Cordial Labeling of Cosplitting Graphs

R.Sridevi¹, S.Vivetha²

¹Department of Mathematics, Sri S.R.N.M. College, Sattur-626 203, Tamil Nadu, India. ²Research Scholar, Department of Mathematics, Sri S.R.N.M. College, Sattur-626 203, Tamil Nadu, India.

Abstract: The cosplitting graph CS(G) is obtained from G, by adding a new vertex w for each vertex v ϵ V and joining to those vertices of G which are not adjacent to v in G. In this paper, we proved that the cosplitting graph of path, cycle, complete bipartite graph, wheel and star graph are cordial.

Keywords: Cordial labeling, Cosplitting graph.

AMS Suject Classification(2010): 05C78.

1 INTRODUCTION

All graphs considered here are finite, simple and undirected. The origin of graph labelings can be attributed to Rosa [3]. Gallian [1] has given a dynamic survey of graph labeling. For graph theoretic terminologies and notations we follow Harary [2]. Cosplitting graph was introduced by Selvam Avadayappan [4].

2 PRELIMINARIES

Definition 2.1. A graph G is called a **complete bipartite graph** $K_{m,n}$ with bipartition V (G) = $V_1 \cup$ V_2 where $V_1 = \{x_1, x_2, ..., x_m\}$ and $V_2 = \{y_1, y_2, ..., y_n\}$ and all vertices in V_1 are adjacent to all vertices in V_2 but no vertices in V_1 and V_2 .

Definition 2.2. A wheel graph W_n is obtained from a cycle C_n by adding a new vertex and joining it to all the vertices of the path by an edge, the new edges are called the spokes of the wheel.

Definition 2.3. The graph $K_{1,n}$, $s n \ge 1$ is called a **star** at the vertex has degree n is called centre.

Definition 2.4. Let G = (V, E) be a graph. A mapping $f : V(G) \rightarrow \{0,1\}$ is called **binary vertex labeling** of G and f(v) is called the label of the vertex of G under f.

For an edge e = uv, the induced edge labeling $f^* : E(G) \rightarrow \{0,1\}$ is given by $f^*(e) = |f(u)-f(v)|$. Let $v_f(0)$ and $v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and let $e_f(0)$, $e_f(1)$ be the number of edges having labels 0 and 1 respectively under f*.

Definition 2.5. A binary vertex labeling of a graph G is called a **cordial** if $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$. A graph G is cordial if it admits **cordial labeling.**

Definition 2.6. The cosplitting graph CS(G) is obtained from G, by adding a new vertex w for each vertex v ϵ V and joining w to those vertices of G which are not adjacent to v in G.

3 Main Results

Theorem 3.1. The graph $CS(P_n)$ is cordial.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of P_n and $v_1', v_2', ..., v_n'$ be the duplicate vertices of $CS(P_n)$.

Then $|V(CS(P_n))| = 2n$ and $|E(CS(P_n))| = n^2 - n + 1$. The vertex labeling $f : V(CS(P_n)) \rightarrow \{0, 1\}$ is given by

Case (i): n is odd

$$f(v_i) = \begin{cases} 1 & if \ i \ \equiv 0,1 \ (mod \ 4) \\ 0 & if \ i \ \equiv 2,3 \ (mod \ 4) \end{cases} \quad 1 \le i \le n$$

$$f(v_i') = \begin{cases} 1 \text{ if } i \equiv 0,1 \pmod{4} \\ 0 \text{ if } i \equiv 2,3 \pmod{4} \end{cases} \quad 1 \le i \le n$$

Case (ii) : n is even $f(v_i) = \begin{cases} 1 \ if \ i \ \equiv \ 0,1 \ (mod \ 4) \\ 0 \ if \ i \ \equiv \ 2,3 \ (mod \ 4) \end{cases} \quad 1 \le i \le n$

 $f(v_i') = \begin{cases} 1 \text{ if } i \equiv 0,1 \pmod{4} \\ 0 \text{ if } i \equiv 2,3 \pmod{4} \end{cases} \quad 1 \leq i \leq n$

The following table shows that the graph CS(Pn) satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

n	Vertex	Edge
	conditions	Conditions
odd	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
even	$v_{f}(0) = v_{f}(1)$	$e_{f}(0) = e_{f}(1) + 1$

Hence, $CS(P_n)$ is cordial.

Illustration 1. The cordial labeling of $CS(P_4)$ and $CS(P_5)$ are shown in the Figure 1(a) and Figure 1(b).

Figure 1(b)

Theorem 3.2. The graph $CS(C_n)$ is cordial for $n \not\equiv 1 \pmod{4}$ and $n \not\equiv 2 \pmod{4}$, $n \ge 3$.

Proof. Let $v_1, v_2, ..., v_n$ be the vertices of cycle C_n and $v_1', v_2', ..., v_n'$ be the duplicate vertices of $CS(C_n)$.

Then $|V(CS(C_n))| = 2n$ and $|E(CS(C_n))| = n(n - 1)$.

The vertex labeling $f: V(CS(Cn)) \rightarrow \{0, 1\}$ is given by

Case(i): $n \equiv 0 \pmod{4}$

$$f(v_i) = \begin{cases} 1 \text{ if } i \equiv 0,1 \pmod{4} \\ 0 \text{ if } i \equiv 2,3 \pmod{4} \end{cases} \quad 1 \le i \le n$$

$$f(v_i') = \begin{cases} 1 \ if \ i \equiv 0,3 \ (mod \ 4) \\ 0 \ if \ i \equiv 1,2 \ (mod \ 4) \end{cases} \quad 1 \le i \le n$$

Case(ii): $n \equiv 3 \pmod{4}$

$$f(v_i) = \begin{cases} 1 \ if \ i \ \equiv \ 0,1 \ (mod \ 4) \\ 0 \ if \ i \ \equiv \ 2,3 \ (mod \ 4) \end{cases} \quad 1 \le i \le n$$

 $f(v_i') = \begin{cases} 1 \text{ if } i \equiv 1,3 \pmod{4} \\ 0 \text{ if } i \equiv 0,2 \pmod{4} \end{cases} \quad 1 \leq i \leq n$

Here, $v_f(0)=v_f(1)$ for all n and $e_f(0)=e_f(1)$ for all n. Therefore, the graph $CS(C_n)$ satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

Hence, $CS(C_n)$ is cordial.

Illustration 2. The cordial labeling of $CS(C_3)$ and $CS(C_4)$ are shown in the Figure 2(a) and Figure 2(b).

Theorem 3.3. The graph $CS(W_n)$ is cordial.

Proof: let $u, v_1, v_2, ..., v_n$ be the vertices of W_n and $u', v_1', v_2', ..., v_n'$ be the duplicate vertices of $CS(W_n)$.

Then $|V(CS(W_n))| = 2n+1$ and $|E(CS(W_n))| = n^2 + 1$. The vertex labeling $f : V(CS(W_n)) \rightarrow \{0, 1\}$ is given by

f(u) = 0, f(u0) = 1.

Case(i): $n \equiv 0, 2, 3 \pmod{4}$

$$f(v_i) = \begin{cases} 1 \text{ if } i \equiv 0,1 \pmod{4} \\ 0 \text{ if } i \equiv 2,3 \pmod{4} \end{cases} \quad 1 \le i \le n$$

$$f(v_i') = \begin{cases} 1 \text{ if } i \equiv 1,3 \pmod{4} \\ 0 \text{ if } i \equiv 0,2 \pmod{4} \end{cases} \quad 1 \le i \le n$$

Case(ii): $n \equiv 1 \pmod{4}$

$$f(v_i) = \begin{cases} 1 \ if \ i \ \equiv \ 0,1 \ (mod \ 4) \\ 0 \ if \ i \ \equiv \ 2,3 \ (mod \ 4) \end{cases} \quad 1 \le i \le n$$

$$f(v_i') = \begin{cases} 1 \text{ if } i \equiv 0,2 \pmod{4} \\ 0 \text{ if } i \equiv 1,3 \pmod{4} \end{cases} \quad 1 \le i \le n$$

The following table shows that the graph $CS(W_n)$ satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

n	Vertex	Edge
	Conditions	Conditions
$n \equiv 0 \mod 4$	$V_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
$n \equiv 1 \mod 4$	$V_{f}(0)=v_{f}(1)$	$e_{f}(0) = e_{f}(1)$
$n \equiv 2 \mod 4$	$V_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)+1$
$n \equiv 3 \mod 4$	$V_{f}(0) = v_{f}(1)$	$e_{f}(0) = e_{f}(1)$

Hence, $CS(W_n)$ is cordial.

Illustration 3. The cordial labeling of $CS(W_4)$ and $CS(W_5)$ are shown in the Figure 3(a) and Figure 3(b).

Theorem 3.4. The graph $CS(K_{m,n})$ is cordial.

Proof. Let u_1 , u_2 , ..., u_n and v_1 , v_2 , ..., v_n be the vertices of $K_{m,n}$ and u_1' , u_2' , ..., u_n' , v_1' , v_2' , ..., v_n' be the duplicate vertices of $CS(K_{m,n})$.

Then $|V\left(CS(K_{m,n})\right)|=2(m+n)$ and $|E(CS(K_{m,n}))|=m^2+n^2+mn.$

The vertex labeling $f : V (CS(K_{m,n})) \rightarrow \{0, 1\}$ is given by

 $f(u_i)=f(v_j)=1$ and $f(u_i{'})=f(v_j{'})=0,$ if i and j is odd $1\leq i\leq m$ and $1\leq j\leq n$

 $f(u_i)=f(v_j)=0$ and $f(u_i')=f(v_j\ ')=1,$ if i and j is even $1\leq i\leq m$ and $1\leq j\leq n$

The following table shows that the graph $CS(K_{m,n})$ satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

m	n	Vortov	Edgo
111	11	VEILEX	Luge
		Conditions	Conditions
even	Even	$v_{f}(0)=v_{f}(1)$	$e_{f}(0)=e_{f}(1)$
even	Odd	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
odd	Even	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$
odd	Odd	$v_{f}(0)=v_{f}(1)$	$e_{f}(1)=e_{f}(0)+1$

Hence, $CS(K_{m,n})$ is cordial.

Illustration 4. The cordial labeling of $CS(K_{2,3})$ and $CS(K_{3,3})$ are shown in the Figure 4(a) and Figure 4(b).

Figure 4(a)

Figure 4(b)

Theorem 3.5. The graph $CS(K_{1,n})$ is cordial.

Proof. let u, v₁, v₂, ..., v_n be the vertices of $K_{1,n}$ and u', v₁', v₂', ..., v_n' be the duplicate vertices of $CS(K_{1,n})$. Then $|V(CS(K_{1,n}))| = 2(n+1)$ and $|E(CS(K_{1,n}))| = n^2+n+1$.

The vertex labeling $f: V \ (CS(K_{1,n})) \rightarrow \{0,\,1\}$ is given by

$$f(u) = 1$$
 and $f(u') = 0$

$$f(v_i) = \begin{cases} 1 \text{ if } i \text{ is odd} \\ 0 \text{ if } i \text{ is even} \end{cases} 1 \le i \le n$$

$$f(v_i') = \begin{cases} 0 \ if \ i \ is \ odd \\ 1 \ if \ i \ is \ even \end{cases} \quad 1 \le i \le n$$

or

$$f(u) = 0 \text{ and } f(u') = 1$$

$$f(v_i) = \begin{cases} 0 \text{ if } i \text{ is odd} \\ 1 \text{ if } i \text{ is even} \end{cases} 1 \le i \le n$$

$$f(v_i') = \begin{cases} 0 \text{ if } i \text{ is odd} \\ 1 \text{ if } i \text{ is even} \end{cases} \quad 1 \leq i \leq n$$

Here, $v_f(0)=v_f(1)$ for all n and $e_f(1)=e_f(0)+1$ for all n.

Therefore, the graph $CS(K_{1,n})$ satisfies the conditions $|v_f(0)-v_f(1)| \le 1$ and $|e_f(0)-e_f(1)| \le 1$.

Hence, $CS(K_{1,n})$ is cordial.

Illustration 5. The cordial labeling of $CS(K_{1,3})$ and $CS(K_{1,4})$ are shown in the Figure 5(a) and Figure 5(b).

References

 J. A. Gallian, A Dynamic Survey of Graph Labeling. The Electronic Journal of Combinatorics, 18, #DS6, 2011.
F. Harary, Graph theory, Addison Wesley, Reading,

Massachusetts, 1972.

[3] A. Rosa, On Certain Valuations of the vertices of a Graph, In: Theory of Graphs, (International Symposium, Rome, July 1966), Gordan and Breach, N. Y. and Dunod Paris, 349 - 355.

[4] Selvam Avadayappan and M.Bhuvaneshwari, Cosplitting and Co-regular graphs, IJMSC, Vol 5 - No(1), (2015) 57-64.