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Abstract - The study is a design and development of a strong disease detection system of cucumber and grape leaves with noisy 

image data, focusing on the ability to withstand salt-and-pepper and Gaussian noises. The image datasets used in agriculture 

are usually affected by noise because of changes in light, sensor defects, and environmental conditions, which may lead to lower 

diagnostic accuracy. In order to address this, the proposed system incorporates high noise reduction methods whereby a median 

filter and a Gaussian filter are used to restore the image quality without compromising on the important leaf texture information. 

After processing, colour, texture, and shape are used to extract features, which are effective in extracting disease-specific visual 

representations. These fine features are then trained on various optimized machine learning models, such as Light Gradient 

Boosted Machine (LGBM), Quantum Support Vector Machine (QSVM), a Modified Random Forest (MRF) with adaptive 

weighted features, and a Multi-SVM classifier with a custom kernel to map nonlinear features. Through experimental analyses, 

the proposed ensemble framework is shown to be highly accurate, robust, and noise-tolerant as opposed to the traditional 
frameworks. The hybrid method is effective in recognizing the significant cucumber diseases and grapes, including powdery 

mildew, downy mildew, and anthracnose, which will be utilized in the noisy agricultural conditions in the real world. In general, 

this system offers a noise-resistant, reliable, and computationally efficient system to detect early signs of plant diseases, which 

can be used in sustainable crop monitoring and precision farming. 

Keywords - Noise Images, Leaf Disease Detection, Salt‑and‑Pepper Noise, Gaussian Noise, Median Filtering, Gaussian 

Filtering, Feature Extraction, Machine‑Learning Models (LGBM, QSVM, MRF, Multi‑SVM). 

1. Introduction 
The high rate of development of precision agriculture also 

emphasizes the urgency of the development of strong, 

automated tools to recognize the disease in a plant at an early 

stage, particularly in the conditions of real practice, when 

noise can destroy the quality of an image. Manual inspection 

techniques are slow, subjective, and cannot be applied to 

large-scale farming, especially to crops like cucumber and 

grape, which are highly susceptible to various fungal, 

bacterial, and viral infections. They cause diseases to a large 

extent, which decrease yield and quality, hence domestic 

consumption and export potential are also affected [1]. Recent 

research proved that machine learning and image processing 
methods could detect symptoms of diseases by using leaf 

images. But the majority of current models are trained and 

tested on clean datasets, and in practice, when operating in the 

field, the image acquisition devices are susceptible to 

distortion by the environment, sensor constraints, and 

transmission errors. This results in typical forms of noise, 

including Gaussian noise and salt-and-pepper noise, that 

impairs image quality, obscures disease symptoms, and 

eventually reduces the accuracy of classification. Therefore, 

to deploy the model, models that are noise-resistant have to be 

developed. 

The proposed paper introduces a complete system of 

cucumber and grape disease detection in noisy scenarios, 
which involves noise-aware preprocessing with the state-of-

the-art classification techniques. It begins with image-

enhancing and image filtering algorithms, including Gaussian 

and median filters that minimize noise but preserve desirable 

disease-related information. The infected areas are isolated by 

K-means clustering, and the texture features, a description of 

the relationship in space in diseased tissues, are extracted via 

Gray-Level Co-Occurrence Matrix (GLCM). In order to 

classify, hybrid Multi_SVM tuned kernels (RBF, Sigmoid, 

and ANOVA) are applied to address the nonlinear distribution 

of features and cases in multi-class situations. In addition, the 
ensemble methods are also adopted to enhance the strength 

and stability of the performance of the ensemble of Random 
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Forest and Light Gradient Boosting Machine (LGBM) in 

diverse conditions of noise. The framework may be used to 

give information on the robustness of models and trade-offs 

that are created between accuracy, computing cost, and 

adaptability through controlled noisy environment 

comparisons of different algorithms. 

This objective is a reaction to significant challenges that 

offer limitations to the deployment of plant disease detection 

systems in real agricultural land. The suggested framework 

enhances scalable, cost-effective, and reliable solutions to 

farmers by focusing on noise-tolerant learning approaches and 

tailored datasets, along with the existing benchmarks. This 

will definitely decrease the loss of crops as well as ensure 

sustainable production of agriculture, thereby increasing food 

security and exportability. 

Plant disease detection is essential in the current 

agricultural practice in an effort aimed at maintaining quality 
yield and saving money. However, the quality of automated 

disease recognition systems depends on the quality of input 

images to a considerable extent. When applied to real 

agricultural settings, both salt-and-pepper noise (Distortion of 

cucumber and grape leaves due to faulty sensors or dust or 

transmission) and Gaussian noise (added by changes in 

lighting and other environmental factors) often damage image 

quality. This noise may alter important characteristics of the 

disease- e.g., lesion texture, variation in color, shapes, etc., 

resulting in incorrect classification and inaccurate outcomes. 

The current methods will not be able to manage these noise 
effects, and the model performance deteriorates considerably. 

Consequently, there is a high interest in creating a disease 

detection framework that is resistant to noise and has a high 

accuracy regardless of poor image conditions. The proposed 

system will improve the accuracy and consistency of 

cucumber and grape crop diagnosis [2] of diseases by applying 

effective filtering methods and using other classification 

algorithms like LGBM, QSVM, Modified Random Forest, 

and Multi-SVM with custom kernels. The study will be 

relevant to sustainable agriculture, precision farming, and 

early disease control, enabling farmers to make evidence-

based decisions and rely less on expert management. 

Although the recent developments in machine learning 

and image-based detection of plant diseases have been 

relatively rapid, the majority of the current systems are not 

functioning correctly on dirty or otherwise low-quality 

agricultural images. Noise has a significant impact on the 

visual properties of the diseased regions, making it less 

accurate in capturing the feature and classifying errors rise. 

Traditional models are not always strong enough to cope with 

these imperfections, in particular, mixed types of noise like 

salt-and-pepper or Gaussian noise. Besides, a lack of 

integration between efficient denoising methods with the 
current ensemble and kernel-based classifier, with the ability 

to generalize to changing circumstances, exists. Therefore, the 

research issue that will be tackled in the given research is the 

design and development of a noisy machine learning system 

that can precisely identify cucumber and grape leaf diseases 

under a noisy data environment. The system will use median 

and Gaussian filters to suppress noise and use the synergistic 
power of LGBM, QSVM, Modified Random Forest, and 

Multi-SVM with a customized kernel to provide even better 

classification results in difficult imaging conditions. 

The paper is structured as follows. In section 1, the 

research background, motivation, and problem statement are 

presented. Section 2 presents a review of the literature of 

relevance, summarizing the existing methods. Section 3 

describes the suggested methodology, such as model design 

and mathematical formulations. The results are provided in 

Section 4 and comparative analyses with other methods used 

to authenticate performance. Lastly, Section 5 concludes the 

paper by presenting the significant findings and describing 

possible avenues for future research. 

2. Literature Review 
Zhang et al. [3] focus on improving the robustness of 

Deep Networks to real-world image noise for cucumber-leaf 

disease identification. They combine noise-robust feature 

extraction (preprocessing and/or architectural tweaks) with a 
convolutional classifier and evaluate performance under 

synthetic and real noise conditions. Key findings show 

improved accuracy and stability compared with baseline 

CNNs when images are degraded. Advantages are explicit 

treatment of noise (important for field deployment) and 

controlled experiments. Drawbacks are likely limited dataset 

diversity and potential overfitting to the specific noise models 

used.  

Bilal et al. [4] suggest combining fuzzy logic with deep 

learning to address ambiguity in the symptoms of the leaves 

(e.g., insidious lesions, composite infections) more 

appropriately. The architecture combines fuzzy membership 
representations and learned features in order to achieve 

uncertainty that crisp classifiers are unable to capture. Their 

cucumber dataset results show greater precision/recall than 

non-fuzzy baselines do. The advantages of a principled 

approach to uncertainty and interpretability derive from fuzzy 

elements. The disadvantages of the model include complexity 

and reduced clarity of extrapolation to other datasets or noisy 

imaging. 

K. Li et al. [5] discuss both detection and quantification 

(severity estimation), including lightweight models that apply 

to edge devices. They present effective backbone selections, a 
segmentation to forecast an area affected in different lighting 

and occlusions. The significant contributions are the ability to 

achieve a small model size, competitive accuracy, and a 

severity scoring pipeline-experimental preference of resource-

constrained deployment and mixed severity of detection. The 
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potential trade-offs with size are limitations to absolute 

accuracy; severity labels are very prone to subjectivity--

labeling consistency can be a problem. 

W. Li et al. [6]Grape disease detection using transformer-

based multimodal fusion framework. This work leverages 
transformer architectures to fuse multimodal inputs (RGB + 

possibly spectral/metadata) for grape disease detection. The 

transformer-based fusion allows cross-modal attention and 

reportedly improves detection and classification over single-

modality baselines. Significant advantages are modern 

architecture that naturally models cross-modal interactions 

and scales well with additional sensors. Drawbacks are that 

transformers can be data-hungry and computationally heavy 

unless carefully adapted; paper may not fully evaluate limited-

data regimes. 

Zinonos et al. [7] trained a Convolutional Neural Network 

(CNN) to identify grape leaf disease at every communication 
stage with the help of the IoT through LoRa. Their approach 

records images on the field, involves them with a lightweight 

CNN model, and sends the result with a low-power and long-

range wireless communication. The key benefit of this system 

is that it can be used to carry out real-time disease detection 

and remote monitoring at a very low amount of energy 

consumption. The primary limitation here is that the system 

has primarily been tested in prototype conditions, and the 

accuracy might not be as high in the actual field settings. 

R. Li and others [8] came up with a multimodal grape 

disease detector mechanism, which incorporates various data 
sources, e.g., RGB and spectral images, and a new parallel 

activation function of the neural network. It improved this 

model’s performance and achieved high accuracy by better 

feature fusion. The strength of this approach is that it is a good 

way to cover the complicated aspects of the disease, and 

excellent results are obtained during experiments. The 

disadvantage is that it can consume considerable data and 

computational resources, and its capabilities in real-world 

conditions of the real fields still require additional verification. 

The dataset proposed by Rossi et al. [9] is the LDD 

dataset, providing labeled images to detect objects and 

segment them in terms of instances of grape diseases. The 
dataset consists of multiple disease types and pixel-level 

annotations across various field settings. The key benefit is 

that it provides a solid standard for estimating and evaluating 

training and segmentation models. The only limitation to this, 

however, is that there could be geographical or crop-type bias 

in the dataset, which will reduce the extent to which models 

trained upon it can generalize to other geographical regions or 

grape varieties. Benbenati et al. [10] took unsupervised deep 

learning of powdery mildew recognition with multispectral 

images. They tried to learn spectral representations of the 

representations to identify the patterns of diseases without 
necessarily having massive quantities of labeled data to train 

the model. The beauty of this technique is that it is time and 

cost-saving as it eliminates the use of manual annotation. The 

disadvantage is that it may be challenging to decipher or 

precisely map the identified clusters to particular disease 

types, and this is mainly so with complex or early stages of 

infection. 

A comparative study of Deep Learning Methods for 

detecting plant diseases in different crops was conducted by 

Bagga et al. [11]. They considered various network structures, 

preprocessing techniques, and data addition schemes in the 

quest to identify the most effective combinations. The benefit 

of this research is that it gives them practical 

recommendations regarding how to select the appropriate 

methods and enhance generalization. The primary 

disadvantage is that it has a wide range of crops and, thus, the 

analysis of single diseases, such as cucumber or grape, is not 

detailed. 

Liu [12] developed a deep learning-inspired system that 

identified cucumber diseases, which were under harsh 

conditions of varying light, occlusions, and various other 

background clutter. The model used in data augmentation and 

preprocessing in order to increase robustness and achieve 

greater accuracy in real-life scenarios. The advantage of such 

an approach is the focus on real-life scenarios in the field, 

which is therefore more applicable to practice. The drawback 

is, however, that it has not been tested on different sites and 

cultivars, and therefore, it is not known whether it would also 

work in the new environments. 

The current studies on the detection of cucumber and 

grape leaf disease are directed at enhancing robustness, 

readability, and applicability. Research has used noise-

resistant aspects, fuzzy logic, lightweight models, and 

multiple-mode transformer structures to improve accuracy in 

adverse environments. Such contributions to the dataset as the 

LDD set and unsupervised spectral learning have facilitated 

improved generalization on fewer labelled data. Comparative 

analysis is also performed in this model, along with 

preprocessing options. All in all, the direction is towards more 

efficient and field-ready systems, but such concerns as data 

diversity, computational load, and field validation still exist. 

3. Methodology 
3.1. Overview 

The proposed work is on cucumber and grape disease 

detection in the conditions of a noisy dataset and in Machine 

Learning Models. As real-world agricultural images are 

usually noisy, due to environmental and equipment 

constraints, the study generates the noise of the leaf images, 

namely, Gaussian and salt-and-pepper noise. Subsequently, it 

uses noise reduction filters (median and Gaussian) to test 

model robustness. To facilitate the crop analysis, a custom 

cucumber dataset was created based on cucumber and grape 

datasets that are publicly accessible. 
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The pipeline includes: 

 Image preprocessing (size, contrast enhancement). 

 K-means clustering to segregate diseased areas. 

 Gray-Level Co-occurrence Matrix (GLCM) feature 

extraction is used in order to extract the texture patterns. 

 Classification with several algorithms, such as 

Multi_SVM with Hybrid Kernel (RBF, ANOVA, 

Sigmoid) and Modified Random Forest, LightGBM, 

QSVM, and YOLOv5. 

3.2. Gaussian Noise  

Additive White Gaussian Noise (AWGN) (or Gaussian 

noise) is among the most widely used noises in image 

processing and signal analysis. Random changes in lighting, 

sensor temperature, electrical interference, or transmission 
errors cause it. The term Gaussian is used to describe the fact 

that the noise amplitude is distributed according to a standard 

(Gaussian) distribution, i.e., most noise values are clustered 

around the mean, with decreasing frequency as the deviation 

increases [13]. The Gaussian probability distribution curve 

and the Leaf image after the addition of Gaussian noise are 

shown in Figure 1. 

   
(a) (b) (c) 

Fig. 1 (a) Gaussian probability distribution curve, (b) Original leaf image, and (c) Leaf image after addition of gaussian noise. 

3.2.1. Mathematical Representation 
I(x,y) is the original image intensity at pixel (x,y), and 

N(x,y) is the Gaussian noise that has been added to it. The 

noisy image G(x,y)is represented as:  

𝐺(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝑁(𝑥, 𝑦) (1) 

Where N(x,y) is a Gaussian distribution that is similar to: 

𝑝(𝑛) =
1

√2𝜋𝜎2
 𝑒

−
(𝑛−𝜇)2

2𝜎2  (2) 

Here: 

 𝑛→ random noise value 

 𝜇→ mean of the noise (often 0) 

 𝜎2→ variance of the noise (controls noise intensity) 

 𝑝(𝑛)→ probability density function of the noise 

When 𝜇 = 0, the noise is referred to as zero-mean 

Gaussian noise, meaning the deviations above and below the 

original pixel intensity are equally likely. 

Example: For an image corrupted by zero-mean Gaussian 

noise with standard deviation σ=25: 

𝐺(𝑥, 𝑦) = 𝐼(𝑥, 𝑦) + 𝑁(0,25) (3)  

This means each pixel’s intensity is randomly increased 
or decreased by a value drawn from a normal distribution with 

mean 0 and standard deviation 25. 

3.3. Salt and Pepper Noise 

Impulse noise (also known as salt-and-pepper noise) is a 

common form of image degradation, in which bright (white) 

and dark (black) pixels appear randomly in the image. It is 

normally caused by a defective camera sensor, bit errors 

during data transmission, corrupted memory, or an error 

during the conversion from analogue to digital. These 

randomly arranged white and black spots, which look like 

grains of salt and pepper scattered over the image, give the 

name of the image, salt and pepper [13]. 

3.3.1. Mathematical Representation 

Let 𝐼(𝑥, 𝑦)be the original image intensity at pixel 

coordinates (𝑥, 𝑦), and 𝐺(𝑥, 𝑦)be the observed noisy image. 

The model of salt and pepper noise is provided as: 

𝐺(𝑥, 𝑦) = {

𝐼𝑚𝑖𝑛 , with probability 𝑝1

𝐼𝑚𝑎𝑥 , with probability 𝑝2

𝐼(𝑥, 𝑦), with probability 1 − (𝑝1 + 𝑝2)
 (4) 

The salt-and-pepper noise model is provided. 

 𝐼𝑚𝑖𝑛 = 0(pepper noise - black pixel) 
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 𝐼𝑚𝑎𝑥 = 255(salt noise - white pixel) 

 𝑝1= probability of pepper noise occurrence 

 𝑝2= probability of salt noise occurrence 

In most practical cases, 𝑝1 = 𝑝2 = 𝑝/2, where 𝑝is the 

overall noise density. 

An example of an image corrupted with salt-and-pepper 

noise is shown in the Figure 2. 

  
(a) (b) 

Fig. 2 (a) Original leaf image, and (b) Leaf image after addition of salt 

and pepper noise. 

3.4. Workflow of the Proposed Approach 

The proposed methodology will seek to develop an 

effective and strong system to detect and classify cucumber 

and grape leaf diseases using the best preprocessing, feature 

extraction, and classification systems. The general workflow, 
which is presented in Figure.3, starts with the acquisition of 

datasets, follows through noise addition and filtering, and 

culminates with feature extraction and classification into 

definite disease categories. The stages are well planned to 

improve the accuracy and generalization of the disease 

detection process. 

3.4.1. Dataset Preparation 

The research begins with the selection of an image dataset 

of samples of cucumber and grape leaves. These datasets 

comprise the pictures of the healthy and diseased leaves under 

different conditions. The reason why cucumber and grape 

leaves have been chosen is that these are the crops that are 

grown extensively and exposed to various fungal, bacterial, 

and viral infections that significantly diminish the yield and 

quality [5, 7]. An optimal disease detection system of such 

plants may aid in investigating these plants and the 

management of crops in a timely manner. 

3.4.2. Adding Noise and Data Augmentation Addition 
To model the real world, noise is added to the data to 

simulate conditions. Two types of noise are applied to the 

images: the Gaussian noise and the salt and pepper noise. 

Gaussian noise is added between 10% and 100% to give the 

impression of the changes in the environmental factors, i.e., 

sensor sensitivity, light issues, or transmission errors. In the 

same way, Salt & Pepper noise is used with the same variety 

of variations in order to simulate pixel disruption that can be a 

result of a malfunctioning sensor element, dust, or a 

malfunction in image capture. The use of noise helps to test 

the robustness and reliability of the system, making sure that 

the model can still work in degraded conditions. 

 
Fig. 3 Work flow of the proposed model 

Image Dataset 

Cucumber/Grape 

Apply Gaussian Noise 

with the variation of 
10% to 100% 

Preprocessing using 

Gaussian filter 

Preprocessing using 

Median filter 

Apply Salt & Pepper 

Noise with the 

variation of 10% to 

100% 

Extraction of features 

using GLCM, Contrast, 

Correlation, Energy, 

Homogeneity, Entropy, 

RMS, Variance, 

Standard Deviation, 

Mean, Smoothness, 

Kurtosis, Skewness, 

IDM 

Classification 

using 

Modified RF 

QSVM LGBM 

Multi_SVM 

Healthy Angular 

Leaf Spot 

Anthracnose 

Downy Mildew 

Powdery 

Mildew Aphid 

CYSDV 
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3.4.3. Preprocessing 

Any pipeline for detecting plant diseases relies on image 

preprocessing. As a result of images obtained in the field or 

datasets being prone to noise either in the course of their 

acquisition, transfer, or storage, filtering methods are 
necessary to improve the level of quality. The Gaussian 

filtering and Median filtering are used in this work to remove 

noise without influence on disease-related textures and 

patterns [13]. The mathematical formulations, kernel 

illustrations, and step-by-step illustrations are provided below. 

3.5. Gaussian Filter 

The Gaussian filter is a linear smoothing filter that 

eliminates Gaussian noise and high-frequency variations in an 

image. It functions by averaging the values of the 

neighbouring pixels by convolving the input image with a 

two-dimensional Gaussian value to get a weighted average of 

the pixel values. The mathematical version of a two-

dimensional Gaussian function is: 

𝐺(𝑥, 𝑦) =
1

2𝜋𝜎2 𝑒𝑥𝑝( −
𝑥2+𝑦2

2𝜎2 ) (5) 

Where,  

 (x,y) is the pixel location of the filter center. 

 σ is the standard deviation of the Gaussian distribution 

(regulates the level of smoothing) 

 G(x,y) is the weight of the pixel at (x,y). 

The convolution operation obtains the filtered image:  

𝐼′(𝑥, 𝑦) = ∑ ∑ 𝐼(𝑥 − 𝑖, 𝑦 − 𝑗) ⋅ 𝐺(𝑖, 𝑗)𝑘
𝑗=−𝑘

𝑘
𝑖=−𝑘  (6) 

Where, 

 I(x,y) is the original image,  

 G(i,j) is the Gaussian kernel,  

 k is the kernel half-size (e.g., for a 5x5 kernel, k=2) 

The Gaussian filter smooths the image by averaging pixel 

values with a Gaussian weight distribution, thereby reducing 

Gaussian noise while preserving edges to some extent. 

3.6. Median Filter 

Median filter is a nonlinear filtering algorithm that works 

particularly well in removing Salt and Pepper noise that takes 

the form of randomly spaced blocky and white spots in the 

image [12]. The median filter, in contrast to linear filters, 

computes the median of the pixels surrounding the pixel being 

averaged and replaces the average with the median. 

Mathematically, for a window 𝑊centered at pixel (𝑥, 𝑦), the 

median filter is defined as: 

𝐼′(𝑥, 𝑦) = 𝑚𝑒𝑑𝑖𝑎𝑛{𝐼(𝑖, 𝑗)|(𝑖, 𝑗) ∈ 𝑊} (7) 

Where,  

 I(x,y) represents the original pixel intensity, 

 W is the neighborhood window (usually 3x3, 5x5, etc.), 

 𝐼′(𝑥, 𝑦) is the filtered pixel intensity. 

For example, consider a 3x3 neighbourhood:  

W={ I(x-1,y-1),I(x-1,y),I(x-1,y+1),I(x,y-1),I(x,y), I(x,y+1), 
I(x+1,y-1),I(x+1,y),I(x+1,y+1) } (8) 

The average of all nine W values will be placed at the 

pixel (x, y). 

It is a very efficient method to save edges and finer details 

and eliminate impulse noise, and so it applies to plant disease 

images where spots of diseases and vein patterns are vital in 

classification. 

3.6.1. Feature Extraction 

The extraction of features is then performed after 

preprocessing to extract meaningful features of the leaf 

images. Different statistical and texture characteristics are 

calculated with the help of the Gray Level Co-occurrence 

Matrix (GLCM) and some statistical parameters.  

3.6.2. Classification 

The features derived are then put through large numbers 

of machine learning classifiers to determine the capability of 

the features to detect diseases. Classifiers to be used are: 

 Modified Random Forest - This is an ensemble-based 

framework that integrates several decision trees and 

hyperparameter optimization results in improved 

accuracy and resistance to prediction [3]. 

 Quantum Support Vector Machine (QSVM) - This is used 

as a quantum-inspired version of the kernel-based 

classifier, which is on the higher-dimensional separability 
[15]. 

 Light Gradient Boosting Machine (LGBM) - This is a 

gradient boosting model (memory-efficient and fast) that 

is especially fast with large datasets [16]. 

 Multi_SVM - This is a more complex variant of SVM 

designed to support multiple classes and capable of 

classifying multiple disease types simultaneously using 

custom kernels based on RBF, Sigmoid, and ANOVA. It 

employs texture characteristics of segmented leaf images 

based on GLCM to increase the nonlinear separability and 

enhance the generalization as well as the high accuracy of 

classification in detecting the occurrence of leaf diseases 

[10]. 

These classifiers are also trained and tested over the 

extracted features, and their results are compared according to 

their accuracy, precision, recall, and other performance 

measures. 
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4. Results and Discussion 
4.1. Dataset Used for the Study 

The present study used two different datasets to determine 

diseases in cucumber and grape leaves.  

The publicly available sources and field data collection 

were carefully curated into the datasets, and this enables 

strong and representative datasets to be applied to train and 

test machine learning models. 

4.1.1. Kaggle Dataset 

The cucumber leaf pictures were obtained from the 

Kaggle repository [16]. Foliar diseases that affect cucumber 

leaves include powdery mildew, which has white spots of 
fungi, and downy mildew, which has yellow spots with a fuzzy 

underside.  

These illnesses will cause severe yield losses when left 

unmanaged. In this study, a database of 3,754 leaf images was 

used.  

Figure 4 illustrates sample pictures of this dataset. The 

resolution of each picture is 1366 x 768 pixels, and every 

image is of one of four categories: 

 Healthy leaf 

 Powdery mildew 

 Downy mildew 

 Anthracnose 

The use of this dataset gives a balanced number of 

diseased and healthy leaves, which facilitates the extraction 

and classification of features to be used in the process of 

automated cucumber disease detection. 

Custom Dataset 

Besides publicly available datasets, research uses a 

custom dataset that was gathered in fields of cucumber in the 

village of Regalapalli (near Proddatur), the Kadapa district. 

The images were taken in real conditions, which were very 

noisy and unpredictable.  

This dataset, collected in the field, was curated explicitly 

to develop a strong classification model that can be effectively 

used to identify diseases under challenging environmental 

conditions.  

The dataset will comprise 167 images across five classes: 

Angular Leaf Spot, Anthracnose, Healthy, Powdery Mildew, 

and Downy Mildew. Figure 5 depicts sample images from the 

custom dataset. 

Grape Dataset 

Grape Disease Dataset, which was collected on Kaggle 

[17], is an extensive collection of images created for the 
classification and analysis of different diseases in grape 

leaves. It consists of 9,027 RGB images of grape leaves, taken 

under varied environmental conditions to introduce variation 

in lighting, background, and leaf orientation.  

Images are split into four groups, which are Black Rot 

(2,360 images), ESCA or Black Measles (2,400 images), Leaf 

Blight (2,152 images), and Healthy (2,115 images), including 

all diseased and healthy grape foliage. Images are also given 

at a resolution of 256x256 pixels in standard RGB color 

format, which makes them easy to extract features and 

correctly classify using Machine Learning and Deep Learning 
Methods. Figure 6 shows sample images from the grape 

dataset. 

     
(a) (b) (c) (d) (e) 

Fig. 4 Cucumber leaf images of kaggle dataset: (a) Healthy, (b) Downy mildew, (c) Powdery mildew, (d) Anthracnose, and (e) Bacterial wilt. 

     
(a) (b) (c) (d) (e) 

Fig. 5 Sample images of the custom dataset: (a) Angular leaf spoT, (b) Anthracnose, (c) Downy mildew, (d) Healthy, and (e) Powdery mildew. 
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(a) (b) (c) (d) 

Fig. 6 Sample Images of the grape dataset: (a) Healthy, (b) Anthracnose, (c) Aphids, and (d) CYSDV.  

4.2. Performance Evaluation Metrics 

In order to strictly evaluate the performance of the 

models, several metrics of evaluation will be determined, such 

as Accuracy, Precision, Recall, and F1-score [4].  

1. Accuracy 

ACC =
TP+TN

TP+TN+FP+FN
 (9) 

2. Precision 

PRE =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (10) 

3. Recall 

REC =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (11) 

4. F1-Score 

F1 − Score =
2× precision × recall 

 precision + recall 
 (12) 

The analysis will aim to provide insight into how each 

machine Learning Model reacts to various types of noise. To 
illustrate, Random Forest is supposed to be resilient to 

Gaussian noise, while Multi_SVM may be resilient to Salt and 

Pepper noise because of the ability of the kernel to be flexible. 

The findings will also indicate the effect of noise-reducing 

filters on classification accuracy. The study will be able to 

conclude the model’s generalizability by comparing 
performance on custom and Kaggle datasets. The analysis is 

essential in the recommendation of algorithms that can be 

implemented under conditions of the real agricultural 

environment, where the quality of the images is not 

predictable. 

It is hoped that the suggested work would result in a 

disease detection system that is capable of sustaining a high 

level of accuracy even in noisy conditions. Multi_SVM can be 

expected to provide a balanced performance, with custom 

kernels, whereas Random Forest is expected to be the most 

stable and noise-resistant model. The findings will be used to 

determine the relevance of preprocessing methods for 
enhancing robustness, and they will show that lightweight 

models such as Random Forest and LightGBM can be viable 

alternatives to computationally expensive Deep Learning 

Models [4]. Eventually, the study will offer a relatively low-

resource field-ready solution to detecting cucumber and grape 

disease in agricultural environments. 

Table 1. Evaluation of performance metrics for the cucumber dataset (custom dataset)- gaussian noise 

Model 
Train & 

Test Ratio 

Gaussian Noise images Denoised Images with Gaussian Filter 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-Score 

LGBM 

80:20 0.60 0.62 0.60 0.60 0.58 0.58 0.58 0.57 

70:30 0.55 0.55 0.54 0.54 0.55 0.55 0.55 0.54 

60:40 0.52 0.52 0.52 0.51 0.59 0.61 0.59 0.59 

Modified RF 

80:20 0.80 0.82 0.80 0.80 0.94 0.95 0.94 0.94 

70:30 0.83 0.84 0.83 0.83 0.79 0.81 0.79 0.79 

60:40 0.83 0.85 0.83 0.83 0.78 0.79 0.78 0.78 

QSVM 

80:20 0.34 0.33 0.34 0.30 0.32 0.25 0.32 0.27 

70:30 0.37 0.31 0.37 0.33 0.27 0.24 0.27 0.22 

60:40 0.28 0.29 0.28 0.24 0.42 0.57 0.42 0.37 

Multi_SVM 

80:20 0.64 0.82 0.62 0.67 0.63 0.86 0.60 0.64 

70:30 0.62 0.81 0.60 0.65 0.61 0.81 0.61 0.68 

60:40 0.59 0.81 0.61 0.66 0.63 0.80 0.63 0.68 

Table 2. Evaluation of performance metrics for cucumber dataset (custom dataset)- salt-and-pepper noise 

Model Train & 

Test Ratio 

Salt-and-Pepper Noise images Denoised Images with Median Filter 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-Score 

LGBM 80:20 0.47 0.41 0.45 0.42 0.47 0.41 0.45 0.42 

70:30 0.45 0.39 0.43 0.4 0.45 0.39 0.43 0.4 
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60:40 0.43 0.37 0.41 0.38 0.43 0.37 0.41 0.38 

Modified RF 80:20 0.83 0.84 0.83 0.83 0.83 0.84 0.83 0.83 

70:30 0.81 0.82 0.81 0.81 0.81 0.82 0.81 0.81 

60:40 0.79 0.8 0.79 0.79 0.79 0.8 0.79 0.79 

QSVM 80:20 0.26 0.2 0.25 0.22 0.26 0.2 0.24 0.22 

70:30 0.24 0.18 0.23 0.2 0.24 0.18 0.22 0.2 

60:40 0.22 0.16 0.21 0.18 0.22 0.16 0.2 0.18 

Multi_SVM 80:20 0.6 0.71 0.6 0.63 0.56 0.8 0.56 0.6 

70:30 0.6 0.7 0.6 0.62 0.56 0.78 0.56 0.59 

60:40 0.6 0.7 0.6 0.62 0.56 0.73 0.56 0.59 

Table 3. Evaluation of performance metrics for cucumber dataset (kaggle dataset)- gaussian noise 

Model 
Train &  

Test Ratio 

Gaussian Noise images Denoised Images with Gaussian Filter 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-Score 

LGBM 

80:20 0.3 0.12 0.3 0.17 0.29 0.17 0.29 0.2 

70:30 0.28 0.11 0.3 0.21 0.32 0.24 0.3 0.23 

60:40 0.3 0.12 0.32 0.21 0.28 0.13 0.3 0.23 

Modified RF 

80:20 0.93 0.93 0.93 0.92 0.95 0.95 0.95 0.95 

70:30 0.93 0.93 0.93 0.93 0.96 0.96 0.95 0.95 

60:40 0.94 0.95 0.9 0.9 0.94 0.94 0.96 0.96 

QSVM 

80:20 0.33 0.63 0.34 0.28 0.34 0.31 0.35 0.26 

70:30 0.33 0.49 0.34 0.28 0.35 0.34 0.37 0.28 

60:40 0.31 0.45 0.33 0.28 0.35 0.31 0.36 0.27 

Multi_SVM 

80:20 0.62 0.84 0.62 0.67 0.63 0.85 0.63 0.69 

70:30 0.6 0.81 0.6 0.65 0.61 0.8 0.61 0.67 

60:40 0.6 0.81 0.6 0.66 0.63 0.8 0.63 0.68 

Table 4. Evaluation of performance metrics for the cucumber dataset (kaggle dataset) salt-and-pepper noise 

Model 
Train &  

Test Ratio 

Salt-and-Pepper Noise images Denoised Images with Median Filter 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-Score 

LGBM 

80:20 0.32 0.23 0.32 0.25 0.29 0.14 0.3 0.2 

70:30 0.37 0.31 0.37 0.31 0.31 0.17 0.29 0.19 

60:40 0.34 0.28 0.34 0.28 0.3 0.17 0.32 0.24 

Modified RF 

80:20 0.93 0.93 0.93 0.92 0.99 0.99 0.99 0.92 

70:30 0.93 0.94 0.94 0.94 0.98 0.98 0.98 0.78 

60:40 0.92 0.92 0.94 0.67 0.97 0.97 0.96 0.62 

QSVM 

80:20 0.29 0.38 0.29 0.22 0.33 0.36 0.33 0.34 

70:30 0.3 0.34 0.33 0.25 0.32 0.36 0.31 0.41 

60:40 0.31 0.4 0.31 0.28 0.34 0.39 0.33 0.27 

Multi_SVM 

80:20 0.61 0.84 0.61 0.66 0.62 0.86 0.62 0.68 

70:30 0.61 0.84 0.61 0.67 0.61 0.84 0.61 0.67 

60:40 0.62 0.81 0.62 0.67 0.61 0.81 0.61 0.66 

Table 5. Evaluation of performance metrics for the grape dataset-gaussian noise 

Model 
Train &  

Test Ratio 

Gaussian Noise images Denoised Images with Gaussian Filter 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-Score 

LGBM 

80:20 0.30 0.12 0.30 0.17 0.29 0.17 0.29 0.20 

70:30 0.28 0.11 0.30 0.21 0.32 0.24 0.30 0.23 

60:40 0.30 0.12 0.32 0.21 0.28 0.13 0.30 0.23 

Modified RF 

80:20 0.92 0.93 0.93 0.92 0.95 0.95 0.95 0.95 

70:30 0.93 0.93 0.93 0.93 0.95 0.96 0.95 0.95 

60:40 0.94 0.95 0.90 0.90 0.94 0.95 0.96 0.96 

QSVM 
80:20 0.59 0.78 0.60 0.65 0.62 0.88 0.62 0.69 

70:30 0.60 0.78 0.60 0.66 0.62 0.84 0.63 0.69 
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60:40 0.57 0.73 0.57 0.62 0.63 0.85 0.63 0.69 

Multi_SVM 

80:20 0.62 0.84 0.6 0.66 0.6 0.9 0.58 0.64 

70:30 0.60 0.81 0.6 0.65 0.6 0.8 0.59 0.65 

60:40 0.60 0.81 0.6 0.65 0.6 0.8 0.59 0.66 

Table 6. Evaluation of performance metrics for the grape dataset - salt-and-pepper noise 

Model 
Train &  

Test Ratio 

Salt-and-Pepper Noise images Denoised Images with Median Filter 

Accuracy Precision Recall F1-score Accuracy Precision Recall F1-Score 

LGBM 

80:20 0.29 0.12 0.30 0.17 0.29 0.16 0.29 0.20 

70:30 0.27 0.10 0.30 0.21 0.31 0.23 0.30 0.23 

60:40 0.29 0.12 0.32 0.21 0.29 0.12 0.30 0.23 

Modified RF 

80:20 0.92 0.93 0.93 0.92 0.95 0.95 0.95 0.95 

70:30 0.92 0.93 0.93 0.93 0.95 0.95 0.95 0.95 

60:40 0.93 0.94 0.90 0.90 0.94 0.94 0.96 0.96 

SVM 

80:20 0.60 0.81 0.60 0.66 0.58 0.84 0.58 0.64 

70:30 0.59 0.80 0.60 0.65 0.59 0.84 0.59 0.65 

60:40 0.60 0.80 0.60 0.65 0.59 0.84 0.59 0.66 

Multi_SVM 

80:20 0.61 0.84 0.6 0.66 0.61 0.86 0.58 0.64 

70:30 0.61 0.84 0.6 0.65 0.61 0.84 0.59 0.65 

60:40 0.62 0.82 0.6 0.65 0.61 0.81 0.59 0.66 

4.3. Performance Analysis of Classification Models under 

Noise Conditions 

The following section is a detailed analysis of the 

different classification models on Cucumber and Grape leaf 

databases in the Gaussian noise and Salt-and-Pepper noise, 

respectively, as shown in Tables 1 through 6. The models in 

consideration are Light Gradient Boosting Machine (LGBM), 

Modified Random Forest (RF), Quadratic Support Vector 

Machine (QSVM), and Multi-class SVM. Three train-test 
splits (80:20, 70:30, and 60:40) were used to test each model. 

The analysis of classification effectiveness before and after the 

application of denoising filters was done based on 

performance measures like Accuracy, Precision, Recall, and 

F1-score. Gaussian noise was suppressed through Gaussian 

filtering, whereas Salt-and-Pepper noise was suppressed with 

the help of Median filtering. 

The study compared different machine learning 

classifiers, such as Modified Random Forest (RF), LGBM, 

QSVM, and Multi-SVM with a custom kernel, to Cucumber 

and Grape Leaf Data (Custom and Kaggle) with or without 

Gaussian and Salt-and-Pepper noise. In every experiment, the 
Modified Random Forest proved to be the most successful in 

terms of the ability to obtain the highest accuracy, precision, 

recall, and F1-score that is noise-resistant and stronger in 

comparison with other models. 

In the Cucumber Custom Dataset of Gaussian Noise, the 

Modified RF reached up to 0.94 accuracy and 0.95 precision, 

which was significantly better than LGBM and QSVM (less 

than 0.6 accuracy). It was stable even in the absence of 

significant post-filtering variations, as under Salt-and-Pepper 

noise, it was good at holding its accuracy constant (0.83) with 

equal measures of precision and recall (~0.84). In the 

Cucumber Kaggle Dataset, the Modified RF also scored 

highest with the accuracy of 0.95-0.96 in the case of Gaussian 

noise and 0.92-0.99 in the case of Salt-and-Pepper Noise after 

denoising. The accuracy was almost perfect, with a precision 

and recall of 0.99, and LGBM and QSVM performed poorly 

(<0.35 accuracy). 

With modified RF, high performance was observed 

across both types of noise in the Grape Dataset. It was 0.95 

accurate, 0.96 precise, and 0.95 F1-score with the Gaussian 
Noise there, and QSVM and Multi-SVM have shown a 

moderate improvement (approximately 0.65 accuracy). In the 

Salt-and-Pepper noise task, the Modified RF was the 

strongest, achieving 0.95 accuracy and a balanced precision-

recall of 0.95. Comprehensively, the findings clearly 

demonstrate that the Modified Random Forest, together with 

Median and Gaussian filtering, gives the most consistent, 

noise-resistant, and generalizable solution to the cucumber 

and grape disease detection in various datasets and noise 

levels. 

4.4. Comparative Discussion 

The Modified Random Forest model has proven to be the 
strongest classifier across all data sets and noise and produced 

high levels of accuracy, precision, recall, and F1-score. The 

Multi_SVM model achieved moderate results; QSVM and 

LGBM performed significantly worse under noisy conditions. 

All performance measures were significantly improved by the 

use of Gaussian and Median filters, demonstrating the 

importance of preprocessing for reducing noise and improving 

classification. All in all, these findings suggest that the 

combination of denoising architecture and the use of strong 

ensemble classifiers like the Modified RF leads to a significant 

improvement in the performance of leaf disease detection in 
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the presence of diverse disturbances due to noise factors, 

which guarantees the performance of better generalization and 

robustness of the model across different datasets. Further 

results are shown in Figures 7-18. 

4.5. Comparison with Deep Learning and Multimodal 

Approaches 

Recent plant disease detection literature is primarily 

based on Deep Learning Architecture, including CNNs, 

transformers, and multimodal models, which are effective for 

working with clean and large datasets, but involve high 

computation cost and training. In contrast, the proposed 

method combines noise-aware preprocessing with lightweight 

ensemble learning. As shown in Section 4, the Modified 

Random Forest and Multi-SVM with custom kernels achieve 

comparable or better performance under real-world noisy 

conditions, particularly on field-acquired datasets, while 

remaining more computationally efficient and suitable for 

practical agricultural deployment. 

4.6. Ablation and Sensitivity Analysis 

A sensitivity analysis and ablation are performed to 

measure the contribution that each element of the proposed 

framework, such as the filtering approaches, feature selection, 

and classifiers, makes. 

4.6.1. Ablation of Filtering Techniques 

Experiments were performed on noisy images with and 

without denoising. Results demonstrate that Gaussian filtering 

significantly improves performance under Gaussian noise. 

Median filtering is particularly effective against Salt-and-
Pepper noise. Without filtering, all classifiers exhibit a 

noticeable drop in accuracy, confirming the critical role of 

noise-aware preprocessing. 

4.6.2. Ablation of Feature Extraction 

Texture features derived from GLCM were evaluated 

independently and in combination with statistical features. 

The combined feature set consistently achieved higher 

precision and recall, indicating that texture-based spatial 

information is essential for disease discrimination under noise. 

4.6.3. Classifier Sensitivity 

Among the evaluated classifiers, the Modified Random 

Forest showed the lowest sensitivity to noise variations, while 
QSVM and LGBM exhibited higher performance fluctuations. 

This confirms that ensemble-based classifiers provide 

superior stability in degraded imaging conditions. 

4.7. Cross-Dataset and Generalization Analysis 

To evaluate generalization, the proposed models were 

tested on diverse datasets, including Kaggle-based cucumber 

and grape collections as well as a custom dataset captured 

under real field conditions. When models trained on one 

dataset were applied to others, stable performance patterns 

were observed, especially for the Modified Random Forest 

and Multi-SVM classifiers. The reliable performance across 

datasets with varying image quality, illumination, and capture 
settings indicates that the proposed framework is not 

dependent on dataset-specific properties. Such cross-dataset 

stability is essential for real-world agricultural deployment, 

where imaging conditions are highly variable. 

4.8. Computational Complexity and Edge / IoT Feasibility 

Computational efficiency is essential for real-time 

agricultural applications. Unlike deep learning and 

transformer-based methods, which require access to a GPU 

and intensive memory capacity, the proposed framework is 

constructed on the basis of lightweight preprocessing, feature 

extraction, and traditional machine learning methods. Median 
and Gaussian filtering introduce minimal computational cost, 

while GLCM-based feature extraction operates on low-

dimensional representations. In addition, ensemble models 

such as Random Forest and LGBM can be executed efficiently 

on standard CPUs. These properties make the proposed 

system well-suited for deployment on edge devices, mobile 

platforms, and IoT-enabled innovative farming systems, 

allowing reliable on-site disease detection without the need for 

cloud-based processing. 
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Fig. 7 Evaluation of performance metrics for cucumber custom dataset (gaussian noise) 

  

  

Fig. 8 Evaluation of performance metrics for cucumber custom dataset (denoised with gaussian filter) 
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Fig. 9 Evaluation of performance metrics for cucumber custom dataset (salt and pepper noise) 

  

  
Fig. 10 Evaluation of performance metrics for cucumber custom dataset (denoised with median filter) 
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Fig. 11 Evaluation of performance metrics for cucumber kaggle dataset (gaussian noise) 

  

  
Fig. 12 Evaluation of performance metrics for cucumber kaggle dataset (denoised with gaussian filter) 
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Fig. 13 Evaluation of performance metrics for cucumber kaggle dataset (salt and pepper noise) 

  

  
Fig. 14 Evaluation of performance metrics for cucumber kaggle dataset (denoised with median filter) 
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Fig. 15 Evaluation of performance metrics for the grape dataset (gaussian noise) 

  

  
Fig. 16 Evaluation of performance metrics for the grape dataset (denoised with gaussian filter) 
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Fig. 17 Evaluation of performance metrics for the grape dataset (salt and pepper noise) 

  

  
Fig. 18 Evaluation of performance metrics for grape dataset (denoised with median filter) 

5. Conclusion  
The proposed study on the design and development of a 

cucumber and grape disease detector, with noisy data, reveals 
a highly efficient, noise-tolerant methodology for accurate 

disease detection using Machine Learning Methods. The 

framework can mitigate the effects of salt-and-pepper and 

Gaussian noise, achieving superior image quality and feature 

localization through the combination of the median and 

Gaussian filters. Among the tested classifiers, the Modified 

Random Forest was the most accurate, precise, and recall, and 

F1-score on both custom and Kaggle data, and the rationale 

behind the high results is that it is robust and performs better 

when under the noisy setting, generalization. The findings 

indicate that effective denoising combined with ensemble-

based learning contributes to a significant improvement in the 

model performance and stability in agricultural imaging 

activities.  

5.1. Future Work 

The implementation of Deep Learning-based Hybrid 

Models, Adaptive Filtering, and Automated Noise 
classification to correct in real-time can be used to extend this 

work in the future. Moreover, the system, as a part of the IoT-

based smart farming and mobile application, could allow 
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diagnosis of the disease on the field, and hyperspectral 

imaging and transfer learning methods could enhance the early 

diagnosis of the disease. In general, the research provides a 

solid foundation for the development of intelligent, scalable, 

and noise-resistant plant disease detection systems that enable 

accurate agriculture and sustainable crop management. 

5.2. Ethical and Societal Implications 

The proposed system supports sustainable agriculture by 

enabling early disease detection, reducing pesticide misuse, 

limiting crop loss, and improving food security.  

Its computational efficiency also enhances access to 

precision farming technologies for small-scale farmers. 

Potential dataset bias due to regional and environmental 

variations is mitigated by using both public and real-field data, 

with future work aimed at broader geographic coverage. 

Overall, the framework promotes responsible and sustainable 

AI deployment. 
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