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Abstract - The study is a design and development of a strong disease detection system of cucumber and grape leaves with noisy
image data, focusing on the ability to withstand salt-and-pepper and Gaussian noises. The image datasets used in agriculture
are usually affected by noise because of changes in light, sensor defects, and environmental conditions, which may lead to lower
diagnostic accuracy. In order to address this, the proposed system incorporates high noise reduction methods whereby a median
filter and a Gaussian filter are used to restore the image quality without compromising on the important leaf texture information.
After processing, colour, texture, and shape are used to extract features, which are effective in extracting disease-specific visual
representations. These fine features are then trained on various optimized machine learning models, such as Light Gradient
Boosted Machine (LGBM), Quantum Support Vector Machine (QSVM), a Modified Random Forest (MRF) with adaptive
weighted features, and a Multi-SVM classifier with a custom kernel to map nonlinear features. Through experimental analyses,
the proposed ensemble framework is shown to be highly accurate, robust, and noise-tolerant as opposed to the traditional
frameworks. The hybrid method is effective in recognizing the significant cucumber diseases and grapes, including powdery
mildew, downy mildew, and anthracnose, which will be utilized in the noisy agricultural conditions in the real world. In general,
this system offers a noise-resistant, reliable, and computationally efficient system to detect early signs of plant diseases, which

can be used in sustainable crop monitoring and precision farming.

Keywords - Noise Images, Leaf Disease Detection, Salt-and-Pepper Noise, Gaussian Noise, Median Filtering, Gaussian
Filtering, Feature Extraction, Machine-Learning Models (LGBM, QSVM, MRF, Multi-SVM,).

impairs image quality, obscures disease symptoms, and
eventually reduces the accuracy of classification. Therefore,

1. Introduction
The high rate of development of precision agriculture also

emphasizes the urgency of the development of strong,
automated tools to recognize the disease in a plant at an early
stage, particularly in the conditions of real practice, when
noise can destroy the quality of an image. Manual inspection
techniques are slow, subjective, and cannot be applied to
large-scale farming, especially to crops like cucumber and
grape, which are highly susceptible to various fungal,
bacterial, and viral infections. They cause diseases to a large
extent, which decrease yield and quality, hence domestic
consumption and export potential are also affected [1]. Recent
research proved that machine learning and image processing
methods could detect symptoms of diseases by using leaf
images. But the majority of current models are trained and
tested on clean datasets, and in practice, when operating in the
field, the image acquisition devices are susceptible to
distortion by the environment, sensor constraints, and
transmission errors. This results in typical forms of noise,
including Gaussian noise and salt-and-pepper noise, that

to deploy the model, models that are noise-resistant have to be
developed.

The proposed paper introduces a complete system of
cucumber and grape disease detection in noisy scenarios,
which involves noise-aware preprocessing with the state-of-
the-art classification techniques. It begins with image-
enhancing and image filtering algorithms, including Gaussian
and median filters that minimize noise but preserve desirable
disease-related information. The infected areas are isolated by
K-means clustering, and the texture features, a description of
the relationship in space in diseased tissues, are extracted via
Gray-Level Co-Occurrence Matrix (GLCM). In order to
classify, hybrid Multi_SVM tuned kernels (RBF, Sigmoid,
and ANOVA) are applied to address the nonlinear distribution
of features and cases in multi-class situations. In addition, the
ensemble methods are also adopted to enhance the strength
and stability of the performance of the ensemble of Random
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Forest and Light Gradient Boosting Machine (LGBM) in
diverse conditions of noise. The framework may be used to
give information on the robustness of models and trade-offs
that are created between accuracy, computing cost, and
adaptability  through  controlled noisy environment
comparisons of different algorithms.

This objective is a reaction to significant challenges that
offer limitations to the deployment of plant disease detection
systems in real agricultural land. The suggested framework
enhances scalable, cost-effective, and reliable solutions to
farmers by focusing on noise-tolerant learning approaches and
tailored datasets, along with the existing benchmarks. This
will definitely decrease the loss of crops as well as ensure
sustainable production of agriculture, thereby increasing food
security and exportability.

Plant disease detection is essential in the current
agricultural practice in an effort aimed at maintaining quality
yield and saving money. However, the quality of automated
disease recognition systems depends on the quality of input
images to a considerable extent. When applied to real
agricultural settings, both salt-and-pepper noise (Distortion of
cucumber and grape leaves due to faulty sensors or dust or
transmission) and Gaussian noise (added by changes in
lighting and other environmental factors) often damage image
quality. This noise may alter important characteristics of the
disease- e.g., lesion texture, variation in color, shapes, etc.,
resulting in incorrect classification and inaccurate outcomes.
The current methods will not be able to manage these noise
effects, and the model performance deteriorates considerably.
Consequently, there is a high interest in creating a disease
detection framework that is resistant to noise and has a high
accuracy regardless of poor image conditions. The proposed
system will improve the accuracy and consistency of
cucumber and grape crop diagnosis [2] of diseases by applying
effective filtering methods and using other classification
algorithms like LGBM, QSVM, Modified Random Forest,
and Multi-SVM with custom kernels. The study will be
relevant to sustainable agriculture, precision farming, and
early disease control, enabling farmers to make evidence-
based decisions and rely less on expert management.

Although the recent developments in machine learning
and image-based detection of plant diseases have been
relatively rapid, the majority of the current systems are not
functioning correctly on dirty or otherwise low-quality
agricultural images. Noise has a significant impact on the
visual properties of the diseased regions, making it less
accurate in capturing the feature and classifying errors rise.
Traditional models are not always strong enough to cope with
these imperfections, in particular, mixed types of noise like
salt-and-pepper or Gaussian noise. Besides, a lack of
integration between efficient denoising methods with the
current ensemble and kernel-based classifier, with the ability
to generalize to changing circumstances, exists. Therefore, the

research issue that will be tackled in the given research is the
design and development of a noisy machine learning system
that can precisely identify cucumber and grape leaf diseases
under a noisy data environment. The system will use median
and Gaussian filters to suppress noise and use the synergistic
power of LGBM, QSVM, Modified Random Forest, and
Multi-SVM with a customized kernel to provide even better
classification results in difficult imaging conditions.

The paper is structured as follows. In section 1, the
research background, motivation, and problem statement are
presented. Section 2 presents a review of the literature of
relevance, summarizing the existing methods. Section 3
describes the suggested methodology, such as model design
and mathematical formulations. The results are provided in
Section 4 and comparative analyses with other methods used
to authenticate performance. Lastly, Section 5 concludes the
paper by presenting the significant findings and describing
possible avenues for future research.

2. Literature Review

Zhang et al. [3] focus on improving the robustness of
Deep Networks to real-world image noise for cucumber-leaf
disease identification. They combine noise-robust feature
extraction (preprocessing and/or architectural tweaks) with a
convolutional classifier and evaluate performance under
synthetic and real noise conditions. Key findings show
improved accuracy and stability compared with baseline
CNNs when images are degraded. Advantages are explicit
treatment of noise (important for field deployment) and
controlled experiments. Drawbacks are likely limited dataset
diversity and potential overfitting to the specific noise models
used.

Bilal et al. [4] suggest combining fuzzy logic with deep
learning to address ambiguity in the symptoms of the leaves
(e.g., insidious lesions, composite infections) more
appropriately. The architecture combines fuzzy membership
representations and learned features in order to achieve
uncertainty that crisp classifiers are unable to capture. Their
cucumber dataset results show greater precision/recall than
non-fuzzy baselines do. The advantages of a principled
approach to uncertainty and interpretability derive from fuzzy
elements. The disadvantages of the model include complexity
and reduced clarity of extrapolation to other datasets or noisy
imaging.

K. Li et al. [5] discuss both detection and quantification
(severity estimation), including lightweight models that apply
to edge devices. They present effective backbone selections, a
segmentation to forecast an area affected in different lighting
and occlusions. The significant contributions are the ability to
achieve a small model size, competitive accuracy, and a
severity scoring pipeline-experimental preference of resource-
constrained deployment and mixed severity of detection. The
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potential trade-offs with size are limitations to absolute
accuracy; severity labels are very prone to subjectivity--
labeling consistency can be a problem.

W. Li et al. [6]Grape disease detection using transformer-
based multimodal fusion framework. This work leverages
transformer architectures to fuse multimodal inputs (RGB +
possibly spectral/metadata) for grape disease detection. The
transformer-based fusion allows cross-modal attention and
reportedly improves detection and classification over single-
modality baselines. Significant advantages are modern
architecture that naturally models cross-modal interactions
and scales well with additional sensors. Drawbacks are that
transformers can be data-hungry and computationally heavy
unless carefully adapted; paper may not fully evaluate limited-
data regimes.

Zinonos etal. [7] trained a Convolutional Neural Network
(CNN) to identify grape leaf disease at every communication
stage with the help of the loT through LoRa. Their approach
records images on the field, involves them with a lightweight
CNN model, and sends the result with a low-power and long-
range wireless communication. The key benefit of this system
is that it can be used to carry out real-time disease detection
and remote monitoring at a very low amount of energy
consumption. The primary limitation here is that the system
has primarily been tested in prototype conditions, and the
accuracy might not be as high in the actual field settings.

R. Li and others [8] came up with a multimodal grape
disease detector mechanism, which incorporates various data
sources, e.g., RGB and spectral images, and a new parallel
activation function of the neural network. It improved this
model’s performance and achieved high accuracy by better
feature fusion. The strength of this approach is that it is a good
way to cover the complicated aspects of the disease, and
excellent results are obtained during experiments. The
disadvantage is that it can consume considerable data and
computational resources, and its capabilities in real-world
conditions of the real fields still require additional verification.

The dataset proposed by Rossi et al. [9] is the LDD
dataset, providing labeled images to detect objects and
segment them in terms of instances of grape diseases. The
dataset consists of multiple disease types and pixel-level
annotations across various field settings. The key benefit is
that it provides a solid standard for estimating and evaluating
training and segmentation models. The only limitation to this,
however, is that there could be geographical or crop-type bias
in the dataset, which will reduce the extent to which models
trained upon it can generalize to other geographical regions or
grape varieties. Benbenati et al. [10] took unsupervised deep
learning of powdery mildew recognition with multispectral
images. They tried to learn spectral representations of the
representations to identify the patterns of diseases without
necessarily having massive quantities of labeled data to train

the model. The beauty of this technique is that it is time and
cost-saving as it eliminates the use of manual annotation. The
disadvantage is that it may be challenging to decipher or
precisely map the identified clusters to particular disease
types, and this is mainly so with complex or early stages of
infection.

A comparative study of Deep Learning Methods for
detecting plant diseases in different crops was conducted by
Bagga et al. [11]. They considered various network structures,
preprocessing techniques, and data addition schemes in the
quest to identify the most effective combinations. The benefit
of this research is that it gives them practical
recommendations regarding how to select the appropriate
methods and enhance generalization. The primary
disadvantage is that it has a wide range of crops and, thus, the
analysis of single diseases, such as cucumber or grape, is not
detailed.

Liu [12] developed a deep learning-inspired system that
identified cucumber diseases, which were under harsh
conditions of varying light, occlusions, and various other
background clutter. The model used in data augmentation and
preprocessing in order to increase robustness and achieve
greater accuracy in real-life scenarios. The advantage of such
an approach is the focus on real-life scenarios in the field,
which is therefore more applicable to practice. The drawback
is, however, that it has not been tested on different sites and
cultivars, and therefore, it is not known whether it would also
work in the new environments.

The current studies on the detection of cucumber and
grape leaf disease are directed at enhancing robustness,
readability, and applicability. Research has used noise-
resistant aspects, fuzzy logic, lightweight models, and
multiple-mode transformer structures to improve accuracy in
adverse environments. Such contributions to the dataset as the
LDD set and unsupervised spectral learning have facilitated
improved generalization on fewer labelled data. Comparative
analysis is also performed in this model, along with
preprocessing options. All in all, the direction is towards more
efficient and field-ready systems, but such concerns as data
diversity, computational load, and field validation still exist.

3. Methodology
3.1. Overview

The proposed work is on cucumber and grape disease
detection in the conditions of a noisy dataset and in Machine
Learning Models. As real-world agricultural images are
usually noisy, due to environmental and equipment
constraints, the study generates the noise of the leaf images,
namely, Gaussian and salt-and-pepper noise. Subsequently, it
uses noise reduction filters (median and Gaussian) to test
model robustness. To facilitate the crop analysis, a custom
cucumber dataset was created based on cucumber and grape
datasets that are publicly accessible.
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The pipeline includes:

e Image preprocessing (Size, contrast enhancement).

o K-means clustering to segregate diseased areas.

e Gray-Level Co-occurrence Matrix (GLCM) feature
extraction is used in order to extract the texture patterns.

e Classification with several algorithms, such as
Multi_SVM with Hybrid Kernel (RBF, ANOVA,
Sigmoid) and Modified Random Forest, LightGBM,
QSVM, and YOLOVS.

3.2. Gaussian Noise

Additive White Gaussian Noise (AWGN) (or Gaussian
noise) is among the most widely used noises in image
processing and signal analysis. Random changes in lighting,
sensor temperature, electrical interference, or transmission
errors cause it. The term Gaussian is used to describe the fact
that the noise amplitude is distributed according to a standard
(Gaussian) distribution, i.e., most noise values are clustered
around the mean, with decreasing frequency as the deviation
increases [13]. The Gaussian probability distribution curve
and the Leaf image after the addition of Gaussian noise are
shown in Figure 1.
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Fig. 1 (a) Gaussian probability distribution curve, (b) Original leaf image, and (c) Leaf image after addition of gaussian noise.

3.2.1. Mathematical Representation

I(x,y) is the original image intensity at pixel (x,y), and
N(x,y) is the Gaussian noise that has been added to it. The
noisy image G(X,y)is represented as:

Gx,y) =1(x,y) + N(x,y) 1)
Where N(X,y) is a Gaussian distribution that is similar to:

1 _(n-p?

) == e 2

Here:

n— random noise value

u— mean of the noise (often 0)

0?— variance of the noise (controls noise intensity)
p(n)— probability density function of the noise

When u = 0, the noise is referred to as zero-mean
Gaussian noise, meaning the deviations above and below the
original pixel intensity are equally likely.

Example: For an image corrupted by zero-mean Gaussian
noise with standard deviation 6=25:

G(x,y) =1(x,y) + N(0,25) 3)

This means each pixel’s intensity is randomly increased
or decreased by a value drawn from a normal distribution with
mean 0 and standard deviation 25.

3.3. Salt and Pepper Noise

Impulse noise (also known as salt-and-pepper noise) is a
common form of image degradation, in which bright (white)
and dark (black) pixels appear randomly in the image. It is
normally caused by a defective camera sensor, bit errors
during data transmission, corrupted memory, or an error
during the conversion from analogue to digital. These
randomly arranged white and black spots, which look like
grains of salt and pepper scattered over the image, give the
name of the image, salt and pepper [13].

3.3.1. Mathematical Representation

Let I(x,y)be the original image intensity at pixel
coordinates (x,y), and G (x, y)be the observed noisy image.
The model of salt and pepper noise is provided as:

Lnins with probability p;
I(x,y), with probability 1 — (p; + p,)

The salt-and-pepper noise model is provided.

e [,..» = 0(pepper noise - black pixel)
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o ... = 255(salt noise - white pixel)
e p,= probability of pepper noise occurrence
e p,= probability of salt noise occurrence

In most practical cases, p; = p, = p/2, where pis the
overall noise density.

An example of an image corrupted with salt-and-pepper
noise is shown in the Figure 2.

@ (b)
Fig. 2 (a) Original leaf image, and (b) Leaf image after addition of salt
and pepper noise.

3.4. Workflow of the Proposed Approach

The proposed methodology will seek to develop an
effective and strong system to detect and classify cucumber
and grape leaf diseases using the best preprocessing, feature
extraction, and classification systems. The general workflow,
which is presented in Figure.3, starts with the acquisition of

Apply Gaussian Noise
with the variation of
10% to 100%

Preprocessing using
Gaussian filter

Image Dataset
Cucumber/Grape

datasets, follows through noise addition and filtering, and
culminates with feature extraction and classification into
definite disease categories. The stages are well planned to
improve the accuracy and generalization of the disease
detection process.

3.4.1. Dataset Preparation

The research begins with the selection of an image dataset
of samples of cucumber and grape leaves. These datasets
comprise the pictures of the healthy and diseased leaves under
different conditions. The reason why cucumber and grape
leaves have been chosen is that these are the crops that are
grown extensively and exposed to various fungal, bacterial,
and viral infections that significantly diminish the yield and
quality [5, 7]. An optimal disease detection system of such
plants may aid in investigating these plants and the
management of crops in a timely manner.

3.4.2. Adding Noise and Data Augmentation Addition

To model the real world, noise is added to the data to
simulate conditions. Two types of noise are applied to the
images: the Gaussian noise and the salt and pepper noise.
Gaussian noise is added between 10% and 100% to give the
impression of the changes in the environmental factors, i.e.,
sensor sensitivity, light issues, or transmission errors. In the
same way, Salt & Pepper noise is used with the same variety
of variations in order to simulate pixel disruption that can be a
result of a malfunctioning sensor element, dust, or a
malfunction in image capture. The use of noise helps to test
the robustness and reliability of the system, making sure that
the model can still work in degraded conditions.

Extraction of features
using GLCM, Contrast,
Correlation, Energy,
Homogeneity, Entropy,

Healthy Angular
Classification Leaf Spot

using Anthracnose

Preprocessing using
Median filter

Apply Salt & Pepper
Noise with the
variation of 10% to
100%

Fig. 3 Work flow of the proposed model
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3.4.3. Preprocessing

Any pipeline for detecting plant diseases relies on image
preprocessing. As a result of images obtained in the field or
datasets being prone to noise either in the course of their
acquisition, transfer, or storage, filtering methods are
necessary to improve the level of quality. The Gaussian
filtering and Median filtering are used in this work to remove
noise without influence on disease-related textures and
patterns [13]. The mathematical formulations, kernel
illustrations, and step-by-step illustrations are provided below.

3.5. Gaussian Filter

The Gaussian filter is a linear smoothing filter that
eliminates Gaussian noise and high-frequency variations in an
image. It functions by averaging the values of the
neighbouring pixels by convolving the input image with a
two-dimensional Gaussian value to get a weighted average of
the pixel values. The mathematical version of a two-
dimensional Gaussian function is:

1 x2+y?
exp(—=3

G(x,y) = ) ®)

2na?

Where,

e (x,y) is the pixel location of the filter center.

e o is the standard deviation of the Gaussian distribution
(regulates the level of smoothing)

o G(X,y) is the weight of the pixel at (x,y).

The convolution operation obtains the filtered image:
I'(y) = Xfalx =iy —j)-GGJH  (6)
Where,

e I(x,y) is the original image,
e G(i,)) is the Gaussian kernel,
e ks the kernel half-size (e.g., for a 5x5 kernel, k=2)

The Gaussian filter smooths the image by averaging pixel
values with a Gaussian weight distribution, thereby reducing
Gaussian noise while preserving edges to some extent.

3.6. Median Filter

Median filter is a nonlinear filtering algorithm that works
particularly well in removing Salt and Pepper noise that takes
the form of randomly spaced blocky and white spots in the
image [12]. The median filter, in contrast to linear filters,
computes the median of the pixels surrounding the pixel being
averaged and replaces the average with the median.
Mathematically, for a window Wcentered at pixel (x,y), the
median filter is defined as:

I'(x,y) = median{I(i, )| (i, j) € W} ()

Where,

1(x,y) represents the original pixel intensity,
W is the neighborhood window (usually 3x3, 5x5, etc.),
I'(x,y) is the filtered pixel intensity.

For example, consider a 3x3 neighbourhood:

W={1(x-1,y-1),1(x-1,y),1(x-1,y+1),I(x,y-1),1(x,y), I(x,y+1),
[(x+1,y-1),1(x+1y)I(x+1y+1) } (8)

The average of all nine W values will be placed at the
pixel (X, y).

Itis a very efficient method to save edges and finer details
and eliminate impulse noise, and so it applies to plant disease
images where spots of diseases and vein patterns are vital in
classification.

3.6.1. Feature Extraction

The extraction of features is then performed after
preprocessing to extract meaningful features of the leaf
images. Different statistical and texture characteristics are
calculated with the help of the Gray Level Co-occurrence
Matrix (GLCM) and some statistical parameters.

3.6.2. Classification

The features derived are then put through large numbers
of machine learning classifiers to determine the capability of
the features to detect diseases. Classifiers to be used are:

¢ Modified Random Forest - This is an ensemble-based
framework that integrates several decision trees and
hyperparameter optimization results in improved
accuracy and resistance to prediction [3].

e  Quantum Support Vector Machine (QSVM) - This is used
as a quantum-inspired version of the kernel-based
classifier, which is on the higher-dimensional separability
[15].

e Light Gradient Boosting Machine (LGBM) - This is a
gradient boosting model (memaory-efficient and fast) that
is especially fast with large datasets [16].

e Multi_ SVM - This is a more complex variant of SVM
designed to support multiple classes and capable of
classifying multiple disease types simultaneously using
custom kernels based on RBF, Sigmoid, and ANOVA. It
employs texture characteristics of segmented leaf images
based on GLCM to increase the nonlinear separability and
enhance the generalization as well as the high accuracy of
classification in detecting the occurrence of leaf diseases
[10].

These classifiers are also trained and tested over the
extracted features, and their results are compared according to
their accuracy, precision, recall, and other performance
measures.
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4. Results and Discussion
4.1. Dataset Used for the Study

The present study used two different datasets to determine
diseases in cucumber and grape leaves.

The publicly available sources and field data collection
were carefully curated into the datasets, and this enables
strong and representative datasets to be applied to train and
test machine learning models.

4.1.1. Kaggle Dataset

The cucumber leaf pictures were obtained from the
Kaggle repository [16]. Foliar diseases that affect cucumber
leaves include powdery mildew, which has white spots of
fungi, and downy mildew, which has yellow spots with a fuzzy
underside.

These illnesses will cause severe yield losses when left
unmanaged. In this study, a database of 3,754 leaf images was
used.

Figure 4 illustrates sample pictures of this dataset. The
resolution of each picture is 1366 x 768 pixels, and every
image is of one of four categories:

Healthy leaf
Powdery mildew
Downy mildew
Anthracnose

The use of this dataset gives a balanced number of
diseased and healthy leaves, which facilitates the extraction
and classification of features to be used in the process of
automated cucumber disease detection.

Custom Dataset

Besides publicly available datasets, research uses a
custom dataset that was gathered in fields of cucumber in the
village of Regalapalli (near Proddatur), the Kadapa district.
The images were taken in real conditions, which were very
noisy and unpredictable.

This dataset, collected in the field, was curated explicitly
to develop a strong classification model that can be effectively
used to identify diseases under challenging environmental
conditions.

The dataset will comprise 167 images across five classes:
Angular Leaf Spot, Anthracnose, Healthy, Powdery Mildew,
and Downy Mildew. Figure 5 depicts sample images from the
custom dataset.

Grape Dataset

Grape Disease Dataset, which was collected on Kaggle
[17], is an extensive collection of images created for the
classification and analysis of different diseases in grape
leaves. It consists of 9,027 RGB images of grape leaves, taken
under varied environmental conditions to introduce variation
in lighting, background, and leaf orientation.

Images are split into four groups, which are Black Rot
(2,360 images), ESCA or Black Measles (2,400 images), Leaf
Blight (2,152 images), and Healthy (2,115 images), including
all diseased and healthy grape foliage. Images are also given
at a resolution of 256x256 pixels in standard RGB color
format, which makes them easy to extract features and
correctly classify using Machine Learning and Deep Learning
Methods. Figure 6 shows sample images from the grape
dataset.

T
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Fig. 4 Cucumber leaf images of kaggle dataset: (a) Healthy, (b) Downy mildew, (c) Powdery mildew, (d) Anthracnose, and (e) Bacterial wilt.

(©

(d) €

Fig. 5 Sample images of the custom dataset: (a) Angular leaf spoT, (b) Anthracnose, (c) Downy mildew, (d) Healthy, and (e) Powdery mildew.



C. Nancy & S. Kiran/ 1JETT, 74(2), 1-18, 2026

@ (b)

(d)

Fig. 6 Sample Images of the grape dataset: (a) Healthy, (b) Anthracnose, (c) Aphids, and (d) CYSDV.

4.2. Performance Evaluation Metrics

In order to strictly evaluate the performance of the
models, several metrics of evaluation will be determined, such
as Accuracy, Precision, Recall, and F1-score [4].

1. Accuracy
ACC = — P+TN__ )
TP+TN+FP+FN
2. Precision
PRE = — (10)
TP+FP
3. Recall
REC = —= (1)
TP+FN
4. F1-Score .
F1 — Score = 2X precision X recall (12)

precision + recall

The analysis will aim to provide insight into how each
machine Learning Model reacts to various types of noise. To
illustrate, Random Forest is supposed to be resilient to
Gaussian noise, while Multi_SVM may be resilient to Salt and

Pepper noise because of the ability of the kernel to be flexible.
The findings will also indicate the effect of noise-reducing
filters on classification accuracy. The study will be able to
conclude the model’s generalizability by comparing
performance on custom and Kaggle datasets. The analysis is
essential in the recommendation of algorithms that can be
implemented under conditions of the real agricultural
environment, where the quality of the images is not
predictable.

It is hoped that the suggested work would result in a
disease detection system that is capable of sustaining a high
level of accuracy even in noisy conditions. Multi_SVM can be
expected to provide a balanced performance, with custom
kernels, whereas Random Forest is expected to be the most
stable and noise-resistant model. The findings will be used to
determine the relevance of preprocessing methods for
enhancing robustness, and they will show that lightweight
models such as Random Forest and LightGBM can be viable
alternatives to computationally expensive Deep Learning
Models [4]. Eventually, the study will offer a relatively low-
resource field-ready solution to detecting cucumber and grape
disease in agricultural environments.

Table 1. Evaluation of performance metrics for the cucumber dataset (custom dataset)- gaussian noise

Model Train & Gaussian Noise images Denoised Images with Gaussian Filter
Test Ratio | Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-Score

80:20 0.60 0.62 0.60 0.60 0.58 0.58 0.58 0.57

LGBM 70:30 0.55 0.55 0.54 0.54 0.55 0.55 0.55 0.54

60:40 0.52 0.52 0.52 0.51 0.59 0.61 0.59 0.59

80:20 0.80 0.82 0.80 0.80 0.94 0.95 0.94 0.94

Modified RF 70:30 0.83 0.84 0.83 0.83 0.79 0.81 0.79 0.79

60:40 0.83 0.85 0.83 0.83 0.78 0.79 0.78 0.78

80:20 0.34 0.33 0.34 0.30 0.32 0.25 0.32 0.27

QSVM 70:30 0.37 0.31 0.37 0.33 0.27 0.24 0.27 0.22

60:40 0.28 0.29 0.28 0.24 0.42 0.57 0.42 0.37

80:20 0.64 0.82 0.62 0.67 0.63 0.86 0.60 0.64

Multi_SVM 70:30 0.62 0.81 0.60 0.65 0.61 0.81 0.61 0.68

60:40 0.59 0.81 0.61 0.66 0.63 0.80 0.63 0.68

Table 2. Evaluation of performance metrics for cucumber dataset (custom dataset)- salt-and-pepper noise

Model Train & Salt-and-Pepper Noise images Denoised Images with Median Filter
Test Ratio | Accuracy Precision Recall | F1-score | Accuracy | Precision | Recall | F1-Score

LGBM 80:20 0.47 0.41 0.45 0.42 0.47 0.41 0.45 0.42

70:30 0.45 0.39 0.43 0.4 0.45 0.39 0.43 0.4
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60:40 0.43 0.37 0.41 0.38 0.43 0.37 0.41 0.38
Modified RF 80:20 0.83 0.84 0.83 0.83 0.83 0.84 0.83 0.83
70:30 0.81 0.82 0.81 0.81 0.81 0.82 0.81 0.81
60:40 0.79 0.8 0.79 0.79 0.79 0.8 0.79 0.79
QSVM 80:20 0.26 0.2 0.25 0.22 0.26 0.2 0.24 0.22
70:30 0.24 0.18 0.23 0.2 0.24 0.18 0.22 0.2
60:40 0.22 0.16 0.21 0.18 0.22 0.16 0.2 0.18
Multi_SVM 80:20 0.6 0.71 0.6 0.63 0.56 0.8 0.56 0.6
70:30 0.6 0.7 0.6 0.62 0.56 0.78 0.56 0.59
60:40 0.6 0.7 0.6 0.62 0.56 0.73 0.56 0.59
Table 3. Evaluation of performance metrics for cucumber dataset (kaggle dataset)- gaussian noise
Model Train & Gaussian Noise images Denoised Images with Gaussian Filter
Test Ratio Accuracy | Precision | Recall | Fl1-score | Accuracy | Precision | Recall | F1-Score
80:20 0.3 0.12 0.3 0.17 0.29 0.17 0.29 0.2
LGBM 70:30 0.28 0.11 0.3 0.21 0.32 0.24 0.3 0.23
60:40 0.3 0.12 0.32 0.21 0.28 0.13 0.3 0.23
80:20 0.93 0.93 0.93 0.92 0.95 0.95 0.95 0.95
Modified RF 70:30 0.93 0.93 0.93 0.93 0.96 0.96 0.95 0.95
60:40 0.94 0.95 0.9 0.9 0.94 0.94 0.96 0.96
80:20 0.33 0.63 0.34 0.28 0.34 0.31 0.35 0.26
QSVM 70:30 0.33 0.49 0.34 0.28 0.35 0.34 0.37 0.28
60:40 0.31 0.45 0.33 0.28 0.35 0.31 0.36 0.27
80:20 0.62 0.84 0.62 0.67 0.63 0.85 0.63 0.69
Multi_SVM 70:30 0.6 0.81 0.6 0.65 0.61 0.8 0.61 0.67
60:40 0.6 0.81 0.6 0.66 0.63 0.8 0.63 0.68
Table 4. Evaluation of performance metrics for the cucumber dataset (kaggle dataset) salt-and-pepper noise
Model Train & Salt-and-Pepper Noise images Denoised Images with Median Filter
Test Ratio Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-Score
80:20 0.32 0.23 0.32 0.25 0.29 0.14 0.3 0.2
LGBM 70:30 0.37 0.31 0.37 0.31 0.31 0.17 0.29 0.19
60:40 0.34 0.28 0.34 0.28 0.3 0.17 0.32 0.24
80:20 0.93 0.93 0.93 0.92 0.99 0.99 0.99 0.92
Modified RF 70:30 0.93 0.94 0.94 0.94 0.98 0.98 0.98 0.78
60:40 0.92 0.92 0.94 0.67 0.97 0.97 0.96 0.62
80:20 0.29 0.38 0.29 0.22 0.33 0.36 0.33 0.34
QSVM 70:30 0.3 0.34 0.33 0.25 0.32 0.36 0.31 0.41
60:40 0.31 0.4 0.31 0.28 0.34 0.39 0.33 0.27
80:20 0.61 0.84 0.61 0.66 0.62 0.86 0.62 0.68
Multi_SVM 70:30 0.61 0.84 0.61 0.67 0.61 0.84 0.61 0.67
60:40 0.62 0.81 0.62 0.67 0.61 0.81 0.61 0.66
Table 5. Evaluation of performance metrics for the grape dataset-gaussian noise
Model Train & Gaussian Noise images Denoised Images with Gaussian Filter
Test Ratio Accuracy | Precision | Recall | F1-score | Accuracy | Precision | Recall | F1-Score
80:20 0.30 0.12 0.30 0.17 0.29 0.17 0.29 0.20
LGBM 70:30 0.28 0.11 0.30 0.21 0.32 0.24 0.30 0.23
60:40 0.30 0.12 0.32 0.21 0.28 0.13 0.30 0.23
80:20 0.92 0.93 0.93 0.92 0.95 0.95 0.95 0.95
Modified RF 70:30 0.93 0.93 0.93 0.93 0.95 0.96 0.95 0.95
60:40 0.94 0.95 0.90 0.90 0.94 0.95 0.96 0.96
QSVM 80:20 0.59 0.78 0.60 0.65 0.62 0.88 0.62 0.69
70:30 0.60 0.78 0.60 0.66 0.62 0.84 0.63 0.69
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60:40 0.57 0.73 0.57 0.62 0.63 0.85 0.63 0.69

80:20 0.62 0.84 0.6 0.66 0.6 0.9 0.58 0.64

Multi_SVM 70:30 0.60 0.81 0.6 0.65 0.6 0.8 0.59 0.65
60:40 0.60 0.81 0.6 0.65 0.6 0.8 0.59 0.66

Table 6. Evaluation of performance metrics for the grape dataset - salt-and-pepper noise
Model Train & Salt-and-Pepper Noise images Denoised Images with Median Filter
Test Ratio Accuracy | Precision | Recall | Fl1-score | Accuracy | Precision | Recall | F1-Score

80:20 0.29 0.12 0.30 0.17 0.29 0.16 0.29 0.20

LGBM 70:30 0.27 0.10 0.30 0.21 0.31 0.23 0.30 0.23
60:40 0.29 0.12 0.32 0.21 0.29 0.12 0.30 0.23

80:20 0.92 0.93 0.93 0.92 0.95 0.95 0.95 0.95

Modified RF 70:30 0.92 0.93 0.93 0.93 0.95 0.95 0.95 0.95
60:40 0.93 0.94 0.90 0.90 0.94 0.94 0.96 0.96

80:20 0.60 0.81 0.60 0.66 0.58 0.84 0.58 0.64

SVM 70:30 0.59 0.80 0.60 0.65 0.59 0.84 0.59 0.65
60:40 0.60 0.80 0.60 0.65 0.59 0.84 0.59 0.66

80:20 0.61 0.84 0.6 0.66 0.61 0.86 0.58 0.64

Multi_SVM 70:30 0.61 0.84 0.6 0.65 0.61 0.84 0.59 0.65
60:40 0.62 0.82 0.6 0.65 0.61 0.81 0.59 0.66

4.3. Performance Analysis of Classification Models under
Noise Conditions

The following section is a detailed analysis of the
different classification models on Cucumber and Grape leaf
databases in the Gaussian noise and Salt-and-Pepper noise,
respectively, as shown in Tables 1 through 6. The models in
consideration are Light Gradient Boosting Machine (LGBM),
Modified Random Forest (RF), Quadratic Support Vector
Machine (QSVM), and Multi-class SVM. Three train-test
splits (80:20, 70:30, and 60:40) were used to test each model.
The analysis of classification effectiveness before and after the
application of denoising filters was done based on
performance measures like Accuracy, Precision, Recall, and
F1-score. Gaussian noise was suppressed through Gaussian
filtering, whereas Salt-and-Pepper noise was suppressed with
the help of Median filtering.

The study compared different machine learning
classifiers, such as Modified Random Forest (RF), LGBM,
QSVM, and Multi-SVM with a custom kernel, to Cucumber
and Grape Leaf Data (Custom and Kaggle) with or without
Gaussian and Salt-and-Pepper noise. In every experiment, the
Modified Random Forest proved to be the most successful in
terms of the ability to obtain the highest accuracy, precision,
recall, and F1-score that is noise-resistant and stronger in
comparison with other models.

In the Cucumber Custom Dataset of Gaussian Noise, the
Modified RF reached up to 0.94 accuracy and 0.95 precision,
which was significantly better than LGBM and QSVM (less
than 0.6 accuracy). It was stable even in the absence of
significant post-filtering variations, as under Salt-and-Pepper
noise, it was good at holding its accuracy constant (0.83) with
equal measures of precision and recall (~0.84). In the

Cucumber Kaggle Dataset, the Modified RF also scored
highest with the accuracy of 0.95-0.96 in the case of Gaussian
noise and 0.92-0.99 in the case of Salt-and-Pepper Noise after
denoising. The accuracy was almost perfect, with a precision
and recall of 0.99, and LGBM and QSVM performed poorly
(<0.35 accuracy).

With modified RF, high performance was observed
across both types of noise in the Grape Dataset. It was 0.95
accurate, 0.96 precise, and 0.95 F1-score with the Gaussian
Noise there, and QSVM and Multi-SVM have shown a
moderate improvement (approximately 0.65 accuracy). In the
Salt-and-Pepper noise task, the Modified RF was the
strongest, achieving 0.95 accuracy and a balanced precision-
recall of 0.95. Comprehensively, the findings clearly
demonstrate that the Modified Random Forest, together with
Median and Gaussian filtering, gives the most consistent,
noise-resistant, and generalizable solution to the cucumber
and grape disease detection in various datasets and noise
levels.

4.4. Comparative Discussion

The Modified Random Forest model has proven to be the
strongest classifier across all data sets and noise and produced
high levels of accuracy, precision, recall, and F1-score. The
Multi_SVM model achieved moderate results; QSVM and
LGBM performed significantly worse under noisy conditions.
All performance measures were significantly improved by the
use of Gaussian and Median filters, demonstrating the
importance of preprocessing for reducing noise and improving
classification. All in all, these findings suggest that the
combination of denoising architecture and the use of strong
ensemble classifiers like the Modified RF leads to a significant
improvement in the performance of leaf disease detection in

10
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the presence of diverse disturbances due to noise factors,
which guarantees the performance of better generalization and
robustness of the model across different datasets. Further
results are shown in Figures 7-18.

4.5. Comparison with Deep Learning and Multimodal
Approaches

Recent plant disease detection literature is primarily
based on Deep Learning Architecture, including CNNs,
transformers, and multimodal models, which are effective for
working with clean and large datasets, but involve high
computation cost and training. In contrast, the proposed
method combines noise-aware preprocessing with lightweight
ensemble learning. As shown in Section 4, the Modified
Random Forest and Multi-SVM with custom kernels achieve
comparable or better performance under real-world noisy
conditions, particularly on field-acquired datasets, while
remaining more computationally efficient and suitable for
practical agricultural deployment.

4.6. Ablation and Sensitivity Analysis

A sensitivity analysis and ablation are performed to
measure the contribution that each element of the proposed
framework, such as the filtering approaches, feature selection,
and classifiers, makes.

4.6.1. Ablation of Filtering Techniques

Experiments were performed on noisy images with and
without denoising. Results demonstrate that Gaussian filtering
significantly improves performance under Gaussian noise.
Median filtering is particularly effective against Salt-and-
Pepper noise. Without filtering, all classifiers exhibit a
noticeable drop in accuracy, confirming the critical role of
noise-aware preprocessing.

4.6.2. Ablation of Feature Extraction

Texture features derived from GLCM were evaluated
independently and in combination with statistical features.
The combined feature set consistently achieved higher

precision and recall, indicating that texture-based spatial
information is essential for disease discrimination under noise.

4.6.3. Classifier Sensitivity

Among the evaluated classifiers, the Modified Random
Forest showed the lowest sensitivity to noise variations, while
QSVM and LGBM exhibited higher performance fluctuations.
This confirms that ensemble-based classifiers provide
superior stability in degraded imaging conditions.

4.7. Cross-Dataset and Generalization Analysis

To evaluate generalization, the proposed models were
tested on diverse datasets, including Kaggle-based cucumber
and grape collections as well as a custom dataset captured
under real field conditions. When models trained on one
dataset were applied to others, stable performance patterns
were observed, especially for the Modified Random Forest
and Multi-SVM classifiers. The reliable performance across
datasets with varying image quality, illumination, and capture
settings indicates that the proposed framework is not
dependent on dataset-specific properties. Such cross-dataset
stability is essential for real-world agricultural deployment,
where imaging conditions are highly variable.

4.8. Computational Complexity and Edge / 10T Feasibility

Computational efficiency is essential for real-time
agricultural applications. Unlike deep learning and
transformer-based methods, which require access to a GPU
and intensive memory capacity, the proposed framework is
constructed on the basis of lightweight preprocessing, feature
extraction, and traditional machine learning methods. Median
and Gaussian filtering introduce minimal computational cost,
while GLCM-based feature extraction operates on low-
dimensional representations. In addition, ensemble models
such as Random Forest and LGBM can be executed efficiently
on standard CPUs. These properties make the proposed
system well-suited for deployment on edge devices, mobile
platforms, and loT-enabled innovative farming systems,
allowing reliable on-site disease detection without the need for
cloud-based processing.
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Fig. 12 Evaluation of performance metrics for cucumber kaggle dataset (denoised with gaussian filter)
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Fig. 13 Evaluation of performance metrics for cucumber kaggle dataset (salt and pepper noise)
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Fig. 14 Evaluation of performance metrics for cucumber kaggle dataset (denoised with median filter)
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Fig. 16 Evaluation of performance metrics for the grape dataset (denoised with gaussian filter)
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Fig. 18 Evaluation of performance metrics for grape dataset (denoised with median filter)

5. Conclusion

The proposed study on the design and development of a
cucumber and grape disease detector, with noisy data, reveals
a highly efficient, noise-tolerant methodology for accurate
disease detection using Machine Learning Methods. The
framework can mitigate the effects of salt-and-pepper and
Gaussian noise, achieving superior image quality and feature
localization through the combination of the median and
Gaussian filters. Among the tested classifiers, the Modified
Random Forest was the most accurate, precise, and recall, and
F1-score on both custom and Kaggle data, and the rationale
behind the high results is that it is robust and performs better
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when under the noisy setting, generalization. The findings
indicate that effective denoising combined with ensemble-
based learning contributes to a significant improvement in the
model performance and stability in agricultural imaging
activities.

5.1. Future Work

The implementation of Deep Learning-based Hybrid
Models, Adaptive Filtering, and Automated Noise
classification to correct in real-time can be used to extend this
work in the future. Moreover, the system, as a part of the loT-
based smart farming and mobile application, could allow
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diagnosis of the disease on the field, and hyperspectral
imaging and transfer learning methods could enhance the early
diagnosis of the disease. In general, the research provides a
solid foundation for the development of intelligent, scalable,
and noise-resistant plant disease detection systems that enable
accurate agriculture and sustainable crop management.

5.2. Ethical and Societal Implications

The proposed system supports sustainable agriculture by
enabling early disease detection, reducing pesticide misuse,
limiting crop loss, and improving food security.

Potential dataset bias due to regional and environmental
variations is mitigated by using both public and real-field data,
with future work aimed at broader geographic coverage.
Overall, the framework promotes responsible and sustainable
Al deployment.
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