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Abstract-In this paper, we are considering   the 

problem of magneto-hydrodynamic MHD squeeze 

flow of an electrically conducting fluid between two 

infinite, parallel disks are investigated. The 

analytical method called Homotopy Analysis Method 

(HAM) and Homotopy Perturbation Method (HPM) 

are used to compute an approximation for the 

solution of nonlinear differential equations 

governing on the problem. The results of the 

mentioned methods are compared with a type of 

numerical analysis as Boundary Value Problem 

method.  
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I. INTRODUCTION 

     The application of a MHD fluid in lubrication 

prevents the adverse impact of temperature on the 

fluid viscosity when the system operates under 

boundary conditions. The problem considered is of 

general interest in the theory of magneto-

hydrodynamic lubrication and other related 

applications. In particular, the results of the present 

investigation are directly applicable to the 

hydrodynamics of high temperature bearings 

lubricated with liquid metals. A number of 

theoretical and experimental investigations into 

magneto-hydrodynamic effects in lubrication have 

been reported. These include among other works of 

Hughes and Elco [1], Kuzma et al. [2] and Krieger et 

al. [3].  Most scientific problems such as two-

dimensional viscous flow between slowly expanding 

or contracting walls with weak permeability and 

other fluid mechanic problems are inherently 

nonlinear. In most cases, these problems do not 

admit analytical solution, so these equations should 

be solved using special techniques. In recent years, 

much attention has been devoted to the newly 

developed methods to construct an analytic solution 

of equation such as the method included the 

Perturbation techniques. Perturbation techniques are 

too strongly dependent upon the so-called ‘‘small 

parameters’’ [4]. Other different methods have 

introduced to solve nonlinear equations such as the 

δ-expansion method [5], Adomian’s decomposition 

method [6], Homotopy Perturbation Method (HPM) 

[7–10], Variational Iteration Method (VIM) [11–14], 

Homotopy analysis method [15-18], Optimal 

Homotopy Asymptopic Method (OHAM)[19,20] 

and optimal Homotopy Perturbation Method 

(OHPM)[21]. In this letter, analytical solutions of 

nonlinear equations arising of magneto-

hydrodynamic MHD squeeze flow of an electrically 

conducting fluid between two infinite, parallel disks 

have been studied by the two analytical methods. 

These methods called Homotopy Analysis Method 

(HAM), Homotopy Perturbation Method (HPM) do 

not have small parameters. Obtaining the analytical 

solution of the models and comparing with the 

numerical result reveal the capability, effectiveness 

and convenience of HAM and HPM. These methods 

give successive approximations of high accuracy 

solution. Kumar et al. [23]investigated a finite 

difference technique for reliable MHD steady flow 

through channels permeable boundaries.Kumaret al 

[24]  investigated MHD free convective fluctuating 

flow through a porous effect with variable 

permeability Parameter.Kumar et al. [25] 

investigated mathematical analysis  of MHD on 

laminar mixed convection of newtonian fluid 

between vertical parallel plates channel. Kumar et al. 

[26] investigated  a  Crank-Nicholson scheme to 

transient MHD free convective flow through semi-

infinite vertical porous plate with constant suction 

and temperature dependent heat source. 

II. MATHEMATICAL MODEL  

In the present investigation, consider an axi-

symmetric incompressible flow between two parallel 

infinite disks, which at time
*t , are space a distance 

 
1

* 21H at  apart and a magnetic field 
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proportional to  
1

* 2
0 1B at



  is applied 

perpendicularly to the disks [6, 22]. The upper disk 

at  
1

* 21z H at   is moving with velocity 

 
1

* 2
1

1
2

H a t


   towards the stationary lower 

disk at 0z  . The axial coordinate is denoted by 
*z  

and the radial coordinate by 
*r . With the axial and 

radial velocities denoted by 
*w  and

*u , respectively, 

we introduce the following quantities: 

 
   

*
* * 0

* * *

*
* *

*

, ,
2 1 1 1

, ,
1

Br H
u f w f B

a t a t a t

z
r r t t

H a t

 
 



  
  

  


 (1) 

The equation of continuity is satisfied and the 

momentum equations are reduced to: 

  2( ) ( ) 3 ( ) 2 ( ) ( ) ( ) 0f S f f f f M f                (2) 

Where 

*

1

1
( )

p
p t

r r





 has been used, 

2

2

H
S




  

and 

2

0B
M




  that   denotes density,   denotes 

kinetic viscosity and   denotes fluid electrical 

conductivity. The boundary conditions are given by: 

1
(0) , (0) 0, (1) , (1) 0

2
f A f f f      (3) 

 Where, A  is the constant parameter such that 

0A  corresponds to suction and 0A  to 

injection. 

 

III.  APPLICATION OF HOMOTOPY 

ANALYSIS METHOD 

 

For HAM solutions, we choose the initial guess 

and auxiliary linear operator in the following form:  

    3 2

0

3
1 2 3 ,

2
f A A A  

 
      

 

  (4) 
 

( ) ,L f f                                         (5)  

3 2

1 2 3 4

1 1
( ) 0,

6 2
L c y c y c y c        (6)  

Where ( 1,2,3,4)ic i   are constant. Let 

 1,0P denotes the embedding parameter and   

indicates non –zero auxiliary parameters.  

Zeroth –order deformation equations 

     0(1 ) ( ; ) ( ) ( ) ( ; )P L F p f p H N F p                  (7)  

1
(0; ) ; (0; ) 0, (1; ) , (1; ) 0

2
F p A F p F p F p             (8) 

 

 

2
4 3 2 2

4 3 2 2

3 2

3 2

( ; ) ( ; ) ( ; ) ( ; )
[ ( ; )] 3

( ; ) ( ; ) ( ; )
( ; )2

d F p d F p d F p d F p
N F p S

d d d d

d F p dF p d F p
F p

dd d

M

S

   


   

  


 

  



 
 

 

 
  

 

     (9) 

 

For 0p  and 1p we have 

0( ;0) ( ) ( ;1) ( )F f F f                         (10) 
 

 

When p increases from 0 to 1 then ( ; )F p  varies 

from 0 ( )f   to ( )f  . By Taylor's theorem and 

using Eq. (9), ( ; )F p can be expanded in a power 

series of p as follows: 

0

1 0

1 ( ( ; ))
( ; ) ( ) ( ) , ( )

!

m
m

m m m
m p

F p
F p f f p f

m p


   



 


  




    (11)     
 

In which  is chosen in such a way that this series is 

convergent at 1p , therefore we have in according 

to Eq. (10) that 

0

1

( ) ( ) ( ),m

m

f f f  




                 (12)  

m
th

 –order deformation equations 

 1( ) ( ) ( ) ( )m m m mL f f H R                     (13)  

(0; ) 0; (0; ) 0, (1; ) 0, (1; ) 0F p F p F p F p        (14)  

 
1

2

1 1 1 1 1

0

3 2
m

m m m m m m k k

k

R f S f f M f S f f 


     



        
            (15)  

Now we determine the convergence of the result, the 

differential equation, and the auxiliary function 

according to the solution expression. So,  let us 

assume: 

( ) 1H                                         (16)  

We have found the answer by the maple analytic 

solution device. The first deformation of the solution 

are presented below : 
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     

   

7 6

1

2 5 2 4

2 2 2 3

2 2 2

1 1 1 1
3 1 2 3 1 2

210 105 30 60

1 1 1 1 1
3 1 2 3 1 2

60 15 24 6 8

13 39 1 52 1 5 19

70 140 10 35 5 28 280

1 22 1

40 35 20

f A S S A A S A S

A M S A M SA S

S A S M S A M A S A S

M S A M A

  

 



   
             

   

   
            

   

  
         

  


  

 

 

 

2


(17) 

 

The solutions ( )f   were too long to be mentioned 

here, therefore they are shown graphically. 

 

IV. APPLICATION OF HOMOTOPY PERTURBATION 

METHOD 

     In this section, we employ HPM to solve Eq. (2 ) 

subject to boundary conditions Eq.(3).We can 

construct Homotopy function of Eq. (2) as described 

in [22]: 

         

2

0, 1 ( ) ( ) 3 ( ) 2 ( ) ( )

( ) 0,

H f p P f g y p f S f f f f

M f

      



 
 
          

 

,                  

                                                         (18) 

 

Where 0,1p  
   is an embedding parameter. For 

0p   and 1p   we have: 

       0,0 , ,1f f f f                 (19)  

Note that when p increases from 0 to 1, 

 ,f p varies from  0f   to  f  .By 

substituting: 

         2
0 1 2 0

0
, 0

n
i

i
i

f f p f p f p f g    


           (20)                                    

From  equation  (33) and rearranging the result 

based on powers of p-terms, we get: 

 

0

0

0 0 0 0

: ( ) 0

1
(0) ; 0 0, (1) , (1) 0

2

P f

f A f f f

 

    

(21)  

 

               
 

1 2

1 0 0 0 0 0

1 1 1 1

: 2 3 0

(0) 0; 0 0, (1) 0, (1) 0

P f S f Sf f S f M f

f f f f

              

    

  (22)  

                 
  

 

2

2 1 0 1 0 1 1

2

1

2 2 2 2

: 2 3 2

0

(0) 0; 0 0, (1) 0, (1) 0

P f S f f S f Sf f S f

M f

f f f f

       



      

 

    

 (23) 

 

 

                 
       

 

3 2

3 2 2 0 2 2 0

1 1 2

3 3 3 3

: 3 2 2

2 0

(0) 0; 0 0, (1) 0, (1) 0

P f S f M f Sf f Sf f

Sf f S f

f f f f

      

   

       

   

    

  

                                                                        (24) 

 

Solving Esq. (21) – (24) with boundary conditions, 

we have (for example 0.1, 2S M   , 1A  ): 

  3 2

0 1.500000000 1,f                             

(25) 
 

  7 6 5 4

1

3 2

0.001428571429 0.0050000 0.180000 0.4125000

0.2978571429 0.06178571429

f     

 

   

 
,   

(26) 

 

  11 10 9

2

8 7 6 5

4 3 2

0.000007792207792 0.00004285714286 0.0009087301587

0.0036607142 0.0188153061 0.043820238 0.03711428571

0.004157738100 0.005947057248 0.0007824906815

f    

   

  

  

   

  

(27) 
 

 

  8 15 7 14 6 13

3

12 11 10

9 8 7

6

4.99976214310 3.74982160710 0.692501942410

0.000038502886 0.0002321360544 0.0008178911564

0.0019451346370 0.0030426296780 0.002043508165

0.0007230726130 0.001236779

f    

  

  



    

  

  

  5 4

3 2

829 0.00005608490221

0.0001191218468 0.0001223151002

 

 



 

             

                                                            (28) 

 

 

The solution of this equation, when 1p  , will be 

as follows: 

   
3

0 1

i
i

i p

f Lim p f 
 

            (29) 

 

 
 

 

Fig. 1  The  - validity for 0.01, 5S M  and 

different value of A . 

 

 
Fig  2. The  - validity for 0.3, 1S A   and  

           different value of M . 

 As pointed out by Liao, the convergence and rate of 

approximation for the HAM solution strongly 

depends on the value of auxiliary parameter . The 



   International Journal of Engineering Trends and Technology (IJETT) – Volume-45 Number1 -March 2017 

ISSN: 2231-5381                    http://www.ijettjournal.org                                 Page 30 

auxiliary parameter   provides us with a convenient 

way to adjust and control the convergency. The 

range of   for convergency is obtained according to 

figs. 1 and 2. For 0.01, 5S M  and 

7 7A    the ranges 0.4 1.5    , for 

0.3, 1S A    and 0 5M   the 

ranges 0.5 1.3     , give suitable value of   

for convergency. Then, 0.9   is a suitable value 

for ranges which is used for the solution. 

 

 
 

 
Fig 3. The comparison between the HAM, HPM  

           and  numerical solutions  for ( ), ( )f f   

when 0.01, 5, 1S M A   . 

 

. 

 

 

 

Fig 4. The comparison between the HAM, HPM and  

numerical solutions for ( ), ( )f f   when 

0.01, 0, 1S M A    .  

 

 

 
 Fig 6. The comparison between the HAM, HPM  

         and  numerical solutions for ( ), ( )f f   

when 1, 3, 1S M A   . 

 

Table 1 The results of HAM, HPM and Numerical methods for  f   when 

0.4, 2, 1S M A    

  HAM HPM NUM Error of HAM Error of HPM 

0.00 1.000000000 1.000000000 1.000000000 0.0000000000 0.0000000000 

0.05 0.996484004 0.996484005 0.996484005 0.0000000005 0.0000000006 

0.10 0.986428373 0.986428377 0.986428373 0.0000000004 0.0000000045 

0.15 0.970559215 0.970559224 0.970559216 0.0000000011 0.0000000075 

0.20 0.949588851 0.949588863 0.949588853 0.0000000013 0.0000000800 

0.25 0.924219187 0.924219200 0.924219187 0.0000000002 0.0000000130 

0.30 0.895145032 0.895145049 0.895145034 0.0000000014 0.0000000160 

0.35 0.863057399 0.863057414 0.863057400 0.0000000002 0.0000000150 

0.40 0.828646764 0.828646782 0.828646765 0.0000000014 0.0000000170 
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0.45 0.792606371 0.792606388 0.792606372 0.0000000010 0.0000000150 

0.50 0.755635547 0.755635562 0.755635547 0.0000000005 0.0000000150 

0.55 0.718443074 0.718443087 0.718443074 0.0000000008 0.0000000130 

0.60 0.681750643 0.681750657 0.681750644 0.0000000013 0.0000000130 

0.65 0.646296385 0.646296395 0.646296386 0.0000000005 0.0000000094 

0.70 0.612838519 0.612838521 0.612838518 0.0000000014 0.0000000034 

0.75 0.582159131 0.582159137 0.582159133 0.0000000014 0.0000000041 

0.80 0.555068148 0.555068152 0.555068148 0.0000000001 0.0000000040 

0.85 0.532407454 0.532407455 0.532407454 0.0000000006 0.0000000008 

0.90 0.515055312 0.515055311 0.515055310 0.0000000013 0.0000000004 

0.95 0.503931027 0.503931026 0.503931027 0.0000000001 0.0000000002 

1.00 0.499999999 0.499999997 0.500000000 0.0000000012 0.0000000026 

 

Table 2 The results of HAM, HPM and Numerical methods for  f   when 

0.4, 2, 1S M A    

  HAM HPM NUM Error of HAM Error of HPM 

0.00 0.000000000 0.000000000 0.000000000 0.0000000000 0.0000000000 

0.05 -0.138163081 -0.138163033 -0.138163081 0.0000000006 0.0000000486 

0.10 -0.261642988 -0.26164292 -0.261642989 0.0000000014 0.0000000688 

0.15 -0.370750011 -0.370749941 -0.370750012 0.0000000017 0.0000000710 

0.20 -0.465725958 -0.465725897 -0.465725960 0.0000000023 0.0000000626 

0.25 -0.546745711 -0.546745665 -0.546745715 0.0000000031 0.0000000494 

0.30 -0.613918173 -0.613918144 -0.613918177 0.0000000044 0.0000000336 

0.35 -0.667286685 -0.667286672 -0.667286691 0.0000000061 0.0000000184 

0.40 -0.706828989 -0.706828991 -0.706828995 0.0000000058 0.0000000042 

0.45 -0.732456763 -0.732456778 -0.732456770 0.0000000072 0.0000000085 

0.50 -0.744014778 -0.744014806 -0.744014785 0.0000000075 0.0000000205 

0.55 -0.741279668 -0.741279705 -0.741279676 0.0000000086 0.0000000288 

0.60 -0.723958328 -0.723958365 -0.723958332 0.0000000045 0.0000000332 

0.65 -0.691685870 -0.691685913 -0.691685876 0.0000000054 0.0000000373 

0.70 -0.644023180 -0.64402322 -0.644023183 0.0000000034 0.0000000364 

0.75 -0.580453874 -0.580453911 -0.580453878 0.0000000035 0.0000000330 

0.80 -0.500380689 -0.500380723 -0.500380693 0.0000000036 0.0000000302 

0.85 -0.403121088 -0.403121112 -0.403121091 0.0000000033 0.0000000210 

0.90 -0.287901961 -0.287901979 -0.287901964 0.0000000035 0.0000000147 

0.95 -0.153853214 -0.153853224 -0.153853218 0.0000000040 0.0000000062 

1.00 0.00000000030 0.00000000149 0.000000000 0.0000000003 0.0000000014 

 

In this study, the problem of magneto-hydrodynamic 

MHD squeeze flow of an electrically conducting 

fluid between two infinite, parallel disks was 

analyzed using HAM and HPM. By the drawing of 

2-D fig. 3 to 6, of the numerical solution, HPM and 

HAM solutions for ( )f y  and ( )f y  with different 

values of ,S M  and A , we see that the Homotopy 

Analysis Method and Homotopy Perturbation 

Method are more accurate than NUM. According to 

fig. 3 to 6 and tables 1 and 2 these methods provide 

highly accurate analytic solutions for nonlinear 

problems in comparison with the numerical solution. 

The comparison of the method reveals that the 

approximations obtained by HAM and HPM 

converge to the exact solution quite fast. Also, the 

auxiliary parameter   provides us with a convenient 

way to adjust and control the convergence and its 

rate for the solutions series. Finally, it has been 

attempted to show the capabilities and wide-range 

applications of the HAM and HPM in comparison 

with the numerical solution of nonlinear equations. 

 

7. CONCLUSION 

 

In this paper, the problem of magneto-hydrodynamic 

MHD squeeze flow of an electrically conducting 

fluid between two infinite, parallel disks was 

analyzed by using HAM and HPM. Furthermore, the 

obtained solutions by HAM and HPM are compared 

with numerical solutions. The results demonstrate 

that HAM and HPM are very effective and simple. 
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They offer superior accuracy in comparison with the 

NUM. Also, it is found that these methods are 

powerful mathematical tools and that they can be 

applied to a large class of linear and nonlinear 

problems arising in different fields of science and 

engineering specially some heat transfer equations. 
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