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Abstract – The fuzzy logic system is concerned with the stability 

of the electric power system, and the excitation governor 

controllers are used to stabilize a synchronous machine infinite 

bus system. The considerable effort has been directed to the 

development power system stabilizer. This paper incorporation 

of a simple method for the design of reliable decentralized 

stabilization using two controllers. 

Index Terms - fuzzy logic, power system stabilizer, power system 

stability. 

I. INTRODUCTION 

Power systems are subjected to low frequency oscillations due 

to disturbances. Such oscillations may sustain and grow to 

cause system separation if adequate damping is not available. 

To enhance system damping, generators are equipped with 

power system stabilizers (PSSs) that provide supplementary 

feedback stabilizing signals in the excitation channel. 

Predictable PSSs are proposed in [1, 2] that act by adding 

a phase lead controller to the system.  Several approaches 

based on modern control theory have been applied to the PSS 

design problem. These include optimal control [3], intelligent 

control and robust control. 

The majority of these applications can be found in the area of 

excitation control, especially power system stabilizers. Fuzzy 

logic power system stabilizers show promise as being less 

computationally burdensome and more robust than 

conservative power system stabilizers. 

II. ANALYSIS OF PSS 

It contains a phase compensation network for the phase 

difference from the excitation controller input to the damping 

torque output. By appropriately tuning the phase and gain  

 

characteristics of the compensation network, it is possible to 

set the desired damping ratio.  In this paper a novel method is 

proposed to design reliable excitation and governor controllers 

for enhancing power system dynamic stability [4]. 

These are widely employed in present-day power systems to 

improve power system dynamic stability. It is designed for a 

particular operating condition around which a linearized 

transfer function model is obtained. The high nonlinearity, 

very wide operating conditions, and unpredictability of 

perturbations of the power system [5, 6]. 

A fuzzy logic power system stabilizer is basically a fuzzy 

logic controller [7]. According to the following are some of 

the major features of fuzzy logic control: model-free, in that 

this approach doesn't require the exact mathematical model of 

the system, and robustness, offering simple solutions 

encompassing a wide range of system parameters and 

significant disturbances.  

The basic configuration of this system can be represented in 

four parts: fuzzifier, knowledge base, inference engine and 

defuzzifier. “The fuzzifier maps the FLPSS input crisp values 

into fuzzy variables using normalized membership functions 

and input gains. The fuzzy logic inference engine then infers 

the proper control action based on the available fuzzy rule 

base. In turn, the fuzzy control action istranslated to the proper 

crisp value through the defuzzifier using normalized 

membership functions and output gains.”  Given the model of 

the FLPSS controller, we next consider the I/O to it, according 

to Ref. 8. For power system stabilization, speed deviation, Δω, 

and active power deviation, ΔP, or derivative of speed 

deviation of the synchronous machine are chosen as the 

FLPSS inputs. The output control signal (Upss) is the input to 

the automatic voltage regulator (AVR). Each of the FLPSS 

input and output variables, (Xj={Δω,ΔP,Upss}), are scaled 

through input gains and interpreted into seven linguistic fuzzy 

subsets varying from Negative Big (NB) to Positive Big (PB). 

Each subset is associated with a triangular membership 

function to form a set of seven normalized and symmetrical 

triangular membership functions for each fuzzy variable.  A 

symmetrical fuzzy rule set is used to describe the FLPSS 

behavior. Each entity in the table represents a rule in the form 

“if antecedent then consequence” (e.g. “if Δω is NM and ΔP is 

PB then Upssis PS”).  
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The objective is to design reliable decentralized excitation and 

governor controllers to enhance the dynamicstability of 

asynchronous machine infinite bus model of a power system,  

Fig.1 

 

The studied system is modeled as a fifth order system. A third 

order synchronous machine is represented by the state variable  

  (incremental torque angle),  (incremental angular 

velocity), qE ' (incremental voltage proportional to q-axis 

flux linkage, behind transient reactance).In addition, a first 

order speed regulator is represented by the state variable mP

(incremental mechanical power input), and a first order 

voltage regulator represented by the state variable 
f

E

(incremental field voltage). 

The dynamics of the studied system is described by  
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To stabilize the system in a decentralized manner, it is 

possible to decompose B  and C  as follows: 

Fig. 1. Schematic diagram of a single-machine infinite-bus system 
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CBBB .It is easy to check 

that the triples  11 ,, BAC  and  22 ,, BAC  are controllable and 

observable. The transfer matrix of this system is 























)04.2)(43.18(4.31)1(05.3634

)43.18)(04.2(1.0)1(57.111

2221

1211

sss

sssss

dGG

GG

       (3) 

where )57.30993.0)(971.0)(217.3)(27.18( 2  sssssd   

.It is to be noticed that  the open-loop system is unstable.  We 

follow the process in the starting point of the first loop (K1) 

then designing K2 to solve the simultaneous stabilization 

problem, see Fig. 1. 

A. Design of  K1 to stabilize G11 

Using the root locus technique, we design K1 controller to 

stabilizeG11 (13),The controller transfer function is selected to 

be 

)50(

)04.1252.3(
530

2

1





ss

ss
K  

The added pole at -50 is selected to be no dominant (having 

slight effect on the dynamic response) .This achieves a 

realizable proper transfer function. The designed K1 is nearly 

PID (Proportional Integral Derivative) control 

)
04.12

52.3(5301 s
s

K  widely used in industry. 

B- Design of K2 to stabilize G22 and G`22 simultaneously 

We use the relations, When K1 fails, K2 stabilizes the overall 

system if and only if it stabilizesG22.  Also, when K1 is on, K2 

stabilizes the overall system if and only if it stabilizesG'22. The 

transfer functions G22 and G'22are given by 
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Once again, we use the root locus technique to design 2K that 

simultaneously stabilizes G22 and G'22 . The resulting 

controller transfer function is  
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It is to be noted that K2 is a double lead controller. 

The above controllers 1K  and 2K  achieve at least a degree of 

stability (0.98).  

The impulse responses of the systems under reliable 

stabilization are shown in Figs. 3-5. As designed, the system 

can tolerate the outage of any of the two controllers without 

seriously deteriorating the degree of stability. 

 

Fig. 3. Impulse responses when K1 and K2 are active(no failure) 

 

Fig. 4. Impulse responses when K1 only is active (failure in K2) 

 

Fig. 5. Impulse responses when K2 only is active (failure in K1). 

The reliable stabilizers give similar behavior response of 

operations at different load conditions as shown in Fig.3 to 

Fig.5 respectively. The above analysis shows the effectiveness 

and robustness of the proposed reliable stabilizers and their 

ability to provide good damping of low frequency oscillations 

under different loading conditions. 
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III. DERIVATION OF THE CHARACTERISTIC 

COEFFICIENTS 

The following equations directly result from the circuit: 

     si
~

sLsv~sv~ eacI 11    

      (4) 

          si
~
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piacaci  11   

       sv~gsd
~

ksv~gsi
~

acfocpop  1   (5) 

     sv~sv~sv~ acocp     (6) 

     si
~

sZsv~ po  .    (7) 

After some algebra, we can express the absorbed current at 

input and the injected current into the output node solely as 

function of the perturbations of the input voltage, duty ratio 

and output voltage: 
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where: 
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with 

iAI kK  , R/K BI 1 , iCI gK  , oAO kK  , 

oBO gK  , foCO ggK  , 111 Cra  , eLCa 212  ,

 ig/rCa 1111  ,  221 rRCe  , 222 rCe  . 

Also, the coefficients in , jf , lh  are functions on the effective 

inductances, capacities and small-signal parameters of power 

system stabilizer located on power system. 

The input and output characteristic coefficients are directly 

identified in (8) and (9) as multipliers of  sd
~

1 ,  sv~O  and 

 sv~I . These last equations can be written in the form 

             sv~sCsv~sBsd
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sAsi
~
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IOOOOJ  1  (11) 

The characteristic coefficients are polynomial ratios of various 

degrees in variable s  as it can be seen in (8) and (9). 

IV. ANALYSIS OF OPEN LOOP TRANSFER FUNCTION 

OF A SYSTEM 

The most general expressions of input, output and transfer 

properties of stabilizer such as the input and output 

impedance, and the input-to-output and control-to-output 

transfer functions can be found by means of the model with 

characteristic coefficients. The relationship between the 

output voltage and the injected current given by (11) leads to 
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The relationship (10) contains two transfer functions of the 

open-loop PWM Wang converter, namely: 

- the input-to-output voltage transfer function 

 
 
 

01



d
~I

O
OI

sv~
sv~

sH ;    

- the control-to-output voltage transfer function  
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Taking into account the expressions of the output 

characteristic coefficients, we found the following expressions 

for the transfer functions: 
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where 
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      112120 DM/VMMH IOC  .  

The coefficients kb  of the characteristic polynomial are 

functions on the effective inductances, capacities and  small-

signal parameters of power system stabilizer and operating 

point of a load. 

The open-loop transfer functions of the power system 

stabilizer correspond to a fourth-order system, as it indicates 

by its diagram and (13) and (14). The expressions of the 

transfer functions show that their zeros are even the zeros of 

characteristic coefficients  sAO and  sCO . So, if these 

coefficients do not contain right-half plane (RHP) zeros, 

neither the transfer functions do not contain them. 

Using the method of time constants as explained in the 

numerator and denominator polynomial can be factored 

approximately in an analytical form. The operating conditions 

and circuit parameters of power system stabilizer given in the 

following forms: 

   221 aaa /sQ/ssE  ,   (15) 

    232
2

1 11 f/sffssfsF  ,         (16) 

where 2
2 1 a/a  , aa aQ/  11 . 

As it can be seen from (15), the quadratic in the numerator 

of the input-to-output transfer function corresponds to 

complex left-half-plane zeros. The factored result (16) 

indicates that we have three zeros of the control-to-output 

transfer function in the right-half plane, namely: a complex 

low-frequency pair well separated from a high-frequency real 

zero. Both transfer functions contain an extra low-frequency 

real zero, if 02 r . For the operating conditions given in the 

nulls of the denominator  sD  can be found by other means of 

dealing.  

The numerator and denominator of the transfer functions 

of power system stabilizer are expressed as analytical 

functions of the parameter elements and consequently the 

analysis is design-oriented. They yield insight into how the 

element values can be chosen such that given specified pole 

frequencies are obtained.  

The input and output small-signal properties of power system 

stabilizer such as the input and output impedance, can be 

expressed too in the terms of characteristic coefficients. Their 

expressions can be easily found starting from the definitions 

and using the corresponding small-signal equivalent circuits 

of converter like as in the linear amplifier analysis. 

We denote with gZ  the internal impedance of line voltage 

source gv . The impedance gtZ  includes both impedance 

IC/1 and gZ : 
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and the small-signal analysis of power system stabilizer is 

represented and  the following formula of this input small-

signal property results: 
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The formula (17) of the open-loop input impedance of power 

system stabilizer is the general expression of input impedance 

of switching cell in the terms of characteristic coefficients. 

This one is common to all the system described by means of 

characteristic coefficients, regardless of their topology, 

operating mode and control type.  

After replacement of characteristic coefficients with their 

expressions, we found 
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Setting s at zero, the input resistance of the coupled-inductor 

power system stabilizer is given as   21 M/MRRI  . 

Next, we denote with tZ  the equivalent impedance 

 
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Starting from the output-impedance definition 
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and using the small-signal equivalent circuits of converter 

given in Fig. 6, we found 
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      (19) 

Once again, the formula (19) that expresses the open-loop 

output admittance of power system stabilizer is the general 

expression of output admittance of switching cell described in 

terms of characteristic coefficients. The output resistance of 

the coupled-inductor power system stabilizer is found as 

   1221  M/MRRO .  

The magnetically coupling of inductors modify the 

operating point of power system stabilizer with separate 

inductors; they are obtained by setting ck at zero. In these 

conditions, 11 LL e  , 22 LL e  , eem LL   and 

eem KK  . So, the expressions of the characteristic 

coefficients and small-signal properties of power system 

stabilizer will hold their formula and only the polynomial 

coefficients change the values there.  

V. CONCLUSION 

In this paper based on the efforts of fuzzy logic power 

system stabilizers. This algorithm is applied to a single-

machine infinite-bus model. The two controllers retain the 

stability margin of the system when both controllers are 

operative and when either one of them fails. This system 

being less computationally burdensome and more robust than 

conventional power system stabilizers.  
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