of all standard cells, 

physical constraints applied to preserve pipeline structure, 

congestion estimation, and pre-CTS timing optimization 

performed.  

3.4.2. Clock Tree Synthesis 

Clock buffers and inverters inserted; skew and insertion 

delay minimized; multistage pipeline structure helps simplify 

CTS; Post-CTS timing closure done. Routing: Global routing 

followed by detailed routing, DRC clean routing ensured, 

cross-talk aware, a timing-driven routing used, and special 

routing applied to high fan-out and critical nets.  

3.4.3. Post Route Optimization and Extraction 
Setup and hold fixes applied, RC parasitics extracted, 

accurate power and timing analysis performed. 

3.5. Verification and Sign Off 

The final layout is verified using DRC design rule 

checking. Timing signoff is completed using extracted 

parasitics to ensure the design meets timing at the target 

operating frequency. Finally, the GDSII file is generated 

3.6. Performance Evaluation 

The implemented design is evaluated in terms of 

operating frequency, latency, throughput, total cell count, and 

area. Dynamic, internal, and leakage power, PPA comparison 

with non-pipelined and non-optimized architectures. The 

methodology ensures a highly efficient, scalable, low-area, 

and high-throughput complex multiplier suitable for DSP and 

communication applications. 

 
Fig. 1 Semicustom design flow [17] 

4. Design of Complex Multiplier  
The operations involved in the complex multiplier are 

four real multiplications and two real additions.  However, by 

reordering the operations, real multiplications may be 

decreased to three, but the number of additions will increase 

to five.  Xilinx IP cores have employed and shown several 

architectures based on this methodology.  These architectural 

designs serve as a substitute for multiplier-less rotators.  Adder 

compression is used in optimization to simplify the circuit.  

Lastly, a thorough analysis of the direct computation's 
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throughput, power, area, and latency in those structures is 

shown in comparison to the three-multiplier approach. The 

advantages of a System on a Chip (SoC) are space 

optimization, power efficiency, cheaper, reliability, and better 

performance. A complex multiplier is designed and 

implemented as an SoC. 

4.1. Complex Multiplication 

(a + ib) and (c + id) are two complex numbers and i is an 

imaginary value of -1:√-1. 

The equation for this multiplication is given  

(a+ib)(c+id) =ac+ibc+iad-bd=(ac-bd)+i(ad+bc) (1) 

Where real part, x = (ac-bd) and imaginary part, y = 

(ad+bc).  The block diagram of a complex multiplier with four 

multipliers and two adders is presented in Figure 2.  

 
Fig. 2 Block diagram of complex multiplier 

(Xr+jXi) and (Yr+jYi) are two complex numbers, and the 

real and imaginary product parts are, 

Zr=XrYr−XiYi (2) 

Zi=XrYi+YrXi (3) 

Zr=Xr(Yr−Yi) +Yi(Xr−Xi) (4) 

Zi=Xi(Yr+Yi) +Yi(Xr−Xi) (5) 

One computation of Yi(Xr−Xi) is sufficient as it is in both 

calculations of Zr and Zi implementations. This will reduce 

the area as the multipliers needed are significantly reduced in 

overall implementation. The same structure can be redesigned 

using three real multipliers and five adders, as shown in Figure 

3. 

 
Fig. 3 Complex multiplier 

However, the proposed design nullifies the trade-off 

among area, power, and speed parameters by optimizing all 

three characteristics at the same time, which is discussed 
below.  

 

4.2. Hardware-Efficient Complex Multiplier 

The low area leading to low cost and low power is 

attained by hardware-efficient design with a lower number of 

multipliers in the design, occupying minimum silicon area and 

consuming lower power. The proposed design uses only three 

multipliers instead of four through algebraic manipulation and 

pipelines the series of operations over a few clock cycles. 

4.3. Pipelined Complex Multiplier 

The pipeline concept is used to increase speed for any 

design by keeping subsequent data in the registers. In a single 
clock cycle, the data is assigned and ready for the next 

operation in the pipeline. The high-throughput complex 

multiplier is constructed for the highest frequency of operation 

required for DSP applications. Figure 4 shows the pipelined 

complex multiplier structure with varied sizes of inputs. 

4.4. Scalable Complex Multiplier  

The proposed complex multiplier works for different 

word length considerations, i.e., parameterized inputs, 

AWIDTH, and BWIDTH, which can be altered for the desired 

size of the design. The proposed implementation has two 

inputs with 16 bits and 18 bits. Input values will be in the range 
containing negative numbers. When these two numbers are 

added together, the output is 34 bits, to cover 16 bits of A and 

18 bits of B, resulting in the product in AWIDTH + BWIDTH. 

It should be noted that 34 bits cannot include the sign, as 

shown for the input sizes mentioned in Figure 4. 

Consequently, the range of output values is also 34 bits on 

each register, Preal and Pimaginary. Similarly, a 64x64 bit complex 

multiplier has two inputs with 64-bit and 128-bit outputs [16, 

17]. 
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Fig. 4 16x18 Complex multiplier using the concept of Pipeline 

5. Implementation of Complex Multiplier 
Two Complex Multipliers with varied input sizes, for 

example, 16x18 and equal sizes 64x64, are designed and 

implemented using the Cadence design suite. Verilog HDL is 
written to design the complex multipliers and is simulated in 

NC Launch. The design is synthesized using Genus, and the 

layout is developed using Innovus. The designs are presented 

here before and after optimization for power and area. Though 

the design of the complex multipliers is meticulously done 

during coding, further optimization is done using the EDA 

tools. All the results during various stages of the design are 

presented below. 

5.1. 16x18 complex multiplier 

The scalability of input and output registers is explained 

in the previous section 4.4. The simulation outputs of the 

16x18 multiplier are shown for various combinations of inputs 

in Figure 5. 

 
Fig. 5 Simulation outputs of 16x18 complex multiplier 

 
Fig. 6 RTL schematic of 16x18 complex multiplier before optimization 

The RTL view of the 16x18 complex multiplier before 

and after optimization is shown in Figures 6 and 7. Figures 8 

and 9 show the Layout of the 16x18 Complex Multiplier 

before and after optimization. Optimization is carried out for 

dynamic and leakage power, as well as speed. 

 
Fig. 7 RTL schematic of 16x18 complex multiplier after optimization 
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Fig. 8 Layout of 16x18 complex multiplier before optimization 

 
Fig. 9 Layout of 16x18 complex multiplier after optimization 

 

5.2. 64x64 Complex Multiplier 

The scalability of the input and output registers is 

explained in the previous section 4.4. The simulation outputs 

of the 64x64 multiplier for various input combinations are 

shown in Figure 10. 

The Technology schematic view of the 64x64 complex 

multiplier before and after optimization is shown in Figures 

11 and 12. Optimization is carried out on power and speed. 

 
Fig. 10 Simulation outputs of 64x64 complex multiplier 

 
Fig. 11 Technology schematic of 64x64 complex multiplier before 

optimization 

                                         

 
Fig. 12 Technology schematic of 64x64 complex multiplier after 

optimization 
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Fig. 13 RTL schematic of 64x64 complex multiplier before optimization 

 
Fig. 14 RTL schematic of 64x64 complex multiplier after optimization 

 

 
Fig. 15 Placement of cells in 64x64 complex multiplier before 

optimization 

RTL Schematic of 64x64 Complex Multiplier before and 

after optimization is shown in Figures 13 and 14.  Figures 15 

and 16 show the Placement of cells in the 64x64 Complex 

Multiplier before and after optimization. Figures 17 and 18 

show the Layout of the 64x64 Complex Multiplier before and 

after optimization.  

 
Fig. 16 Placement of cells in 64x64 complex multiplier after 

optimization 

 
Fig. 17 Layout of 64x64 complex multiplier before optimization 

 
Fig. 18 Layout of 64x64 complex multiplier after optimization 
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5. Results and Discussion 
The design of 16x18 and 64x64 complex multipliers, and 

the implementation is carried out as a single system on a chip 

or an IP core, in this work. The design includes efficient 

inclusion of hardware and high speed by pipeline method 

through effective HDL implementations. The scalable design 

allowed us to scale it from a 16x18 complex multiplier to a 

64x64 complex multiplier.  

The scalability is proved with the advantage of the design 

being that the design takes an equal required time to run the 

design in both cases, i.e., 16x18 and 64x64 complex 

multipliers. When power is concentrated. The standard cell 
count is increased by a very minute number to reduce the area 

occupied by the design in both cases of 16x18 and 64x64 

complex multipliers, which in turn results in the cost of the 

chip.  

Tables 1 and 2 show the Standard cells used in the design 

and the area occupied by these standard cells of 16x18 and 

64x64 Complex Multipliers, respectively. 

Table 1. Standard cells and area of 16x18 complex multipliers 

Design Module 

16x18 Complex Multiplier 

Std. Cell 

Count 

Cell Area 

(nm2) 

Required 

time (ns) 

Before 

Optimization 
1717 17832 9793 

After 

Optimization 
1712 17797 9762 

Table 2. Standard cells and area of 64x64 complex multipliers 

Design Module 

64x64 Complex Multiplier 

Std. Cell 

Count 

Cell Area 

(nm2) 

Required 

time (ns) 

Before 

Optimization 
18577 169292 9823 

After 

optimization 
18564 169213 9792 

 

The designs are optimized using Genus(Cadence) with a 
constraint of the dynamic power to leakage power ratio being 

1:2. This optimization is important because, when the 

technology further advances, leakage power dominates the 

internal and switching power. Constrained dynamic to leakage 

power ratios can give chips customized for power. 

Table 3. Power distribution components in 16x18 complex multipliers 

Design 

Module 

16x18 Complex Multiplier 

(Power in mW) 

Leakage Internal Switching Total 

Before 

Optimization 

0.083 

(5.38%) 

1.16 

(75.71%) 

0.2918 

(18.91%) 

1.54 

100% 

After 

Optimization 

0.0765 

5.30% 

1.09 

75.67% 

0.274 

19.03% 
1.44 

Table 4. Power distribution components in 64x64 complex multipliers 

Design 

Module 

64x64 Complex Multiplier 

(Power in  mW) 
Leakage Internal Switching Total 

Before 

Optimization 

0.699 

(6.1%) 

7.97 

(68.4%) 

2.98 

(25.5%) 
11.6 

After 

Optimization 

0.638 

(6.05%) 

7.10 

(68.2%) 

2.68 

(25.75%) 
10.4 

 

Tables 3 and 4 represent the power distribution 

components in 16x18 and 64x64 Complex Multipliers, 

respectively. The percentage contribution of each power 
distribution is mentioned in the table below. Total power 

reduction after optimization gained 10.3% of the total power. 

The proposed complex multipliers are compared with the 

17x13 complex multiplier [18]. Table 5 shows the comparison 

of the area occupied by the 17x13 complex multiplier and the 

proposed 16x18 and 64x64 complex multiplier. 

Table 5. Comparison of complex multipliers with respect to Area 

Design Module Area in mm2 

17x13 Complex multiplier[18] 0.28 

16x18 Complex 

multiplier[Proposed] 
0.0177 

64x64 Complex 

multiplier[Proposed] 
0.169 

 

Finally, complex multipliers of variable sizes were 

designed with 2n  ± P and 2n  ± Q. Power and area were 

optimized. Compared to existing work [16,18]. Area is 

significantly reduced when compared to the existing works. 

6. Limitations 
The HDL code is already written for the optimized 

design, which addresses the scalability to larger input sizes 

and adaptability to various technologies. The work evaluates 

key performance factors, such as leakage power, internal 

power, and switching power, for scalable complex multiplier 
designs. The work proved that the power and area were 

optimized. However, the work suggests that further research 

can be done to explore additional power reduction techniques. 

The area is automatically optimized by adopting advanced 

technologies along with the best architectures in the design. 

The work focuses on the design and implementation of 

complex multipliers, but the extension to other arithmetic 

functions can be done. A potential future research direction 

could extend the proposed techniques to the design of other 

arithmetic functions, such as accumulators, which are also 

crucial for DSP applications.  

7. Conclusion 
For the effective execution of intricate mathematical 

operations, such as the Fast Fourier Transform (FFT) and 

other signal processing methods, the efficient design of 

complex multipliers is critical. Hardware-efficient complex 



A. Lakshmi & P. Chandrasekhar Reddy  / IJETT, 74(2), 88-97, 2026 
 

97 

multipliers with varied sizes of 16x18 and 64x64, resulting in 

34-bit and 128-bit product terms, respectively, are designed 

that use fewer multipliers than the direct approach. The design 

is suitable for high-speed applications because of its pipelined 

architecture. The parameterized sizes of inputs offer 
scalability of designs with customized and target applications. 

This design also offers low power and minimum area to serve 

the very purpose of the SoC. The results are analysed before 

and after optimization constraints are applied to the power in 

the dynamic and leakage power ratios. HDL design to final 

layout is discussed in this work, presenting the advantages of 

the design being hardware efficient, pipeline, and scalable. 
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