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Abstract

This paper deals with the problem of passivity analysis for a class of stochastic neural networks
(SNNs) with leakage, discrete and distributed delays. By constructing a suitable Lyapunov-
Krasovskii functionals and linear matrix inequality (LMI) approach, which is combined with free-
weighting matrix method and stochastic analysis technique. We obtain sufficient delay-dependent
criteria for the passivity of the addressed neural networks are established in terms of LMIs, which
can be verified easily by MATLAB LMI Control toolbox. In addition, few numerical examples are
given to show the effectiveness and less conservatism of the approaches proposed in this paper.

Keywords: Stochastic neural networks; Passivity; Leakage delay; Distributed delay; Linear matrix
inequalities.

1 Introduction

It is well known that passivity is a property of many physical systems which may be generally defined
as energy dissipation and transformation. Therefore, it is related to the property of stability in an
input-output sense, that is we say that the system is stable if bounded “input energy” supplied to the
system, yields bounded “output energy”. This is in contrast to Lyapunov stability, which concerns the
internal stability of a system. Passivity is a widely adopted tool for analyzing the stability of dynamical
systems and is used in several domains of engineering sciences, such as in the analysis of electrical
circuits, mechanical systems, chemical processes, electromechanical systems, control over networks,
hybrid systems and etc. In recent years, the stability of delayed stochastic neural networks has also
received much attention to reducing the time delays in both theoretical and practical applications.
Since time delay is frequently encountered in stochastic neural networks, and it is often a source of
instability and oscillation in a system. Therefore, considerable effort has been devoted to analyzing
the stability of neural networks with time delays.

In general, the stability criteria for delayed stochastic neural networks can be classified into two
categories: namely, delay-dependent and delay-independent conditions. Since, it is well known that
the delay-dependent (see [1, 2]) criteria gives the less conservative comparing with delay-independent
(see [3, 4]) criteria, specifically when the time delay is small, because of this physical reason much
attention has been paid for the delay-dependent type. The main idea of passivity is that the passive
properties of a system can keep the system internally stable [24]. In [5, 6], delay-dependent passivity
conditions were obtained for a class of uncertain continuous-time neural networks with discrete delay
type of problems was discussed. Wu et al. [7] developed a robust dissipativity analysis of neural
networks with time varying delay with the presence of randomly occurring uncertainties. Recently, a
complete delay-decomposition approach was employed to study the passivity of neural networks with
time-varying delays in [8]. Recently, by implementing a new improved integral inequality techniques
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to study the neural network problems with time delays, and proposed technique were successfully
applied to a benchmark problem which was investigated by Manivannan et al. (see [9]–[14]).

Similarly, on the other hand SNNs usually have a spatial extent, there is a distribution of propaga-
tion delays over a period of time. In these circumstances the signal propagation is not instantaneous
and cannot be modeled with discrete delays. Therefore, it is necessary to introduce continuously
distributed delays over a certain duration of time (see [30, 15]). In addition, uncertain stochastic
neural networks with discrete and distributed delays have been investigated, and significant result
has been reported in [31]. For neural networks, both discrete and distributed delays, the problem of
passivity analysis was addressed in [16, 17, 18]. In [32, 33, 34, 35], the authors considered stochastic
perturbations on the passivity of stochastic neural networks with time delays. Recently, Song et al.
[38] addressed some sufficient conditions for obtaining the passivity of uncertain neural networks with
leakage delay and time varying delay. Wu et al. investigated the problem of exponential passivity of
neural networks with time-varying delays in [28]. Raja et al. [29], investigated the problem of pas-
sivity analysis for a class of discrete-time stochastic BAM neural networks with time-varying delays.
Recently, Li et al.[23] discussed the delay-dependent stability analysis for a class of dynamical systems
with leakage delay and nonlinear perturbations.

Interestingly, speaking that in real nervous systems, the time delay in the stabilizing negative
feedback terms has a tendency to destabilize a system (This kind of delays is known as leakage delays
or “forgetting” delays). Hence, it is a significant importance to consider the leakage delay effects on
dynamics of SNNs. Moreover, neural networks with time delay in the leakage term also have great
impact on the dynamics of stochastic neural networks because time delay in the stabilizing negative
feedback term has a tendency to destabilize a system (see [19, 20, 21, 22, 23]). However, most of the
results are based on the assumption that the time-varying delays is differentiable, which greatly reduce
the applied range of those results in practice. More recently, improved the issue and established some
LMIs conditions to estimate the neuron state of mixed delayed neural networks in which the time-
varying delays are non-differentiable. Unfortunately, little progress has been made towards solving
the problem of analysis and synthesis for a passivity of SNNs with both discrete and distributed time-
varying delay while the presence of leakage term have not been fully investigated yet, while research
in this area it is clearly very important from both theoretical and practical point of view. Therefore,
so far it is necessary to further investigate the problem of passivity for a class of SNNs with discrete
and distributed time delays with presence of leakage delay.

Motivated by the above discussions, the main objective of this paper is to study the passivity
analysis for a class of SNNs with leakage, discrete and distributed delays. We introduce a new
Lyapunov-Krasovskii functional by taking the information about integral terms in leakage delay and
derivative of variables into account and moreover, the leakage delay occurs in both single and dou-
ble integral terms in order to derive the desirable results. All the derived conditions obtained here
are expressed in terms of LMIs whose feasibility can be easily checked by using numerically efficient
MATLAB LMI Control toolbox. Finally, few numerical examples are given to show the effectiveness
and advantage of the present results.

Notations: The notations are quite standard. Throughout this paper, Rn and Rn×n denote,
respectively, the n-dimensional Euclidean space and the set of all n × n real matrices. ‖ . ‖ refers to
the Euclidean vector norm. AT represents the transpose of matrix A and the asterisk “∗” in a matrix
is used to represent the term which is induced by symmetry. I is the identity matrix with compatible
dimension. X > Y means that X and Y are symmetric matrices, and that X − Y is positive definite.
Let (Ω,F, {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying the usual
conditions (i.e. it is right continuous and F0 contains all P-null sets). E{·} stands for the mathematical
expectation operator with respect to the given probability measure P. Denote by L2

F0
([−τ, 0],Rn)

the family of all F0-measurable C([−τ, 0],Rn)-valued random variables Ψ = {Ψ(s) : s ∈ [−τ, 0]} such
that sups∈[−τ,0]E{| Ψ(s) |} <∞. Matrices, if not explicitly specified, are assumed to have compatible
dimensions.
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2 Problem formulation and preliminaries

In this section, we consider the problem of stochastic neural networks with leakage, discrete and
distributed delays can be written as:

dx(t) =

[
− Cx(t− ρ) +Af(x(t)) +Bf(x(t− τ(t))) +D

∫ t

t−d(t)

f(x(s))ds+ u(t)

]
dt

+σ(t, x(t), x(t− τ(t)), x(t− d(t)))dω(t)

x(s) = ϕ(s), ∀ s ∈ [−max(ρ, τ, d), 0], (1)

where x(t) =
(
x1(t), x2(t), . . . , xn(t)

)T ∈ Rn is the state vector of the network at time t, n corresponds
to the number of neurons; C is a positive diagonal matrix; A = (aij)n×n, B = (bij)n×n and D =
(dij)n×n are the interconnection weight matrices; σ ∈ Rn×q is the diffusive coefficient vector and ω(t) =(
ω1(t), ω2(t), . . . , ωq(t)

)T
is a q− dimensional Brownian motion defined on a complete probability space

(Ω,F, {Ft}t≥0,P) with a filtration {Ft}t≥0 satisfying the usual conditions (i.e. it is right continuous

and F0 contains all P-null sets); f(x(t)) =
(
f1(x1(t)), f2(x2(t)), . . . , fn(xn(t))

)T
denotes the neuron

activation at time t; u(t) =
(
u1(t), u2(t), . . . , un(t)

)T ∈ Rn is a varying external input vector; ρ >
0 is the leakage delay term, τ(t) > 0 and d(t) > 0 denotes the discrete and distributed delays
and is assumed to satisfying 0 ≤ τ(t) ≤ τ and 0 ≤ d(t) ≤ d respectively, where τ and d is the
constant. Throughout this paper, the neuron activation functions are assumed to satisfying the
following assumption:
(H1). For any j ∈ {1, 2, . . . , n} , fj(0) = 0 and their exist constants F−j and F+

j such that

F−j ≤
fj(α1)− fj(α2)

α1 − α2
≤ F+

j ,

for all α1 6= α2.

Remark 2.1 The above assumption on the neuron activation function is more general than [5, 6, 17,
28, 34]. Since F−j and F+

j (j=1,2,. . . ,n) may be positive, zero or negative, that is to say, the activation
function under assumption (H1) may be non-monotonic, non-differentiable and unbounded. Hence,
assumption (H1) in this paper is weaker than the assumption in [5, 6, 17, 28, 34]. Therefore, the
passivity condition adopted in this paper is less conservative than [5, 6, 17, 28, 34].

(H2). There exist constant matrices R1, R2 and R3 of appropriate dimensions such that the following
inequality

tr
(
σT (t, u, v, w)σ(t, u, v, w)

)
≤‖ R1u ‖2 + ‖ R2v ‖2 + ‖ R3w ‖2

holds for all (t, u, v, w) ∈ R× Rn × Rn × Rn.

Definition 2.1 (Song et al. [26]). System (1) is called globally passive in the sense of expectation,
if there exists a scalar γ > 0 such that

2E
{∫ tp

0

fT (x(s))u(s)ds

}
≥ −E

{
γ

∫ tp

0

uT (s)u(s)ds

}
,

for all tp ≥ 0 and for all x(t, 0).
To prove our main results, it is necessary to introduce the following lemmas.

Lemma 2.1 (Samidurai et al. [30]). For any constant matrix W ∈ Rm×m, W > 0, scalar 0 <
h(t) < h, vector function ω :

[
0, h
]
→ Rm such that the integrations concerned are well defined, then

−
(∫ h(t)

0

w(s)ds

)T
W

(∫ h(t)

0

w(s)ds

)
≤ −h(t)

(∫ h(t)

0

wT (s)Ww(s)ds

)
.
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Lemma 2.2 (Zhao et al. [25]). Let a, b ∈ Rn, P be a positive definite matrix, then

2aT b ≤ aTP−1a+ bTPb.

Lemma 2.3 (Raja et al. [36]). Given constant matrices P , Q and R where PT = P , QT = Q, then[
P R
∗ −Q

]
< 0,

is equivalent to the following conditions Q > 0 and P +RQ−1RT < 0.

3 Main results

In this section, we will perform to analyze the passivity of stochastic neural networks (1). Based
on Lyapunov-Krasovskii functional stability theorem and stochastic analysis approach, which shows
that the system (1) is stable in the mean square if the linear matrix inequality (LMI) is feasible. For
presentation convenience, in the following, we denote

F1 = diag(F−1 F
+
1 , F

−
2 F

+
2 , . . . , F

−
n F

+
n ), F2 = diag

(
F−

1 +F+
1

2 ,
F−

2 +F+
2

2 , . . . ,
F−

n +F+
n

2

)
.

Theorem 3.1 Consider the stochastic neural networks (1) satisfies the assumption (H1) and (H2),
model (1) is passive in the sense of Definition 2.1, For a given scalar τ , ρ and d, if there exist
symmetric positive definite matrices Pi(i = 1, 2, . . . , 9), positive diagonal matrices U and V , matrices
Qi(i = 1, 2, . . . , 6) and positive constants γ > 0, λi > 0 (i = 1, 2, 3) such that the following LMIs hold:

P1 < λ1I, (2)

P3 < λ2I, (3)

P8 < λ3I, (4)

Ω =

[
Π1

11 Π1
12

∗ Π1
22

]
, (5)

where

Π
1
11 =



Π11 Π12 Π13 0 Π15 0 Π17 Π18 Π19 Π111
Π112

Π113

∗ Π22 0 0 0 0 −CQT
1 0 0 0 0 0

∗ ∗ Π33 Q4 0 0 0 0 F2V 0 0 0
∗ ∗ ∗ Π44 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Π55 Q6 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 Q1A Q1B 0 Q1D Q1

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0 −ATP1C 0 −I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99 −BTP1C 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π1010

−CP1D −CP1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π1111
0

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π1212



< 0,

Π
1
12 =



Q3 Q3 Q5 Q5 0 0 0 0
∗ 0 0 0 0 0 0 0
∗ ∗ 0 0 Q4 Q4 0 0
∗ ∗ ∗ 0 0 0 0 0
∗ ∗ ∗ ∗ 0 0 Q6 Q6

∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ 0


,

Π1
22 = diag

(
− 1

τ
P4,−P3,−

1

d
P9,−P8,−

1

τ
P4,−P3,−

1

d
P9,−P8

)
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in which

Π11 = −P1C − CP1 + (λ1 + τλ2 + dλ3)RT
1 R1 + P2 + ρ2P3 + P6 + d2P7 −Q3 −QT

3 −Q5 −QT
5 − F1U + P5,

Π12 = −Q2C, Π13 = Q3, Π15 = Q5, Π17 = −Q2, Π18 = P1A+Q2A+ F2U, Π19 = P1B +Q2B,

Π111 = CP1C, Π112 = P1D, Π113 = P1 +Q2, Π22 = −P2, Π33 = (λ1 + τλ2 + dλ3)RT
2 R2 −Q4 −QT

4 − F1V,

Π44 = −P5, Π55 = (λ1 + τλ2 + dλ3)RT
3 R3 −Q6 −QT

6 , Π66 = −P6, Π77 = dP9 −Q1 −QT
1 , Π88 = −U,

Π99 = −V, Π1010 = −P3, Π1111 = −P7, Π1212 = −γI.

Proof. Let us take our dynamical system (1) like as follows,

y(t) = −Cx(t− ρ) +Af(x(t)) +Bf(x(t− τ(t))) +D

∫ t

t−d(t)

f(x(s))ds+ u(t) (6)

α(t) = σ(t, x(t), x(t− τ(t)), x(t− d(t))), (7)

then the model (1) is can be rewritten as

dx(t) = y(t)dt+ α(t)dω(t). (8)

Let us consider the following Lyapunov-Krasovskii functional candidate to be

V (xt) = V1(xt) + V2(xt) + V3(xt) + V4(xt) + V5(xt) + V6(xt) (9)

where

V1(xt) =

(
x(t)− C

∫ t

t−ρ
x(s)ds

)T
P1

(
x(t)− C

∫ t

t−ρ
x(s)ds

)
,

V2(xt) =

∫ t

t−ρ
xT (s)P2x(s)ds+ ρ

∫ 0

−ρ

∫ t

t+ξ

xT (s)P3x(s)dsdξ,

V3(xt) =

∫ 0

−τ

∫ t

t+ξ

(tr(αT (s)P3α(s)) + yT (s)P4y(s))dsdξ,

V4(xt) =

∫ t

t−τ
xT (s)P5x(s)ds,

V5(xt) =

∫ t

t−d
xT (s)P6x(s)ds+ d

∫ 0

−d

∫ t

t+ξ

xT (s)P7x(s)dsdξ,

V6(xt) =

∫ 0

−d

∫ t

t+ξ

(tr(αT (s)P8α(s)) + yT (s)P9y(s))dsdξ.

By using Ito’s differential rule, the mathematical expectation of the stochastic derivative of V1(xt)
along the trajectory of the system (1) can be found as follows:

E
{
dV1(xt)

}
= E

{
2

(
x(t)− C

∫ t

t−ρ
x(s)ds

)T
P1

(
− Cx(t) +Af(x(t)) +Bf(x(t− τ(t)))

+D

∫ t

t−d(t)

f(x(s))ds+ u(t)

)
+tr

(
σT
(
x(t), x(t− τ(t)), x(t− d(t))

)
P1σ

(
x(t), x(t− τ(t)), x(t− d(t)))

)]
dt

}
.(10)

In above equation using assumption (H2) then can write the following inequality,

tr

(
σT
(
x(t), x(t− τ(t)), x(t− d(t))

)
P1σ

(
x(t), x(t− τ(t)), x(t− d(t)))

)
≤ λ1

[
xT (t)RT1 R1x(t) + xT (t− τ(t))RT2 R2x(t− τ(t)) + xT (t− d(t))RT3 R3x(t− d(t))

]
. (11)
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Make use of (11) in (10), we get

≤
{
xT (t)

(
− P1C − CP1 + λ1R

T
1 R1

)
x(t) + 2xT (t)P1Af(x(t)) + 2xT (t)P1Bf(x(t− τ(t)))

+2xT (t)P1u(t) + 2xT (t)P1D

∫ t

t−d(t)

f(x(s))ds+ 2

∫ t

t−ρ
xT (s)dsCP1Cx(t)

−2

∫ t

t−ρ
xT (s)dsCP1Af(x(t))− 2

∫ t

t−ρ
xT (s)dsCP1Bf(x(t− τ(t)))

−2

∫ t

t−ρ
xT (s)dsCP1D

∫ t

t−d(t)

f(x(s))ds− 2

∫ t

t−ρ
xT (s)dsCP1u(t)

+xT (t− τ(t))λ1R
T
2 R2x(t− τ(t)) + xT (t− d(t))λ1R

T
3 R3x(t− d(t))

]
dt

}
. (12)

Computing the derivative of V2(xt), V3(xt), V4(xt), V5(xt) and V6(xt), and using Lemma 2.1 and
inequality (12), we get the following

dV2(xt) =

[
xT (t)P2x(t)− xT (t− ρ)P2x(t− ρ) + ρ2xT (t)P3x(t)− ρ

∫ t

t−ρ
xT (s)P3x(s)ds

]
dt

≤
[
xT (t)

(
P2 + ρ2P3

)
x(t)− xT (t− ρ)P2x(t− ρ)−

(∫ t

t−ρ
x(s)ds

)T
P3

(∫ t

t−ρ
x(s)ds

)]
dt (13)

dV3(xt) =

[
τtr
(
αT (t)P3α(t)

)
−
∫ t

t−τ
tr
(
αT (s)P3α(s)

)
ds+ τyT (t)P4y(t)−

∫ t

t−τ
yT (s)P4y(s)ds

]
dt

≤
[
xT (t)τλ2R

T
1 R1x(t) + xT (t− τ(t))τλ2R

T
2 R2x(t− τ(t)) + xT (t− d(t))τλ2R

T
3 R3x(t− d(t))

+yT (t)τP4y(t)−
∫ t

t−τ
tr
(
αT (s)P3α(s)

)
ds−

∫ t

t−τ
yT (s)P4y(s)ds

]
dt (14)

dV4(xt) =
[
xT (t)P5x(t)− xT (t− τ)P5x(t− τ)

]
dt (15)

dV5(xt) =

[
xT (t)P6x(t)− xT (t− d)P6x(t− d) + d2xT (t)P7x(t)− d

∫ t

t−d
xT (s)P7x(s)ds

]
dt

≤
[
xT (t)

(
P6 + d2P7

)
x(t)− xT (t− d)P6x(t− d)−

(∫ t

t−d(t)

x(s)ds

)T
P7

(∫ t

t−d(t)

x(s)ds

)]
dt (16)

dV6(xt) =

[
d tr

(
αT (t)P8α(t)

)
+ d yT (t)P9y(t)−

∫ t

t−d
tr
(
αT (s)P8α(s)

)
ds−

∫ t

t−d
yT (s)P9y(s)ds

]
dt

≤
[
xT (t)dλ3R

T
1 R1x(t) + xT (t− τ(t))dλ3R

T
2 R2x(t− τ(t)) + xT (t− d(t))dRT3 R3x(t− d(t))

+yT (t)dP9y(t)−
∫ t

t−d
tr
(
αT (s)P8α(s)

)
ds−

∫ t

t−d
yT (s)P9y(s)ds

]
dt. (17)
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From the definition of y(t), we have

0 = 2
(
yT (t)Q1 + xT (t)Q2

)[
− y(t)− Cx(t− ρ) +Af(x(t)) +Bf(x(t− τ(t)))

+D

∫ t

t−d(t)

f(x(s))ds+ u(t)

]

0 = yT (t)
(
−Q1 −QT1

)
y(t)− 2yT (t)Q1Cx(t− ρ) + 2yT (t)Q1Af(x(t))

+2yT (t)Q1Bf(x(t− τ(t))) + 2yT (t)Q1D

∫ t

t−d(t)

f(x(s))ds+ 2yT (t)Q1u(t)

−2xT (t)Q2y(t)− 2xT (t)Q2Cx(t− ρ) + 2xT (t)Q2Af(x(t))

+2xT (t)Q2Bf(x(t− τ(t))) + 2xT (t)Q2D

∫ t

t−d(t)

f(x(s))ds+ 2xT (t)Q2u(t) (18)

Integrating both sides of (8) from taking limits t − τ(t) to t and t − d(t) to t following respectively,
we have

x(t)− x(t− τ(t))−
∫ t

t−τ(t)

y(s)ds−
∫ t

t−τ(t)

α(s)dω(s) = 0,

and

x(t)− x(t− d(t))−
∫ t

t−d(t)

y(s)ds−
∫ t

t−d(t)

α(s)dω(s) = 0,

By using Lemma 2.2, and noting that 0 ≤ τ(t) ≤ τ and 0 ≤ d(t) ≤ d respectively, we get the
following

0 = −2xT (t)Q3

[
x(t)− x(t− τ(t))−

∫ t

t−τ(t)

y(s)ds−
∫ t

t−τ(t)

α(s)dω(s)

]
0 ≤ xT (t)

(
−Q3 −QT3 + τQ3P

−1
4 QT3 +Q3P

−1
3 QT3

)
x(t) + 2xT (t)Q3x(t− τ(t))

+

∫ t

t−τ(t)

yT (s)P4y(s)ds+

(∫ t

t−τ(t)

α(s)dω(s)

)T
P3

(∫ t

t−τ(t)

α(s)dω(s)

)
, (19)

and

0 = −2xT (t)Q5

[
x(t)− x(t− d(t))−

∫ t

t−d(t)

y(s)ds−
∫ t

t−d(t)

α(s)dω(s)

]
0 ≤ xT (t)

(
−Q5 −QT5 + dQ5P

−1
9 QT5 +Q5P

−1
8 QT5

)
x(t) + 2xT (t)Q5x(t− d(t))

+

∫ t

t−d(t)

yT (s)P9y(s)ds+

(∫ t

t−d(t)

α(s)dω(s)

)T
P8

(∫ t

t−d(t)

α(s)dω(s)

)
. (20)

Similarly, integrating both sides of (8) taking limits from t − τ to t − τ(t) and t − d to t − d(t)
respectively, we get

0 = −2xT (t− τ(t))Q4

[
x(t− τ(t))− x(t− τ)−

∫ t−τ(t)

t−τ
y(s)ds−

∫ t−τ(t)

t−τ
α(s)dω(s)

]
0 ≤ xT (t− τ(t))

(
−Q4 −QT4 + τQ4P

−1
4 QT4 +Q4P

−1
3 QT4

)
x(t− τ(t)) + 2xT (t− τ(t))Q4x(t− τ)

+

∫ t−τ(t)

t−τ
yT (s)P4y(s)ds+

(∫ t−τ(t)

t−τ
α(s)dω(s)

)T
P3

(∫ t−τ(t)

t−τ
α(s)dω(s)

)
, (21)
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and

0 = −2xT (t− d(t))Q6

[
− x(t− d(t)) + x(t− d) +

∫ t−d(t)

t−d
y(s)ds−

∫ t−d(t)

t−d
α(s)dω(s)

]
0 ≤ xT (t− d(t))

(
−Q6 −QT6 + dQ6P

−1
9 QT6 +Q6P

−1
8 QT6

)
x(t− d(t)) + 2xT (t− d(t))Q6x(t− d)

+

∫ t−d(t)

t−d
yT (s)P9y(s)ds+

(∫ t−d(t)

t−d
α(s)dω(s)

)T
P8

(∫ t−d(t)

t−d
α(s)dω(s)

)
. (22)

From the proof of [37], we can get that

E
{(∫ t

t−τ(t)

α(s)dω(s)

)T
P3

(∫ t

t−τ(t)

α(s)dω(s)

)}
= E

{∫ t

t−τ(t)

tr
(
αT (s)P3α(s)

)
ds

}
, (23)

E
{(∫ t−τ(t)

t−τ
α(s)dω(s)

)T
P3

(∫ t−τ(t)

t−τ
α(s)dω(s)

)}
= E

{∫ t−τ(t)

t−τ
tr
(
αT (s)P3α(s)

)
ds

}
, (24)

E
{(∫ t

t−d(t)

α(s)dω(s)

)T
P8

(∫ t

t−d(t)

α(s)dω(s)

)}
= E

{∫ t

t−d(t)

tr
(
αT (s)P8α(s)

)
ds

}
, (25)

E
{(∫ t−d(t)

t−d
α(s)dω(s)

)T
P8

(∫ t−d(t)

t−d
α(s)dω(s)

)}
= E

{∫ t−d(t)

t−d
tr
(
αT (s)P8α(s)

)
ds

}
. (26)

For three positive diagonal matrices U and V , we can get from assumption (H1), we have[
x(t)

f(x(t))

]T [
F1U −F2U
−F2U U

] [
x(t)

f(x(t))

]
≤ 0, (27)

and [
x(t− τ(t))

f(x(t− τ(t)))

]T [
F1V −F2V
−F2V V

] [
x(t− τ(t))

f(x(t− τ(t)))

]
≤ 0. (28)

Combining from (10)–(28), we get

E
{
dV (t)− 2fT (x(t))u(t)dt− γuT (t)u(t)dt

}
≤ E

{
ζT (t) Γ ζ(t)dt

}
, (29)

where

ζ(t) =

{
xT (t) xT (t− ρ) xT (t− τ(t)) xT (t− τ) xT (t− d(t)) xT (t− d) yT (t) fT (x(t))

fT (t− τ(t))

∫ t

t−ρ
xT (s)ds

∫ t

t−d(t)

fT (x(s))ds uT (t)

}
,

and

Γ =



Γ11 Γ12 Γ13 0 Γ15 0 Γ17 Γ18 Γ19 Γ111 Γ112 Γ113

∗ Γ22 0 0 0 0 −CQT
1 0 0 0 0 0

∗ ∗ Γ33 Q4 0 0 0 0 F2V 0 0 0
∗ ∗ ∗ Γ44 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Γ55 Q6 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Γ66 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Γ77 Q1A Q1B 0 Q1D Q1

∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ88 0 −ATP1C 0 −I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ99 −BTP1C 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ1010 −CP1D −CP1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ1111 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Γ1212



< 0

8

lalitha
Text Box
International Journal of Engineering Trends and Technology (IJETT)  - Volume-46 Number-2 -April 2017

lalitha
Text Box
ISSN: 2231-5381                    http://www.ijettjournal.org                                             Page 99



Γ11 = −P1C − CP1 + (λ1 + τλ2 + dλ3)RT1 R1 + P2 + ρ2P3 + P6 + d2P7 −Q3 −QT3 +

τQ3P
−1
4 QT3 +Q3P

−1
3 QT3 −Q5 −QT5 + dQ5P

−1
9 QT5 +Q5P

−1
8 Q5 − F1U + P5,

Γ12 = −Q2C, Γ13 = Q3, Γ15 = Q5, Γ17 = −Q2, Γ18 = P1A+Q2A+ F2U,

Γ19 = P1B +Q2B, Γ111
= CP1C, Γ112

= P1D, Γ113
= P1 +Q2, Γ22 = −P2,

Γ33 = (λ1 + τλ2 + dλ3)RT2 R2 −Q4 −QT4 + τQ4P
−1
4 QT4 +Q4P

−1
3 QT4 − F1V, Γ44 = −P5,

Γ55 = (λ1 + τλ2 + dλ3)RT3 R3 −Q6 −QT6 + dQ6P
−1
9 QT6 +Q6P

−1
8 QT6 , Γ66 = −P6,

Γ77 = dP9 −Q1 −QT1 , Γ88 = −U, Γ99 = −V, Γ1010
= −P3, Γ1111

= −P7, Γ1212
= −γI.

Therefore, it is easy to verify the equivalence of Γ < 0 and Ω < 0 by using Lemma 2.3. Thus, one can
derive from (8) and (29) we get

E
{
dV (t)

}
dt

− E
{

2fT (x(t))u(t) + γuT (t)u(t)
}
≤ 0. (30)

It follows from (30) the definition V (t, x(t)), we can conclude that

2E
{∫ tp

0

fT (x(s))u(s)ds

}
≥ −E

{
γ

∫ tp

0

uT (s)u(s)ds

}
. (31)

From Definition 2.1, we know that the stochastic neural networks (1) is globally passive in the sense
of Definition 2.1. This completes the proof of Theorem 3.1. �

It is worth pointing out that, following the similar fashion of the proof Theorem 3.1. It is not diffi-
cult to prove the following Corollaries can be obtained. Therefore the proof is omitted for lack of space.

If there is no stochastic effect means, then the neural networks (1) becomes as follows:

dx(t) =
[
− Cx(t− ρ) +Af(x(t)) +Bf(x(t− τ(t))) +D

∫ t

t−d(t)

f(x(s))ds+ u(t)
]
dt. (32)

Corollary 3.1 Consider the neural networks (32) which satisfies the assumption (H1), model (32)
is passive in the sense of Definition 2.1, for a given scalars τ , η and d, if there exist symmetric positive
definite matrices Pi(i = 1, 2, . . . , 9), positive diagonal matrices U and V , matrices Qi(i = 1, 2, . . . , 6)
and a positive constant γ > 0, such that the following LMI holds:

Π =

[
Π1

11 Π1
12

∗ Π1
22

]
< 0, (33)

where

Π
1
11 =



Φ11 Π12 Π13 0 Π15 0 Π17 Π18 Π19 Π111
Π112

Π113

∗ Π22 0 0 0 0 −CQT
1 0 0 0 0 0

∗ ∗ Φ33 Q4 0 0 0 0 F2 0 0 0
∗ ∗ ∗ Π44 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Φ55 Q6 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 Q1A Q1B 0 Q1D Q1

∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88 0 −ATP1C 0 −I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π99 −BTP1C 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π1010

−CP1D −CP1

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π1111 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Π1212
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in which

Φ11 = −P1C − CP1 + P2 + ρ2P3 + P6 + d2P7 −Q3 −QT3 −Q5 −QT5 − F1U + P5,

Φ33 = −Q4 −QT4 − F1V, Φ55 = −Q6 −QT6 ,

and Π12,Π13,Π15,Π17,Π18,Π19,Π111
,Π112

,Π113
,Π22,Π44,Π66,Π77,Π88,Π99,Π1010

,Π1111
,Π1212

,Π1
12,Π

1
22

are defined in Theorem 3.1.�.

Incase there is no effect of leakage delay means, then the stochastic neural networks (1) becomes
as follows:

dx(t) =

[
− Cx(t) +Af(x(t)) +Bf(x(t− τ(t))) +D

∫ t

t−d(t)

f(x(s))ds+ u(t)

]
dt

+σ
(
t, x(t), x(t− τ(t)), x(t− d(t))

)
dω(t). (34)

Corollary 3.2 Consider the stochastic neural networks (34) satisfies the assumption (H1) and
(H2), model (34) is passive in the sense of Definition 2.1, For a given scalars τ and d, if there exist
symmetric positive definite matrices P1, P3, P4, P5, P6, P7, P8 and P9, positive diagonal matrices U
and V , matrices Qi(i = 1, 2, . . . , 6) and positive constants γ > 0, λi > 0 (i = 1, 2, 3) such that the
following LMIs hold:

P1 < λ1I, (35)

P3 < λ2I, (36)

P8 < λ3I, (37)

Θ =

[
Θ1

11 Π1
12

∗ Π1
22

]
, (38)

where

Θ
1
11 =



Θ11 Θ12 0 Θ14 0 Θ16 Θ17 Θ18 Θ110
Θ111

∗ Θ22 Q4 0 0 0 0 F2V 0 0
∗ ∗ Θ33 0 0 0 0 0 0 0
∗ ∗ ∗ Θ44 Q6 0 0 0 0 0
∗ ∗ ∗ ∗ Θ55 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ66 Q1A Q1B Q1D Q1

∗ ∗ ∗ ∗ ∗ ∗ Θ77 0 0 −I
∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ88 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ99

0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ1010


< 0,

in which

Θ11 = −P1C − CP1 + (λ1 + τλ2 + dλ3)RT1 R1 + P6 + d2P7 −Q3 −QT3 −Q5 −QT5 − F1U + P5,

Θ12 = Q3, Θ14 = Q5, Θ16 = −Q2, Θ17 = P1A+Q2A+ F2U, Θ18 = P1B +Q2B, Θ110
= P1D,

Θ111
= P1 +Q2, Θ22 = (λ1 + τλ2 + dλ3)RT2 R2 −Q4 −QT4 − F1V, Θ33 = −P5,

Θ44 = (λ1 + τλ2 + dλ3)RT3 R3 −Q6 −QT6 , Θ55 = −P6, Θ66 = dP9 −Q1 −QT1 ,
Π77 = −U, Θ88 = −V, Θ99 = −P7, Θ1010 = −γI,

and Π1
12, Π1

22 are defined in Theorem 3.1.�.

Remark 3.1 It should be noted that, if we let there is no distributed delay, leakage delay and stochas-
tic effect means, then the dynamical system (1) is reduced to in [5, 6]. Hence, the following Corollary
3.3 gives the new passivity criteria LMI technique, to reduce the conservatism when compared to those
results in [5, 6]. Table 1 provides, the merits and improvements of our method.

dx(t) =
[
− Cx(t) +Af(x(t)) +Bf(x(t− τ(t))) + u(t)

]
dt. (39)
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Corollary 3.3 Consider the neural networks (39) satisfying the assumption (H1), model (39) is
passive in the sense of Definition 2.1, For a given scalar τ , if there exist symmetric positive definite
matrices P1, P3, P4 and P5, positive diagonal matrices U and V , matrices Qi(i = 1, 2, . . . , 4) and
positive constant γ > 0, such that the following LMI holds: where

Ξ =



Ξ11 Ξ12 0 Ξ14 Ξ15 Ξ16 Ξ17 Q3 Q3 0 0
∗ Ξ22 Q4 0 0 F2V 0 0 0 Q4 Q4

∗ ∗ Ξ33 0 0 0 0 0 0 0 0
∗ ∗ ∗ Ξ44 Q1A Q1B Q1 0 0 0 0
∗ ∗ ∗ ∗ Ξ55 0 −I 0 0 0 0
∗ ∗ ∗ ∗ ∗ Ξ66 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Ξ77 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ88 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ99 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ1010

0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ξ1111


< 0, (40)

in which

Ξ11 = −P1C − CP1 −Q3 −QT3 − F1U + P5, Ξ12 = Q3, Ξ14 = −Q2, Ξ15 = P1A+Q2A+ F2U,

Ξ16 = P1B +Q2B, Ξ17 = P1 +Q2, Ξ22 = −Q4 −QT4 − F1V, Ξ33 = −P5, Ξ44 = −Q1 −QT1 ,

Π55 = −U, Ξ66 = −V, Ξ77 = −γI, Ξ88 = −1

τ
P4, Ξ99 = −P3, Ξ1010 = −1

τ
P4, Ξ1111 = −P3.�.

Incase there is no distributed delay and stochastic effect means, then the stochastic neural networks
(1) becomes as follows:

dx(t) =
[
− Cx(t− ρ) +Af(x(t)) +Bf(x(t− τ(t))) + u(t)

]
dt. (41)

Corollary 3.4 Consider the neural networks (41) which satisfies the assumption (H1), model (41)
is passive in the sense of Definition 2.1, for a given scalars τ and η, if there exist symmetric positive
definite matrices Pi(i = 1, 2, . . . , 5), positive diagonal matrices U and V , matrices Qi(i = 1, 2, . . . , 4)
and a positive constant γ > 0, such that the following LMI holds:

Ψ
1
11 =



Ψ11 Ψ12 Ψ13 0 Ψ15 Ψ16 Ψ17 Ψ18 Ψ19 Q3 Q3 0 0

∗ Ψ22 0 0 −CQT
1 0 0 0 0 0 0 0 0

∗ ∗ Ψ33 Q4 0 0 F2V 0 0 0 0 Q4 Q4

∗ ∗ ∗ Ψ44 0 0 0 0 0 0 0 0 0
∗ ∗ ∗ ∗ Ψ55 Q1A Q1B 0 Q1 0 0 0 0

∗ ∗ ∗ ∗ ∗ Ψ66 0 −ATP1C −I 0 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ Ψ77 −BTP1C 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ88 −CP1 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ99 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ1010

0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ1111

0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ1212 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Ψ1313



(42)

in which

Ψ11 = −P1C − CP1 + P2 + ρ2P3 −Q3 −QT3 − F1U + P5, Ψ12 = −Q2C, Ψ13 = Q3, Ψ15 = −Q2,

Ψ16 = P1A+Q2A+ F2U, Ψ17 = P1B +Q2B, Ψ18 = CP1C, Ψ19 = P1 +Q2, Ψ22 = −P2,

Ψ33 = −Q4 −QT4 − F1V, Ψ44 = −P5, Ψ55 = −Q1 −QT1 , Ψ66 = −U, Π77 = −V, Ψ88 = −P3,

Ψ99 = −γI, Ψ1010
= −1

τ
P4, Ψ1111

= −P3, Ψ1212
= −1

τ
P4, Ψ1313

= −P3.�.

4 Numerical examples

In this section, we provide following numerical examples to demonstrate the effectiveness of our sta-
bility results.
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Example 4.1 Consider a stochastic neural networks (1) with the following parameters:

C =

[
1.5 0
0 1.3

]
, A =

[
0.5 0.2
0.4 0.3

]
, B =

[
0.4 −0.1
0.1 0.2

]
, D =

[
0.4 −0.2
0.3 0.2

]
, R1 =

[
0 0.01

0.01 −0.01

]
,

R2 =

[
−0.01 0.01

0 0.01

]
, R3 =

[
0.01 0.01
0.01 0

]
, I =

[
1 0
0 1

]
, F2 =

[
0.5 0
0 0.5

]
, F1 = 0.

The activation functions are assumed to be

fi(xi) = 0.5
(
|xi + 1| − |xi − 1|

)
, i = 1, 2.

and which satisfies the assumption (H1) with F−j = 0, F+
j = 1, j = 1, 2. when τ = 0.6, d = 0.3 and

ρ = 0.2, using MATLAB LMI control Toolbox and by solving the LMIs in Theorem 3.1 in our paper,
we find that the stochastic neural networks (1) is globally passive in the mean square, and we obtain
the following feasible solutions:

P1 =

[
7.6396 1.4157
1.4157 3.2644

]
, P2 =

[
0.6660 0.0329
0.0329 0.4889

]
, P3 =

[
20.0652 1.8128
1.8128 7.4207

]
,

P4 =

[
62.7423 11.7620
11.7620 19.2943

]
, P5 =

[
2.9133 −0.0301
−0.0301 1.1854

]
, P6 =

[
1.1761 0.4933
0.4933 0.6194

]
,

P7 =

[
14.9387 −3.7063
−3.7063 2.2667

]
, P8 =

[
6.9909 0.7905
0.7905 6.1680

]
, P9 =

[
0.5844 −0.0142
−0.0142 0.5434

]
,

Q1 =

[
0.1803 −0.0414
−0.0414 0.1537

]
, Q2 =

[
0.0545 0.0067
0.0067 0.1646

]
, Q3 =

[
0.3195 −0.2613
−0.2613 0.4392

]
,

Q4 =

[
2.4757 0.0172
0.0172 0.9970

]
, Q5 =

[
0.1314 −0.1908
−0.1908 0.2911

]
, Q6 =

[
0.6356 0.1860
0.1860 0.4103

]
,

U =

[
9.8074 0

0 6.7995

]
, V =

[
5.4499 0

0 0.3040

]
, W =

[
0.0136 0

0 0.0296

]
,

λ1 = 8.0915, λ2 = 20.3758, λ3 = 7.5881, γ = 279.2441.

Example 4.2 Consider a neural network (32) with the following parameters:

C =

[
1.5 0
0 1.3

]
, A =

[
0.5 0.2
0.4 0.3

]
, B =

[
0.4 −0.1
0.1 0.2

]
, D =

[
0.4 −0.2
0.3 0.2

]
, I =

[
1 0
0 1

]
,

F2 =

[
0.5 0
0 0.5

]
, F1 = 0.

Using Corollary 3.1, it can be easily verify that the maximum allowable upper bounds τ = 2.0, ρ = 0.4
and d = 0.6. By using the Matlab LMI Control Toolbox, we obtain the following feasible solutions:

P1 =

[
26.0739 −6.9992
−6.9992 10.2794

]
, P2 =

[
0.7916 −0.8067
−0.8067 0.9408

]
, P3 =

[
76.3084 −22.5596
−22.5596 23.7668

]
,

P4 =

[
495.3907 −8.5974
−8.5974 103.8188

]
, P5 =

[
9.3796 −2.5765
−2.5765 2.9426

]
, P6 =

[
0.4551 −0.4701
−0.4701 0.5794

]
,

P7 =

[
22.1105 −12.4555
−12.4555 9.6308

]
, P8 =

[
50.1195 −0.3370
−0.3370 50.3594

]
, P9 =

[
0.3044 −0.3556
−0.3556 0.4700

]
,

Q1 =

[
0.1904 −0.2169
−0.2169 0.2784

]
, Q2 =

[
0.1207 −0.1453
−0.1453 0.1979

]
, Q3 =

[
1.1682 −0.7936
−0.7936 0.7741

]
,

Q4 =

[
8.0318 −2.1760
−2.1760 2.5184

]
, Q5 =

[
0.1945 −0.2202
−0.2202 0.2700

]
, Q6 =

[
0.2669 −0.2946
−0.2946 0.3739

]
,

U =

[
17.8834 0

0 8.4885

]
, V =

[
11.7050 0

0 2.6811

]
, W =

[
0.0408 0

0 0.0545

]
,

γ = 759.5810.
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Table 1: The maximum allowable delay τ of Example 4.4

Methods τ

[5] Theorem 1 0.4683

[6] Corollary 1 1.3027

In this paper Corollary 3.3 3.0125

Example 4.3 Consider a stochastic neural network (34) with the following parameters:

C =

[
1.5 0
0 1.3

]
, A =

[
0.5 0.2
0.4 0.3

]
, B =

[
0.4 −0.1
0.1 0.2

]
, D =

[
0.4 −0.2
0.3 0.2

]
, R1 =

[
0 0.01

0.01 −0.01

]
,

R2 =

[
−0.01 0.01

0 0.01

]
, R3 =

[
0.01 0.01
0.01 0

]
, I =

[
1 0
0 1

]
, F2 =

[
0.5 0
0 0.5

]
, F1 = 0.

Using Corollary 3.2, it can be easily verify that the maximum allowable upper bounds τ = 0.8 and
d = 0.6. By using the Matlab LMI Control Toolbox, we obtain the following feasible solutions:

P1 =

[
6.1052 0.4388
0.4388 1.9381

]
, P3 =

[
6.4955 0.0565
0.0565 6.2335

]
, P4 =

[
217.3796 33.9971
33.9971 58.8342

]
,

P5 =

[
3.0030 −0.4035
−0.4035 1.2833

]
, P6 =

[
0.7352 0.2864
0.2864 0.3512

]
, P7 =

[
7.6039 −2.8076
−2.8076 1.7267

]
,

P8 =

[
2.8645 0.2504
0.2504 2.5842

]
, P9 =

[
0.9083 −0.2384
−0.2384 0.9267

]
, Q1 =

[
0.3880 −0.1767
−0.1767 0.4027

]
,

Q2 =

[
0.2180 0.0557
0.0557 0.1996

]
, Q3 =

[
0.1455 −0.2819
−0.2819 0.5548

]
, Q4 =

[
2.0251 −0.2195
0.2195 1.0401

]
,

Q5 =

[
0.0927 −0.1264
−0.1264 0.1754

]
, Q6 =

[
0.3855 0.0977
0.0977 0.2322

]
, U =

[
8.8242 0

0 5.1605

]
,

V =

[
4.2645 0

0 0.6083

]
, W =

[
0.0033 0

0 0.0060

]
,

λ1 = 6.1586, λ2 = 6.5171, λ3 = 3.0243, γ = 708.3960.

Example 4.4 Consider a neural network (39) with the following parameters:

C =

[
2.2 0
0 1.8

]
, A =

[
1.2 1
−0.2 0.3

]
, B =

[
0.8 0.4
−0.2 0.1

]
,

The activation functions are mentioned in Example 4.1 which satisfies the assumption (H1) with
F−j = 0, F+

j = 1, j = 1, 2. Using Corollary 3.3, we get the maximum allowable upper bound τ is
shown in Table 1 with the those results obtained in [5, 6]. Hence the system (39) is globally passive
in the sense of Definition 2.1 and also, it is clear that this method gives less conservative than those
results in [5, 6] based on the upper bound techniques. Also we obtain the following feasible solutions:

P1 =

[
22.5481 0.2351
0.2351 39.5518

]
, P3 =

[
73.5673 −0.0176
−0.0176 72.6795

]
, P4 =

[
141.1621 −0.0375
−0.0375 139.2510

]
,

P5 =

[
41.2902 0.4701
0.4701 84.0040

]
, Q1 =

[
14.1621 −0.0375
−0.0375 139.2510

]
, Q2 =

[
8.3195 0.2504
0.2504 22.8553

]
,

Q3 =

[
14.9579 0.0379
0.0379 15.9362

]
, Q4 =

[
18.5912 0.0323
0.0323 20.0852

]
, U =

[
98.7417 0

0 91.2982

]
,
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V =

[
82.3262 0

0 69.1792

]
, γ = 107.1970.

Example 4.5 Consider a neural network (41) with the following parameters:

C =

[
0.9 0
0 0.8

]
, A =

[
1.3 −1.7
−1.6 1.2

]
, B =

[
1.4 1.9
0.6 −1.2

]
.

Using Corollary 3.4, it can be verified that the maximum allowable upper bounds ρ = 1.1 and τ = 2.15
By using the Matlab LMI Control Toolbox, we obtain the following feasible solutions:

P1 =

[
48.0516 15.9019
15.9019 69.5546

]
, P2 =

[
0.4533 0.8886
0.8886 5.7652

]
, P3 =

[
35.1573 10.5252
10.5252 37.7845

]
,

P4 =

[
317.4531 12.2965
12.2965 305.5506

]
, P5 =

[
1.5512 1.4716
1.4716 9.9385

]
, Q1 =

[
0.6099 1.1581
1.1581 6.8119

]
,

Q2 =

[
0.1689 0.2993
0.2993 1.9245

]
, Q3 =

[
1.3707 1.0103
1.0103 6.5258

]
, Q4 =

[
1.4603 1.2162
1.2162 8.0489

]
,

U =

[
807.0247 0

0 781.1181

]
, V =

[
369.4984 0

0 824.5048

]
, γ = 478.9829.

5 Conclusion

In this paper, the passivity for stochastic neural networks with both discrete and distributed time-
varying delays has been investigated without assuming the differentiability of the time-varying de-
lays. By utilizing a combination of Lyapunov functionals, Ito’s differential rule, free-weighting matrix
method, inequality technique and stochastic analysis approach, several delay-dependent criteria for
checking the passivity of addressing neural networks have been established under the weaker assump-
tions of neuron activation functions and it is expressed in terms of LMIs, which can be easy to check
numerically using the effective LMI toolbox in MATLAB. A numerical example has been given to
demonstrate the effectiveness and less conservatism which gives merits of the proposed criteria.
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