
International Journal of Engineering Trends and Technology (IJETT) – Volume 50 Number 5 August 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 271

Apache Pig - A Data Flow Framework Based

on Hadoop Map Reduce

Swarna C
#1

, Zahid Ansari
*2

#Department of Computer Science and Engineering, P.A. College of Engineering, Mangaluru, India
*Department of Computer Science and Engineering, P.A. College of Engineering, Mangaluru, India

Abstract — Big Data is a technology phenomenon

happened due to the increased rate of data growth,
complex new data types and parallel advancements in
technology stake. Big data can be structured, unstructured
or semi-structured, resulting in ineffectiveness of

conventional data management methods. Hadoop is a
framework for the analysis and transformation of very
large data sets using the Map Reduce paradigm. An
important characteristic of Hadoop is the splitting of data
and computation across thousands of hosts and running
applications in parallel close to their data. Hadoop
accomplish this by HDFS and Map Reduce. Pig is an
apache open source project. It runs on Hadoop by making

use of both HDFS and Map Reduce. There are two main
components for Pig. First component Pig Latin is the
parallel dataflow language which is designed in such a
way to fit between the SQL and the Map Reduce. Pig Latin
enables the use to define the reading, processing, storing
the data in parallel. Pig Latin script explicates a directed
acyclic graph, where data flows are represented as edges
and operators are represented as nodes. The second

component is the run time environment in which Pig Latin

programs are executed.

Keywords — Big Data, Hadoop, Map Reduce, Pig, Pig

Latin.

I. INTRODUCTION

The term ‘Big Data’ describes inventive

techniques and technologies to capture, store,

distribute, manage and analyse petabyte or larger-

sized datasets with high-velocity and different

structures [1]. Hadoop is open-source software that

enables reliable, scalable, distributed computing on

clusters of less expensive servers [2]. In 2004

Google has invented a frame work called Map
Reduce which is mainly used for parallel data

processing in a distributed computing environment.

But the Map Reduce is too low level and rigid. it has

many drawbacks like writing low level Map Reduce

code is slow, need a lot of expertise to optimize

Map Reduce code, prototyping is slow, a lot of

custom code required even for simple tasks and it is

hard to manage more complex map reduce job

chains. So a new language called Pig Latin was

developed which is a high level declarative query

language like SQL and a low level procedural

programming like Map Reduce.
 Pig Latin is implemented on Pig which is open

source software which run on Hadoop. Pig Latin’s

main features include support for an adaptable

nested data model, extensive support for user

defined functions, and the ability to operate on input

files without any schema information. Pig Latin also

comes with a novel debugging environment that is

particularly useful when dealing with massive data

sets.

II. PIG COMPONENTS AND ARCHITECTURE

Pig is an apache open source project .It is an

engine for executing parallel data flows on Hadoop.

It runs on Hadoop by making use of both HDFS and
Map Reduce which are the two components of

Hadoop [3]. Pig was initially developed at Yahoo.

The Pig programming language is designed to

handle any type of data that is reasonable. Pig is

made up of two components: the first component is

the Pig Latin-which is the language, and the second

is the runtime environment where Pig Latin

programs are executed [4]. Fig. 1 shows the

components of Pig.

Fig 1: Components of Pig

Figure 1 also describes the various steps during

the execution. The data is loaded from HDFS and it

is then converted to many map and reduce tasks.

Lastly the output is either stored in to a file or

dumped to screen.

Fig 2: Pig Architecture

International Journal of Engineering Trends and Technology (IJETT) – Volume 50 Number 5 August 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 272

Fig. 2 describes Pig Architecture. Grunt is the

interactive shell for the users to enter Pig Latin.

Parser converts Pig Latin in to Logical Plan, which

is further optimized by the optimizer. Compiler

converts it in to a series of map reduce jobs. These

jobs are executed by the execution engine. Pig
allows three modes of user interaction [7]:

 Interactive mode: Here, the user is entering

Pig Commands with an interactive shell

which is known as Grunt. When the user

asks for output through the STORE

command plan compilation and execution

is triggered.

 Batch mode: In this mode, a user submits a

prewritten script containing a group of Pig

commands, typically finishing with STORE.

The semantics are identical to interactive
mode.

 Embedded mode: Pig Latin Commands can

be submitted through method invocation

from a java program. For this a Java library

is provided by Pig. Through this option

dynamic construction of Pig Latin

programs and dynamic control flow can be

achieved. e.g. looping for a non-

predetermined number of iterations, which

is not currently supported in Pig Latin

directly.

III. PIG LATIN

Through this section the details of Pig Latin

language is described. We describe Pig data model

in Section A, and the Pig Latin statements in the

subsequent subsections. Pig Latin has the

following key properties [15]:

 Ease of programming: Complex tasks
comprised of multiple interrelated data

transformations are explicitly encoded as

data flow sequences, making them easy to

write, understand, and maintain.

 Optimization opportunities. The tasks are

encoded to permit the system to

automatically optimize their execution. It
allows the user to focus on semantics rather

than efficiency.

 Extensibility: Users can create their own

functions to do special-purpose processing.

A. Data Model

Data in Pig Latin is categorized into two types [16].

Scalar and complex data type. Pig’s scalar types are

similar to the data types that appear in most

programming languages. With the exception of
bytearray, they are all represented in Pig interfaces

by java.lang classes, making them easy to work with

in UDFs: Table I describes the scalar data types .

TABLE I

SCALAR DATA TYPES

Scalar

Data type

Description Example

int
Four-byte signed
integer. 12

long Eight-byte signed

integer.
80000L

float Four byte floating-point

number.
6.2f or 6.2e2f

double Eight byte floating

point.

2.718 or

 6.626e-34.

chararray
A string or character

array.

Hello

bytearray A blob or array of bytes.
.

Pig’s three complex data types are: maps, tuples,

and bags. All of these types can contain data of any

type, including other complex types. So it is possible
to have a map where the value field is a bag, which

contains a tuple where one of the fields is a map.

Table II describes complex data types.

TABLE II

COMPLEX DATA TYPES

Complex

Data type

Description Example

tuple An ordered set of fields (1,`alice‘)

bag A collection of tuples { (1,`alice’),(2)}

map

A map is a collection of

data items, where each

item has an associated

key.

[‘a’#’pomegranate’]

TABLE III

DIAGNOSTIC OPERATORS

Operator Description

Describe Returns the schema of the relation

Dump Dumps the results to the screen

Explain Displays execution plans.

Illustrate
Displays a step-by-step execution of a
sequence of statements

International Journal of Engineering Trends and Technology (IJETT) – Volume 50 Number 5 August 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 273

B. Pig diagnostic operators

Pig Latin provides four different types of

diagnostic operators: Describe Dump, Explain and

Illustrate. Describe, Explain and Illustrate are

provided to allow the operator to work together with

the logical plan, for debugging purposes. The Dump

is a sort of diagnostic operator too because it is used

only to permit interactive debugging of small result

sets or in combination with Limit. Table III will give
a brief description about these operators.

TABLE IV

PIG COMMANDS

C. Pig Commands

Apache pig present different built in data processing

operators. For input/output processing Load or Store

commands are used. For filtering data, For each,
Generate and Stream commands are used. There are

also commands for grouping and joining data.

Important data processing commands are described

in Table IV.

IV. IMPLEMENTATION

Pig Latin is fully implemented by the system, Pig.

Pig’s architecture allows different systems to be

plugged in as the execution platform for Pig Latin.

Our current implementation uses Hadoop, an open-

source, scalable implementation of map-reduce [2],

as the execution platform. Pig Latin programs are

compiled into map-reduce jobs, and executed using

Hadoop. Pig, together with its Hadoop compiler, is

an open-source project implemented by Apache and
it is available for general use [11].

A. Building a Logical Plan

As clients issue Pig Latin commands, the Pig

interpreter first parses it, and verifies that the input

files and bags referenced by the command are valid.

For example, if the user enters p = COGROUP q
BY:: :, r BY :: :, Pig verifies whether the bags q and

r have already been defined. Pig builds a logical plan

for the bags q and r user defines. When a new bag

is defined by a command, the logical plan for the

new bag is constructed by combining the logical

plans for the input bags, and the current command.

 Thus, in the above example, the logical plan for p

consists of a cogroup command having the logical

plans for q and r as inputs. During the construction

of logical plan processing is not carried out.

Processing is activated when the user invokes a
STORE command on a bag. While processing is

activated, the logical plan for that bag is compiled

into a physical plan, and is executed. This is

illustrated in figure 3.This lazy style of execution is

beneficial because it permits in-memory pipelining,

and other optimizations such as filter reordering

across multiple Pig Latin commands.

Pig is designed in such a way that the parsing of

Pig Latin and the logical plan construction is

independent of the execution platform. The

compilation of the logical plan into a physical plan

depends on which specific execution platform is
chosen. Next, we describe the compilation into

Hadoop map-reduce, the execution platform

currently used by Pig.

 Transform Transform

 Execute

Figure 3: Pig Latin Workflow

Command Description

Load Read data from the file system

Store Write data to the file system

Dump Write output to stdout

Foreach

Generate

Apply expression to each record and

generate one or more records

Filter
Apply predicate to each record and remove

records where false

Group /

Cogroup

Collect records with the same key from one

or more inputs

Join Join two or more inputs based on a key

Order Sort records based on a Key

Distinct Remove duplicate records

Union Merge two datasets

Limit Limit the number of records

Split
Split data into 2 or more sets, based on filter

conditions

Cross
Creates the cross product of two or more

relations

Pig Latin

Program

Logical

Plan

Physical

Plan

Map

Reduce

Plan

Output

International Journal of Engineering Trends and Technology (IJETT) – Volume 50 Number 5 August 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 274

load filter group cogroup cogroup

load

map1 mapi reducei map i+1 reduce i+1

C1 Ci C1+1

 Fig 4: Pig Latin Map Reduce Compilation

B. Map-Reduce Plan Compilation

Compilation of a Pig Latin logical plan into map-

reduce jobs is straight forward. The map-reduce task

fundamentally provides the capacity to do a large-

scale group by, where the map tasks assign keys for

grouping, and the reduce tasks process a group at a
time. Pig compiler begins by converting each

(CO)GROUP command in the logical plan into a

distinct map-reduce job with its own map and reduce

functions. The map function for (CO)GROUP

command p first assigns keys to tuples based on the

BY clause(s) of p. The reduce function has no

operation initially. The map-reduce boundary is the

cogroup command. The sequence of FILTER, and

FOREACH commands from the LOAD to the first

COGROUP operation C1, are pushed into the map

function corresponding to C1 (see Figure 4). The
commands that lies between subsequent COGROUP

commands Ci and Ci+1 can be pushed into either

 The reduce function corresponding to Ci, or

 The map function corresponding to Ci+1.

Pig currently always follows option (a). Since

grouping is often followed by aggregation, this

approach reduces the amount of data that has to be

materialized between map reduce jobs.

If the COGROUP command consists of more than

one input data set, the map function appends an extra

field to each tuple that indicates the data set from
which the tuple originated. The corresponding

reduce function decodes this information. The

decoded information is used to insert the tuple into

the appropriate nested bag when cogrouped tuples

are generated.

Parallelism for LOAD is obtained as Pig operates

over files which reside in the Hadoop distributed file

system. Parallelism for FILTER and FOREACH

operations are also achieved since for a given map-

reduce job, several map and reduce instances are

running in parallel. We also get Parallelism for

(CO)GROUP since the output from the multiple map
instances is repartitioned in parallel to the multiple

reduce instances.

 While implementing the ORDER command is

two map-reduce jobs are compiled. The first job

samples the input to find out quantiles of the sort

key. The second job range partitions the input

according to the quantiles, which follows a local sort

in the reduce phase, finally resulting in a globally

sorted file.

The inflexibility of the map-reduce primitive

causes some overheads while compiling Pig Latin

into map-reduce jobs. For example, data must be

materialized and replicated on the distributed file

system between successive map-reduce jobs. While

dealing with multiple data sets, an additional field
must be added in every tuple to indicate the origin of

data set. Since the Hadoop map-reduce

implementation does provide many desired

properties such as parallelism, load balancing, and

fault-tolerance, the associated overhead is often

acceptable.

V. APPLICATIONS

Some of the important uses of Pig are described

below:

 Pig is a powerful tool for querying data in a

Hadoop cluster. It's so powerful that Yahoo

estimates that between 40% and 60% of its
Hadoop workloads are generated from Pig Latin

scripts.[23]

 Pig is also used at Twitter (processing logs,

mining tweet data); at AOL and MapQuest (for

analytics and batch data processing); and at

LinkedIn, where Pig is used to discover people

you might know.[23]

 With continually increasing population, crimes

and crime rate analyzing related data is a huge

issue for governments to make strategic

decisions so as to maintain law and order. The
benefit of using Pig for analysis is that fewer

lines of code have to be written which reduces

overall development and testing time [20].

 Using pig script a large scale data processing

system for analyzing web log data through Map

Reduce programming in Hadoop framework is

efficient[21].

International Journal of Engineering Trends and Technology (IJETT) – Volume 50 Number 5 August 2017

ISSN: 2231-5381 http://www.ijettjournal.org Page 275

 Pig is used to evaluate the performance of a

commercial RDBMS and Hadoop in astronomy

simulation analysis tasks [22].

V. CONCLUSIONS

This paper introduced the concept of Pig and its

associated language Pig Latin which is a new data

processing environment deployed at Yahoo. We

have entered an era of Big Data and Hadoop is a

framework for the analysis and transformation of

this Big data using the Map Reduce paradigm. The

Pig system compiles Pig Latin expressions into a

sequence of map-reduce jobs, and orchestrates the
execution of these jobs on Hadoop. Pig structure is

susceptible to substantial parallelization.

REFERENCES

[1] Bhosale, Harshawardhan S., and Devendra P. Gadekar. "A

Review Paper on Big Data and Hadoop." International

Journal of Scientific and Research Publications 4.10 (2014):

[2] Chavan, Ms Vibhavari, and Rajesh N. Phursule. "Survey

paper on big data." Int. J. Comput. Sci. Inf. Technol 5.6

(2014): 7932-7939.

[3] Samak, Taghrid, Daniel Gunter, and Valerie Hendrix.

"Scalable analysis of network measurements with Hadoop

and Pig." Network Operations and Management Symposium

(NOMS), 2012 IEEE. IEEE, 2012.

[4] Goyal, Vikas, and Deepak Soni. "SURVEY PAPER ON

BIG DATA ANALYTICS USING HADOOP

TECHNOLOGIES."

[5] Wang, MingXue, Sidath B. Handurukande, and Mohamed

Nassar. "RPig: A scalable framework for machine learning

and advanced statistical functionalities." Cloud Computing

Technology and Science (CloudCom), 2012 IEEE 4th

International Conference on. IEEE, 2012.

[6] Ouaknine, Keren, Michael Carey, and Scott Kirkpatrick.

"The PigMix Benchmark on Pig, MapReduce, and HPCC

Systems." Big Data (BigData congress), 2015 IEEE

International Congress on. IEEE, 2015.

[7] Samak, Taghrid, Daniel Gunter, and Valerie Hendrix.

"Scalable analysis of network measurements with Hadoop

and Pig." Network Operations and Management Symposium

(NOMS), 2012 IEEE. IEEE, 2012.

[8] Gates, Alan F., et al. "Building a high-level dataflow system

on top of Map-Reduce: the Pig experience." Proceedings of

the VLDB Endowment 2.2 (2009): 1414-1425.

[9] Adnan, Muhammad, et al. "Minimizing big data problems

using cloud computing based on Hadoop architecture."

High-capacity Optical Networks and Emerging/Enabling

Technologies (HONET), 2014 11th Annual. IEEE, 2014.

[10] Shang, Weiyi, Bram Adams, and Ahmed E. Hassan. "Using

Pig as a data preparation language for large-scale mining

software repositories studies: An experience report."

Journal of Systems and Software 85.10 (2012): 2195-2204.

[11] Shvachko, Konstantin, et al. "The hadoop distributed file

system." Mass storage systems and technologies (MSST),

2010 IEEE 26th symposium on. IEEE, 2010.

[12] Olston, Christopher, et al. "Pig latin: a not-so-foreign

language for data processing." Proceedings of the 2008

ACM SIGMOD international conference on Management of

data. ACM, 2008.

[13] Shvachko, Konstantin, et al. "The hadoop distributed file

system." Mass storage systems and technologies (MSST),

2010 IEEE 26th symposium on. IEEE, 2010.

[14] Wang, Yaoguang, et al. "Improving MapReduce

performance with partial speculative execution." Journal of

Grid Computing 13.4 (2015): 587-604.

[15] Agarwal, Shafali, and Zeba Khanam. "Map Reduce: A

Survey Paper on Recent Expansion." International Journal

of Advanced Computer Science and Applications 6.8 (2015):

209-215.

[16] Olshannikova, Ekaterina, et al. "Conceptualizing Big Social

Data." Journal of Big Data 4.1 (2017): 3.

[17] Tom White foreword by Doug Cutting; ―Hadoop: The

Definitive Guide‖; ISBN: 978-1-449-38973-4 [SB]

1285179414.

[18] Bhardwaj, Vibha, Rahul Johari, and Priti Bhardwaj. "Query

execution evaluation in wireless network using MyHadoop."

Reliability, Infocom Technologies and Optimization

(ICRITO)(Trends and Future Directions), 2015 4th

International Conference on. IEEE, 2015.

[19] Tanimura, Yusuke, et al. "Extensions to the Pig data

processing platform for scalable RDF data processing using

Hadoop." Data Engineering Workshops (ICDEW), 2010

IEEE 26th International Conference on. IEEE, 2010.

[20] Arushi Jaina, Vishal Bhatnagara Ambedkar” Crime Data

Analysis Using Pig with Hadoop”, International

Conference on Information Security &Privacy (ICISP2015),

11-12 December 2015

[21] Prasad, PS Durga, T. Vivekanandan, and A. Srinivasan. "A

Methodology for WebLog Data analysis using

HadoopMapReduce and PIG." i-manager's Journal on

Cloud Computing 3.1 (2015): 13.

[22] Loebman, Sarah, et al. "Analyzing massive astrophysical

datasets: Can Pig/Hadoop or a relational DBMS help?."

Cluster Computing and Workshops, 2009. CLUSTER'09.

IEEE International Conference on. IEEE, 2009.

[23] www.wikepedia.org 12/04/2017 at 8:30 pm

