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Abstract 

In this paper, a business cycle model with 

time-delayed feedback is investigated. Firstly, we add 

a time-delayed feedback controller to the business 

cycle model and propose a new model. Secondly, the 

linear stability of the model and the local Hopf 

bifurcation are studied and we derive the conditions 

for the stability and the existence of Hopf bifurcation 

at the equilibrium of the system. Besides, the 

direction of Hopf bifurcation and the stability of 

bifurcation periodic solutions are studied by adopting 

the center manifold theorem and the normal form 

theory. At last, some numerical simulation results are 

presented to confirm that the controller can 

effectively increase the stability region of the business 

cycle model. 

Keywords—Business cycle model,Time-delayed 

feedback, Stability, Hopf bifurcation, Numerical 

simulation.  

I. INTRODUCTION 

In recent years, with the differential 

equations have been widely applied to biology, 

economics and other fields, many scholars have 

established some models that can reflect the 

characteristics of the dynamical systems of 

differential equations [1-3]. Business cycle is also 

called economic cycle. It refers to the phenomenon 

that economic expansion and economic contraction 

occur alternately and repeatedly in economic 

operation. In the theory of Macroeconomics, the 

business cycle is characterized by fluctuation in 

macroeconomic variables, which is caused by the 

instability of the business systems[4-6]. The 

dynamics property of a Kaldor-Kalecki business 

model are studied in [7-9]. In[10], the authors 

investigated a business model based on Keynesian’s 

theory and first studied Hopf bifurcation for this 

model with delay. In[11], Jinchen Yu, Mingshu 

Peng and Caiyan Zhang discuss the stability and 

bifurcation of the equilibrium by applying the 

method of multiple scales. However, there few 

results on the business cycle model with 

time-delayed feedback control. In this paper, we 

investigated a business clcle model with 

time-delayed feedback and analysis the stability and 

Hopf bifurcation of the model. 

[10]

described by the following nonlinear differential 

equations: 

3 3 2(t) (t ) (t) (t) (t) (t).x ax qx vx vx ux         

 (1)   

where 0   represents the delay parameter, x is 

gross national income, the dot is derivative with 

respect to time t , 0 1a   denotes the marginal 

propensity to consume, 0 1u  and 1/ u is the 

Keynesian multiplier, 0q  is a fixed interest rate, 

0v  is capital-output ratio, also known as the 

accelerator.  

In[11], let (t) (t)x y


, then the Eq. (1) can 

be changed into the following form: 

(t) (t),

(t) (t ) (t) ( , ).

x y

y ax uy f x y









     

           

(2) 

where 
3 2 3( , ) ( ) ( ) ( )f x y qx t vy t vy t    and 

the other parameters are definition of this model are 

the same as model (1).  

In this paper, based on the above model (2), 

we add a time-delayed feedback controller 
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( (t) (t ))k x x    to it, Hence, we propose a new 

model as follows:                      

 

(t) (t),

(t) (t ) (t) ( (t) (t )) ( , ).

x y

y ax uy k x x f x y 









        

 (3)  

where the parameter k  is the feedback gain. 

The rest of the paper is arranged as follows, 

the linear stability of the model and the local Hopf 

bifurcation are studied and the conditions for the 

stability and the existence of Hopf bifurcation at the 

equilibrium are derived in Section 2. In Section 3, 

according to the method of theory and applications of 

Hopf bifurcation by Hassard, we analysis the 

direction and stability of bifurcating periodic 

solutions. In Section 4, the correctness of theoretical 

analysis are confirmed by some numerical simulation 

results. At last, some conlusions are obtained in 

Section 5.   

 

II. STABILITY AND LOCAL HOPF 

BIFURCATION ANALYSIS 
In this section, we focus on the problems of 

the Hopf bifurcation and stability for the system(3). 

We also derive the sufficient conditions for the the 

stability and the existence of Hopf bifurcation at the 

equilibrium point. Obviously, system (3) has the 

unique equilibrium point (0,0) . The linearation of 

system (3) at (0,0)  is  

(t) (t),

(t) (t) ( ) (t ) (t).

x y

y kx k a x uy









     

          

(4)      

Obviously, the correspoding characteristic 

equation of model (3) at the equilibrium point is 

as follows 

2 ( ) 0u k a e k                        

(5) 

Lemma 1. When 0   is satisfied, the equilibrium 

point (0,0)  of model (3) is locally asymptotically 

stable. 

Proof. When 0   is met, Eq. (5) becomes  

 
2 0u a                                

(6) 

Then we have the following conditions: 

1 20, 0D u D a                           

(7) 

According to the Routh-Hurwitz criteria, all roots of 

characteristic equation (6) have negative real parts. 

Hence, when 0   hold, the equilibrium point 

(0,0) of system (3) is locally asymptotically stable. 

Lemma 2. Assume that 
22 0ka a  , namely 

2

a
k    is met. Then Eq.(5) has a pair of purely 

imaginary roots 0i  when 0  , where  

2 2 2 2

0

(2 ) (2 ) 4(2 )

2

k u k u ka a


     


, 

2

0
0

0

1
arccos( )

k

k a










. 

Proof. Let ( 0)i     is a solution of the 

characteristic equation (5), then 

2 ( )(cos sin ) 0.iu k a i k         

 

The separation of the real and imaginary parts, it 

follows 

2 ( )cos 0

( )sin 0.

k a k

u k a

 

 

    


  
                

(8) 

From (8) we obtain 

4 2 2 2(2 ) (2 ) 0.k u ka a                  

(9) 

Hence,  

2 2 2 2(2 ) (2 ) 4(2 )

2

k u k u ka a


     


 

2

0

0 0

1 2
arccos( ) 0,1,2,j

k j
j

k a

 


 


  


. 
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Obviously, let 0j  , then  

2 2 2 2

0

(2 ) (2 ) 4(2 )

2

k u k u ka a


     


(10) 

2

0
0

0

1
arccos( )

k

k a










                      

(11) 

As a result, when 0  , the equation (5) have a 

pair of purely imaginary roots.  

Lemma 3. Let ( ) ( ) ( )i        be the root 

of (6) with 0( ) 0    and 0 0( ) .    When 

22 0ka a   and 
2 22 2 0u k     hold, 

then the transversality condition 

0

1

0

Re( ) 0
d

d
 







   is satisfied. 

Proof. By differentiating both sides of Eq. (5) with 

regard to  and applying the implicit function 

theorem, we have   

 

0

0 0

0

0 0 0 0 0 0

0 0 0 0 0 0 0

( )

2 ( )

( ) sin ( ) cos

( ( ) cos ) (2 ( ) sin )

d k a e

d u k e

k a i k a

u k a i k a



  

 

  

     

      



 




  

  


    

 

then 

0

2 2 2

2 2

0 0 0 0 0 0 0

Re

( 2 2 )

( ( ) cos ) (2 ( ) sin )

d

d

u k

u k a k a

 





 

      



 


    

      

(

1

2

)

  

Since 
2 22 2 0u k    , thus 

0

1Re( ) 0
d

d
 







  . The proof is completed. 

Lemma 4. For Eq. (5), when 0  , all of his roots 

have negative real parts. The equilibrium (0,0)  is 

locally asymptotically stable, and system (3) 

produces a Hopf bifurcation at the equilibrium 

(0,0)  when 0  .  

By applying the Hopf bifurcation theorem 

for time-delayed differential equation and the above 

four lemmas [12] , we have the following 

consequences.  

Theorem 1.  For system (3), the following 

conclusions hold: 

a) If 
2

a
k    and 

2 22 2 0u k     hold, 

the equilibrium point (0,0) is asymptotically 

stable for 0[0, )   . 

b) If 0  ,model (3) exhibits a Hopf bifurcation 

at the equilibrium point (0,0) . 

c) If 0  , then the equilibrium point of system 

(4) is unstable.  

III. DIRECTION AND STABILITY OF THE 

HOPF BIFURCATION 
In this section, by using the normal form 

theory and the center manifold theorem introduced in 

[13-15] , we discuss the direction of Hopf bifurcation 

and the stability of the bifurcating periodic solutions 

when 0  .  

For notational convenience, let 0    , 

1 2( ) ( ( ), ( ))Tu t x t x t  and ( ) ( )tu u t    

for  ,0   , clearly, 0   is Hopf 

bifurcation value for (3). For initial condition 

 1 2( ) ( ( ), ( )) ,0T C         , the system (3) is 

equivalent to the following Functional Differential 

Equation (FDE) system 

( ) ( , ).tu t L u F u 


                        

(13) 

with  

1 2( ) (0) ( )L B B                         

(14)                       

and 

3 2 3

1 2 2

0
( , )

(t) (t) (t)
F

q v v
 

  

 
  

  
        



International Journal of Engineering Trends and Technology ( IJETT ) – Volume 61 Number 3 - July 2018 

 
 

ISSN: 2231-5381              http://www.ijettjournal.org                  Page 141 
 

(15)        

where L  is the one family of bounded linear 

operator in  ,0C   and  

1

1o
B

k u

 
  

 
,

2

0 0

( ) 0
B

k a

 
  

  
. 

By the Riesz representation theorem [16] , 

there exists a bounded variation function ( , )    

for [ ,0]   , such that 

0

( , ) ( ), .L d C


      


                

(16) 

we can choose 

  1 2, ( ) ( ).B B                        

(17) 

where    is a Delta function. For 

([ ,0])C   , the operators A and R  are 

defined as follow 

0

( ( ))
, [ ,0),

( ) ( )

( ( , ) ( )), 0.

d

dA

d


 
 

  

     



 

 
 


   

(18) 

 

0, [ ,0),
( ) ( )

( , ), 0.
R

F

 
  

  

 
 


       

(19) 

                 

Hence, the Eq. (13) can be written as the following 

form: 

( ) ( )t t tu A u R u 


                          

(20)                       

Since 
t tdu du

d dt
  , then Eq.(20) can be written as 

0, [ ,0),

( , ), 0.

t

t

t t

du
du

dt
dt

L u F u

 

 


  

 
  

       

(21) 

For  0,C   , we define the adjoint 

operator ( )A 
  of ( )A   as 

0

( )
, (0, ],

( ) ( )

( ( ,0) ( )), 0,T

d s
s

dsA s

d t t s





 

 



 

  
  


   

(22) 

For ( ) [ ,0)C     and  0,C  , define a 

bilinear inner product 

0

0

,

(0) (0) ( )[ ( )] ( ) .
T

d d


  

 

         
 

 

   
    

(23) 

where ( ) ( ,0)     . 

Let 0  ; To determine the normal form 

of operator A , we need to calculate the eigenvectors 

)(q  and )(sq
 of A and 

A  corresponding to 

0i  and 
0i , respectively. we can obtain 

0

0

(0) ( ) ( )

(0) ( ) ( )

A q i q

A q s i q s

  

  





                     

(24) 

Assume that 0( )
i

q Ve
    is eigenvector of )0(A  

corresponding to 0i and 0( )
i s

q s DV e
   is 

eigenvector of )0(A  corresponding to 0i . By 

direct calculate, we get 

   

0 0

0 0

1 2

1 0

( ) ( , )

1, 1,

i iT

T Ti i

q Ve v v e

e i e

   

   



 

 

 
           

(25) 

   

0 0

0 0

1 2

2 0

( ) ( , )

,1 ,1

i s i sT

T Ti s i s

q s DV e D v v e

D e D u i e

 

  

    

 

 

  
 

(26) 

Now, we verify that 1,   qq and 
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0,   qq . From(23), we obtain 

0

0

0
, (0) ( ) ( ) ( ) .

T T

q q q q q d q d


  
       

 
   

  

0 0

0

0
( )

0
[ ( ) }

T T
i i

D V V V e d Ve d


    

  
    

 
   

 

0

0

0

[ [ ( )] ]
T T

i
D V V V d e V

 

 
    


    

0

0 2[ ].
T T

i
D V V e V B V

     (27)                                      

Let 0 1

0 2[ ]
T T

i
D V V e V B V

      , we can get 

1,   qq . 

By , ,A A     , we obtain 

0

0 0

, , ,

, , .

i q q q Aq A q q

i q q i q q



 

   

 

  

  
       

(28) 

Therfore 0,   qq . The proof is completed. 

Using the same notations as in Hassard et 

al. [13] , we first compute the coordinates to 

describe the center manifold 0C  at 0 . 

Define 

( ) , ,

( , ) ( ) 2Re{ ( ) ( )}.

t

t

z t q u

W t u z t q  

 

 
          

(29) 

On the center manifold 0C ,we have 

)),(),((),(  tztzWtW                    

(30) 

Where 


2

)()(
2

)(),,(

2

0211

2

20

z
WzzW

z
WzzW 

. 

z  and z  are local coordinates for center 

manifold 0C  in C  in the direction of q  and 

q , respectively.  Note that W  is real if tu  is 

real, therefore we only discuss real solutions. Since 

0  , it is easy to find that   

0 0

( ) , , ( (0) (0))

, ,

( , ).

t t

t t

T

z t q q A R

q A q R

i z q f z z

 

 



 
 

 



      

 

 

       

(31)                                                     

Let 

),,()( 0

' zzgzitz                         

(32) 

where 

,
22

),(

2

0211

2

20 
z

gzzg
z

gzzg        

(33) 

from (20) and (32), we have 

0 0

0 0

2Re (0) ( , ) ( ), [ ,0],

2Re{ (0) ( , ) ( )} ( , ), 0.

t

T

T

W u z q z q

AW q f z z q

AW q f z z q f z z

  

 

  





  

   
 
   

   

(34) 

Which can be rewritten as  

( , , )W AW H z z 


                        

(35)    

where 


2

)()(
2

)(),,(

2

0211

2

20

z
HzzH

z
HzzH    

(36) 

On the other hand, on 0C ,   



 zWzWW
zz                          

(37) 

Using (30) and (32) to replace zW  and z


 and 

their conjugates by their power series expansions, 

we obtain 
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2
2

0 20 0 02( ) ( ) .W i W z i W z   


          

(38) 

Comparing the coefficients of the above equation 

with those of (35) and (38), we get 

0 20 20

11 11

0 02 02

( 2 ) ( ) ( ),

( ) ( ),

( 2 ) ( ) ( ).

A i W H

AW H

A i W H

  

 

  

  


 
   

             

(39) 

Notice that 

( ) ( ( ), ( ), )tu u t W z t z t zq zq       and 

0

1( ) (1, )
iTq e
   , we get 

0 0

1

2

(1)

(2)
1 1

( )

( )

11( , , )
.

( , , )

t

i i

x t
u

x t

W z z
z e z e

W z z

   







 



 
  

 

    
            

 

2
2

(1) (1) (1)

1 20 11 02(0) (0) (0) (0)
2 2

z z
z z W W zz W      

 
2

2
(2) (2) (2)

2 1 1 20 11 02(0) (0) (0) (0)
2 2

z z
z z W W zz W       

 

2
2 2 (1) (1) 2

1 11 20(0) 2 [2 (0) (0)]z zz z W W z z      

 

2
2 2 2 2 (2) (2) 2

2 1 1 1 1 1 11 1 20(0) 2 [2 (0) (0)]zz zz z W W z          

 

3 2

1 (0) 3 .z z   

3 2 2

1 1 1(0) 3 .z z    

From the (32 ) and (33), we obtain  

2
2 2

1 2 3 4

0
( , )f z z

K z K zz K z K z z

 
  
    

 

where 
2

1 1K v  , 
2 1 12K v   , 

2

3 1K v  , 

(2) (2) 2

4 1 11 1 20 1 13 [2 (0) (0) 3 ].K q v W W      

 

When 2(0) (1, )
T

q D   , we can get that 

0

22 2 2

1 2 3 4

2
2 2

2 1 2 3 4

( , ) (0) ( , )

0
(1, )

( ).

T

g z z q f z z

D
K z K zz K z K z z

D K z K zz K z K z z







 
  

    

   

  

In order to get the values of 20, 11, 02g g g  

and 21g . Comparing the cofficients of the above 

equation with those in (33), we get  

20 2 1 11 2 2

02 2 3 20 2 4

2 , ,

2 , 2 .

g D K g D K

g D K g D K

 

 

 

 
             

(40) 

In order to determine the value of 21g , we 

also need to compute the values of 20 ( )W   and 

11( )W  , we obtain  

0

2
2

20 11 02

2
2

20 11 02

( , , ) 2Re[ (0) ( , ) ( )]

( ( ) ) ( )
2 2

( ( ) ) ( ).
2 2

T

H z z q f z z q

z z
g g zz g q

z z
g g zz g q

 

 

 

 

     

    

                                          

(41)                               

Comparing the coefficients with (36), we gives that 

).()()(

),()()(

111111

022020





qgqgH

qgqgH




             

(42)                                         

When 0  , we have  
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0 0

2
2

20 11 02

2
2

20 11 02

22 2

1 2 3 4

( , ,0) 2Re[ (0) ( , ) (0)] ( , )

( ) (0)
2 2

( ( ) ) (0)
2 2

0
.

T

H z z q f z z q f z z

z z
g g zz g q

z z
g g zz g q

K z K zz K z K z z



  

     

    

 
  
    

 

Comparing the coefficients with (41), we have 

20 20 02

1

11 11 11

2

0
(0) (0) (0) 2 ,

0
(0) (0) (0) .

H g q g q
K

H g q g q
K

 
     

 

 
     

 

      

(43)                                   

Using (39), (42), we obtain 

0 0 0

0 0

220 02
20 1

0 0

11 11
11 2

0 0

( ) (0) (0) ,
3

( ) (0) (0) .

i i i

i i

igig
W q e q e E e

igig
W q e q e E

     

   


 


 





  

   

 

where 
(1) (2) (1) (2)

1 1 1 2 2 2( , ) , ( , ) .T TE E E E E E    

From the definition of (0)A  and (39) , we have 

0

0

20 0 20 20( ) ( ) 2 (0) (0)d W i W H       , 

0

0

11 11( ) ( ) (0)d W H      . 

Notice that  

0

0

0

0

0

0

0

0

( ( )) (0) 0

( ( )) (0) 0.

i

i

i I e d q

i I e d q

 



 



  

  







 

  




 

Hence, we can get 

0

0

20

0 1

1

0
(2 ( )) 2

i
i I e d E

K



  

 
   

 
  

0

0

2

2

0
( ( ))d E

K
 



 
  

 
  

Therefore, we have 

0 0

(1)
0 1

2 (2)
0 11

(1)

2

(2)
22

2 1 0
2

( ) 2

00 1

i

i E

k a e i u KE

E

Ka u E

 





      
     

      


    
           

(44)                                         

Then we can get 

0 0

(1) 1
1 2 2

0 0

(2) (1)

1 0 1

2

( ) 4 2

2 .

i

K
E

k a e k iu

E i E

   






   



      

(45)                                                

Similarly, we have  

(1) 2
2

(2)

2 0.

K
E

a

E





                                 

(46)                                                                    

Based on the above analysis, we have the following 

parameters [17-19] : 

2 2 21
1 20 11 11 02

0

1
2 '

2 1

'

1 2
2

0

1
(0) ( 2 ) ,

2 3 2

Re{ (0)}
,

Re{ (0)}

2Re{ (0)},

Im{ (0)} (Im{ (0)})
.

gi
C g g g g

C

C

C
T








 



   

 




 

 

(47) 

which determine the quantities of bifurcating 

periodic solution in the manifold at the critical 

value 0   , now we have the following theorem 

for the system (3) [20-22] . 

Theorem 2.  

a) The direction of the Hopf bifurcation is 

determined by the parameter 2 . If 2 0  , 

the Hopf bifurcation is supercritical . If 

2 0  , the Hopf bifurcation is subcritical . 

b) 2  determines the stability of the bifurcating 

periodic solution. If 2 0  , the bifurcating 

periodic solutions is stable; if 2 0  , the 

bifurcating periodic solutions is unstable. 
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c) The period of the bifurcating periodic solution 

is decided by the parameter 2T . If 

2 0( 0)T   , the period increases(decreases). 

IV. NUMERICAL SIMULATION 
In this section, some numerical results are 

presented to confirm the analytical predictions 

obtained in the previous section. We take the 

parameters 

0.5, 0.6, 0.01, 0.8, 0.2.a u q v k      B

y simply computing, we obtained that 

0 0.494469,   

0 2.87564  . 

From the above arithmetic in section 2, If 

we choose 02.5   , the equilibrium point 

(0,0)  of the system (3) is asymptotically stable 

proved by numerical simulations (see Figs. 1-3.). 

If the delay value   passes through the 

critical value 0 , the the equilibrium point 

(0,0) loses its stability and a Hopf bifurcation 

occurs, namely, there are periodic solutions 

bifurcating out from the equilibrium point 

(0,0) (see Figs.4-6.). 

For convenient comparison, we can choose 

the parameters 

0.5, 0.6, 0.01, 0.8, 0a u q v k     , 

namely for the uncontrolled model (2), we obtained 

that 0 00.592801, 1.33507   . When 

01   , the equilibrium point (0,0)  of the 

system (2) is asymptotically stable (0,0) (see 

Figs.7-9.). When 01.6>  , and the periodic 

solutions occur from the equilibrium (0,0) (see 

Figs. 9-12.).  

 

 

 

    

Figure 1. Phase plot of ( ) y(t)x t   with 

2.5  . 

 

 

Figure 2. State plot of ( )x t  with 2.5  . 

 

 

Figure 3. State plot of ( )y t  with 2.5  . 

   

 

Figure 4. Phase plot of ( ) y(t)x t   with 3  . 
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   Figure 5. State plot of ( )x t  with 3  . 

 

 

Figure 6. State plot of ( )x t  with 3  . 

 

 

Figure 7. Phase plot of ( ) y(t)x t   with 

1  . 

 

 

Figure 8. State plot of ( )x t  with 1  . 

 

 

Figure 9. State plot of ( )y t  with 1  . 

 

 

Figure 10. Phase plot of ( ) y(t)x t   with 

1.6  . 
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Figure 11. State plot of ( )x t  with 1.6  . 

 

Figure 12. State plot of ( )y t  with 1.6  . 

V. CONCLUSION 

Based on the the control and bifurcation 

theory, We discussed the effect of the feedbak delay 

on the system. Until now, there are few results 

about a business cycle model with feedback delay 

and we provide an insight to unexplored aspects of 

them. First, we introduce a time-delayed feedback 

controller to this model which aim is to control the 

bifurcation. Second, we derived the conditions for 

the stability and the existence of Hopf bifurcation at 

the equilibrium of the system. Moreover, by 

employing the the center manifold theorem and the 

normal form theory, we obtained the the direction of 

Hopf bifurcation and the stability of bifurcation 

periodic solutions. At last, Some computer 

simulation results have been presented to illustrate 

the validity of the theoretical analysis. The research 

of this paper further enriches and develops the 

studies on business cycle models. 
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