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Abstract-- In this study, the influence of different defects on the 
energy bands of a super cell of a defected periodic viaduct (DPV) 
when considering the pile-soil-structure interaction is 
investigated. By using the coupled boundary element method 
(BEM) model for the piles supporting the superstructure of the 
DPV, the compliances of the pile foundations are obtained. By 
using the compliances of the piles and the transfer matrices for 
the beams and piers, the transfer matrix for each span of the 
DPV is determined. The eigenvalue equation for the super cell of 
the DPV can be developed by using the transfer matrices for the 
spans of the super cell and the Bloch theorem, the solution of 
which yields the energy bands for the super-cell. Numerical 
results show that the defected span may give rise to the defect 
state for the super cell of the DPV. 
 
Keywords-- Defected periodic viaduct (DPV); super-cell method; 
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I. INTRODUCTION 
As viaduct can be used to resolve the settlement of soft soil 

bases effectively, they are now widely used in the high speed 
railways. For convenience, viaducts in normal sections are 
usually designed to consist of identical spans, so they can be 
simplified as periodic structures. For periodic viaducts with 
super long spans, they can be further idealized as infinite 
periodic structures. However, due to practical requirements, 
some spans of the viaduct are not identical with the standard 
span, making the viaduct defected. In this study, the spans 
different from the standard span are referred to as defected 
spans, and a periodic viaduct containing defected spans is 
called a defected periodic viaduct (DPV) [1-2]. 

Brillouin [3], Mead [4-6] and Lin [7] analyzed wave 
propagation in common periodic structures, and their 
researches show that waves in periodic structures are quite 
different from those in continuum media: the passband and 
stopband characteristic of the waves usually occurs in a 
periodic structure. It is noted that the behaviors of waves in a 
defected periodic structure is even more complicated than 
those in common periodic structures. By numerical simulation, 
Wu [8-9] found that in a defected periodic continuum medium, 
a sharp peak occurs around the defected cell in the defect state 
mode. Up to now, there have been some studies concerning  
defected periodic beams. Lin & Yang [10-11] analyzed a 
periodic beam with random defects. Mead [12-14] 
investigated the free waves propagating along a periodic 
beam with a single defect. Based on the researches of Mead, 
Bansal [15] investigated periodic beams with multiple defects 
and found that the influence of defects on the wave 
propagating along a periodic beam is significant because of 

wave localization. Furthermore, Mead & Bansal [16] studied 
the response of a mono-coupled periodic beam with a single 
defect to a convected loading, finding that wave motion in the 
defected periodic beam may be localized around the defect. In 
summary, the presence of defected spans in a periodic beam 
may alter the wave characteristic of the structure, causing the 
localization of wave motion around the defects.  

Existing studies concerning the beam-type periodic 
structure with defects are usually limited to continuous 
periodic beams, wherein beams are supposed to be continuous 
and supported by various periodically placed supporters. 
Since the viaduct considered in this study consists of a series 
of separate beams, piers and supporting piles, it is thus 
unreasonable to simplify the viaduct as a continuous beam. 
Therefore, this paper will develop the super-cell method for 
the DPV and the defect states associated with some defects 
are investigated.  

II. THE GENERAL STATEMENT AND APPROCH FOR 
THE PROBLEM IN THIS STUDY 

Generally, a practical viaduct may be decomposed into two 
parts: substructure and superstructure. For simplicity, it is 
supposed in this study that each span of the viaduct only 
contains one pier and each pier of the viaduct is supported by 
an effective pile foundation. Also, the piers and piles are 
assumed to be rigidly connected. Thus, the substructure of the 
viaduct is simplified as a pile row embedded in the half-space 
soil as shown in Figure 1. Also, each span of the 
superstructure of the periodic viaduct is simplified as a unit 
composed of a pier, two composite beams (left and right 
beams) and three linking springs, that is, the beam-beam, left 
and right beam-pier springs, respectively (Figure 1). The three 
springs form the beam-beam-pier (BBP) junction for each 
span of the viaduct.  

 
Fig. 1 Illustration for an infinite DPV 

Generally, when a periodic viaduct is undergoing vibration, 
both the in-plane and out-of-plane vibrations may occur. Note 
that: the plane here is referred to as the plane passing through 
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the viaduct, namely, the xoz plane in Figure 1. Since the 
half-space soil, piles and super-structure of the viaduct in this 
study are assumed to be material and geometrically linear, the 
in-plane and out-of-plane vibrations of the viaduct are thus 
independent and can be investigated independently. In this 
paper, we only investigate the defect state for the DPV 
undergoing in-plane vibration. 

III. A COUPLED BEM MODEL FOR THE PILE-SOIL 
INTERACTION PROBLEM 

To account for the coupling between the superstructure of 
the viaduct and the pile foundations, the pile-soil interaction 
problem should be solved first. The separations between the 
neighboring effective piles are assumed to be large enough 
such that the interaction between the piles can be neglected. 
Hence, the multiple pile-soil interaction problem is simplified 
as a single pile-soil interaction problem. In this section, a 
coupled BEM model for a single pile embedded in the 
half-space soil will be developed, whereby the compliances of 
the pile foundation can be determined. 

A. Boundary Integral Equation for an Elastic Medium 
In this study, the pile and half-space soil are treated as the 

elastic medium. The equation of motion for an elastic medium 
in the frequency domain has the following expression [17] 

2

, ,( )i jj j ji iu u u        (1) 

in which  and  are the Lame constants of the elastic 
medium; i is the displacement; ρ is the density; ω is the 
angular frequency. Note that the frequency domain variable 
and time domain variable are related to each other by the 
Fourier transform for time and frequency. In this study, the 
Fourier transform with respect to time and frequency is 
defined as follows [18] 

iˆ ( ) ( ) tf f t e dt






  , i1 ˆ( ) ( )
2

tf t f e d 






   (2) 

where t represent the time; a variable with a caret denotes the 
frequency domain variables. As this study is restricted to the 
frequency domain analysis of the defected viaduct, for brevity, 
the caret denoting the frequency domain variable is dropped 
for all the frequency domain variables. The constitutive 
relation for the elastic medium is as follows [17] 

2ij ij ije     (3) 

in which ij  and ij  are the stress and strain components 

for the elastic medium, respectively; e and ij  denotes the 
bulk strain and the Kronecker delta, respectively. Based on 
the dynamic reciprocal theorem, the frequency domain 
boundary integral equation for the elastic medium is obtained 
as follows [19] 

( ) ( )(x) [ ( , ) (y) (x, y) (y)] (y)G G

ij j ij j ij jc u U t T u d


   x y  (4) 

in which ( )G

ijU and ( )G

ijT are the Green’s functions for the 
elastic medium and given in Appendix; uj and tj are the 
displacements and tractions along the boundary of the elastic 
medium; cij is the coefficients for the boundary and   
denotes the boundary of the elastic medium. 

B. Derivation of the Coupled BEM Model for the Pile and 
Half-Space Soil 

In this section, according to the boundary integral equations 
for the elastic medium, boundary element formulations for the 
pile and half-space soil are established, respectively. By using 
the boundary element formulations as well as the boundary 
conditions and continuity conditions at the pile-soil interface, 
a coupled BEM model for the pile and half-space soil will be 
developed. As shown in Figure 2, for a pile embedded in a 
half-space soil, the whole boundary of the pile-soil system 
consists of three parts, that is, the interface between the pile 
and half-space soil (Г1), the boundary of the pile top (Г2), and 
the surface of the half-space soil (Г3), respectively. The 
boundary of the pile consists of Г1 and Г2, respectively and 
the boundary of the half-space soil is composed of Г1 and Г3, 
respectively.  

 
Fig. 2 The illustration for a pile embedded in an elastic half-space 

The frequency domain integral equations for the pile and 
half-space soil can be discretized if suitable numbers of 
boundary elements are used to discretize the corresponding 
boundaries. Suppose that the boundaries of the pile and 
half-space soil are discretized by the same type of 
iso-parametric element, each boundary element containing 
Nnd nodes. Thus, for a point x inside the j-th element, the 
following interpolation formulae hold [20] 
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

t x t  (5) 

where the superscript j denotes the element number; n is the 
local node number; ,   are the intrinsic coordinates 

corresponding to the point ( )jx ; ( )j

nx is the n-th node 
coordinate of the j-th element in the global coordinate system; 

the top of the pile (Г2) the surface of the soil (Г3) 

the pile-soil interface (Г1) the half-space soil 

z 
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( , )nN    is the n-th shape function; ( ) ( )j

n u  and ( ) ( )j

n t  
represent the displacement and traction vectors at the n-th 
node of the j-th element. 

Using equation (5) in the boundary integral equation for the 
pile and integrating the shape function kernel products over 
all boundary elements for the pile, the boundary element 
formulation for the pile is obtained as follows 

( ) ( ) ( ) ( )p p p pH u = G t  (6) 
in which the superscript p  denotes the pile; ( )pG  and 

( )pH  are the coefficient matrices obtained by integrating 
shape function kernel products over all boundary elements of 
the pile; ( )pu  and ( )pt  are the generalized displacement and 
traction vectors of the nodes of the boundary elements of the 
pile. Dividing ( )pu  and ( )pt  into two parts corresponding to 

1  and 2 , respectively, and partitioning the coefficient 

matrices ( )pG  and ( )pH accordingly, equation (6) is 
rewritten as follows 

( ) ( )

( ) ( ) ( ) ( )1 1

1 2 1 2( ) ( )

2 2

=
p p

p p p p

p p

   
         

   

u t
H H G G

u t
 (7) 

in which the subscripts 1 and 2 represent the boundaries 1  

and 2  of the pile , respectively; ( ) ( ), , j = 1, 2p p

j ju t  denote 
the generalized displacement and traction vectors for the 
boundaries , j = 1, 2

j
  of the pile, respectively; ( ) ( )

1 2
,p pH H  

and ( ) ( )

1 2
,p pG G are the sub-matrices of the coefficient matrices 

( )pH and ( )pG of the pile, corresponding to the boundaries 
1

  

and 
2

 , respectively. 
Likewise, applying equation (5) to the boudary integral 

equaiton of the half-space soil and implementing the similar 
BEM procedure, the boundary element formulation for the 
half-space soil is derived as follows 

( ) ( ) ( ) ( )s s s sH u = G t  (8) 
in which the superscript s  denotes the half-space soil; ( )su  
and ( )st  are the generalized displacement and traction 
vectors of the nodes of the boundary elements of the 
half-space soil; ( )sG  and ( )sH  are the coefficient matrices. 
Analogously, partitioning the coefficient matrices as well as 
the displacement and traction vectors in equation (8) 
corresponding to the boundaries 1  and 3  of the 
half-space soil, the boundary element formulation (8) for the 
half-space soil is reformulated as follows 

( ) ( )

1 1( ) ( ) ( ) ( )

1 3 1 3( ) ( )

3 3

=
s s

s s s s

s s

   
         

   

u t
H H G G

u t
 (9) 

in which ( )s

ju and ( ) , j = 1, 3s

jt denote the generalized 
displacement and traction vectors for the boundaries 

, j = 1, 3j  of the half-space soil, respectively; ( ) ( )

1 3
,s sH H  , 

( )

1

sG  and ( )

3

sG are the sub-matrices of the coefficient matrices 

of the half-space soil for the boundaries 
1

  and 
3

  of the 
half-space soil, respectively. 

At the interface 
1

 , the pile and soil should satisfy 
displacement and traction continuity conditions. The 
boundary conditions at the top of the pile (

2
 ) are determined 

by the loads acting on the top of the pile. Thus, ( )

2

pt in 
equation (7) is assumed to be known a priori. Moreover, at 
the surface 3 , the half-space soil is supposed to be stress 
free. As a result, the following continuity conditions and 
boundary condition should be fulfilled along the interface 

1 and the boundary 
3

 , respectively 
( ) ( )

1 1

p su u , ( ) ( )

1 1

p s t t , ( )

3

s t 0  (10) 
By using the boundary element formulations for the pile 

and soil as given by equations (7) and (9) as well as the 
continuity conditions and boundary condition in equation (10), 
a coupled BEM model for the pile-soil system is obtained as 
follows  

( ) ( ) ( )

1 1 2 ( ) ( ) ( ) ( )

1 1 2 3( ) ( ) ( )

1 1 3

p p p
Tp p p s

s s s

 
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 

H G H 0
u t u u

H G 0 H
 

( )

2 2

p p


 
 
 

G t

0
 (11) 

IV. ANALYSIS OF THE SUPER STRUCTURE OF THE 
DPV IN THE WAVENUMBER DOMAIN 

In this section, the governing equations for the piers and 
beams of the viaduct undergoing in-plane vibration will be 
outlined.  

A. The Transfer Matrices for the Piers and Beams 
The in-plane vibration of the periodic viaduct will involve 

the longitudinal and in-plane flexural vibrations of the piers 
and beams. As the piers are treated as 1-D rods and beams, 
their transfer matrices can be derived by the conventional 
vibration theories for a rod and beam undergoing axial and 
flexural vibrations, respectively. For simplicity, the vibration 
of the beams in this study is described by the Bernoulli-Euler 
beam theory [17]. Thus, the frequency-wavenumber domain 
equations of motion for the longitudinal and in-plane flexural 
vibrations of the pier in the n-th span of the periodic viaduct 
are given as follows [17] 
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(12) 

where the subscript d denotes the pier; d  and dE  are the 

density and elastic modulus of the pier; dA  and dI are the 
cross section area and second moment of the cross section of 
the pier; ( )n

du , ( )n

dv  are the axial and transverse displacements, 

respectively; ( )ez denotes the local vertical coordinate of the 
cross-section of the pier.  

For the internal forces of the pier, the following relations 
hold [17] 

( ) ( )
( ) ( )

( )

( )
( )

n e
n e d

d d d e

du z
N z E A

dz
 ,  

( ) ( ) ( ) '' ( )( ) ( )n e n e

d d d dM z E I v z  , 
( ) ( )

( ) ( )

( )

( )
( )

n e
n e d

d e

dM z
Q z

dz
 

 
(13) 

where ( ) ( ),n n

d dN Q  and ( )n

dM are the axial, shear force and 
moment of the cross-section. For the pier of the n-th span 
undergoing in-plane vibration, the displacement, internal 
force vectors and state vector for an arbitrary cross-section are 
defined as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

d d d dz u z v z zq ,  
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

d d d dz N z Q z M zf , 
( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( )}n e n T e n T e T

d d dz z zψ q f  (14) 

in which ( )n

d  is the rotation angle of the cross-section 
( )ez of the n-th pier; ( )n

dq , ( )n

df and ( )n

dψ represent the 
displacement and internal force vectors as well as the state 
vector, respectively. By using equations (12), (13) and (14), 
the transfer matrix for the pier undergoing in-plane vibration 
can be derived.  

Likewise, the frequency-wavenumber domain equations of 
motion for the longitudinal and in-plane flexural vibrations of 
the beams of the n-th span have the following expressions  

2 ( ) ( )
2 ( ) ( )

( ) 2

( )
( ) 0

n e
n eb

b b be

d u x
E u x

dx
   ,  

4 ( ) ( )
2 ( ) ( )

( ) 4

( )
( ) 0

n e
n eb

b b b b be

d v x
E I A v x

dx
  

 
(15) 

where the subscript b denotes the beams; b  and bE  are 

the density and elastic modulus of the beams; bA  and bI  
are the cross section area and second moment of the cross 

section of the beams; ( )n

bu , ( )n

bv  are the axial and transverse 

displacements, respectively; ( )ex represents the local 
longitudinal coordinate for the cross-section of the beams.  

For the internal forces of the beams, the following relations 
hold 

( ) ( )
( ) ( )

( )

( )
( )

n e
n e b

b b b e

du x
N x E A

dx
 , 

( ) ( ) ( ) '' ( )( ) ( )n e n e

b b b bM x E I v x  , 
( ) ( )

( ) ( )

( )

( )
( )

n e
n e b

b e

dM x
Q x

dx


 
(16) 

where ( ) ( ),n n

b bN Q and ( )n

bM  are the axial, shear forces and 
moment of the cross-section. For the beams of the n-th span 
undergoing in-plane vibration, the displacement and internal 
force vectors and the state vector at the cross-section ( )ex are 
defined as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

b b b bx u x v x xq , 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( ), ( )}n e n e n e n e T

b b b bx N x Q x M xf ,  
( ) ( ) ( ) ( ) ( ) ( )( ) { ( ), ( )}n e n T e n T e T

b b bx x xψ q f  (17) 

in which ( )n

b is the rotation angle of the cross-section ( )ex of 

the beams; ( )n

bq , ( )n

bf and ( )n

bψ represent the displacement 
and internal force vectors as well as the state vector for the 
cross-section of the beams, respectively. By using equations 
(15)-(17), the transfer matrix for the beams undergoing 
in-plane vibration can be derived.  

B. Coupling between the Pile-Soil System and the Super 
Structure 
The displacement and force vectors of the n-th pile top are 

related to each other by the compliances of the pile, namely 
( ) ( )( )(0) (0)n n

p p

n
pq C f , 

( ) ( ) ( ) ( )(0) { (0), (0), (0)}n n n n T

p p p pu v q ,  
( ) ( ) ( ) ( )(0) { (0), (0), (0)}n n n n T

p p p pN Q Mf  (18) 

where ( )n

pC  is the 33 compliance matrix for the pile, which 
can be obtained using the aforementioned BEM model for the 
pile-soil system; ( ) (0)n

pq and ( ) (0)n

pf are displacement and 
internal force vectors at the top of the pile. 

As noted above, it is assumed that the pile and pier are 
rigidly connected, the displacement and force vectors at the 
bottom of the n-th pier are equal to those at the n-th pile top, 
namely 

( ) ( ) ( )( ) (0)n n n

d d pL q q , ( ) ( ) ( )( ) (0)n n n

d d pL f f  (19) 

in which ( )n

dL is the height of the n-th pier. By using equation 
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(18) and (19), one has the following relation for the 
displacement and force vectors at the bottom of the n-th pier 

( ) ( ) ( ) ( )( )( ) ( )n n n n

d d d d

n
pL Lq C f  (20) 

Then, the relation between the state vectors at the top and 
bottom of the n-th pier is obtained as follows 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( )( ) (0 )

( ) ( ) (0 )( )

d n d nn n n n
qq d qf dp d d d

d n d n nn n

fq d ff d dd d

L LL
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




     
    

        

T TC f q

T T ff
  (21) 

Using equation(21), the relation between the displacement 
and force vectors at the top of the n-th pier is obtained as 
follows 

( ) ( ) ( )(0) ( ) (0)n n n

d d dq C f ,  
( ) ( ) ( ) 1 ( ) ( )( ) ( ) ( ) ( )[ ( ) ( )] [ ( ) ( )]n d d d d

d qq p fq p ff qf

n n n n

d d d dL L L L  C T C T C T T  (22) 
By using the equilibrium conditions at the junction [21], 

the relation between the state vectors of the beam sections to 
the right and left of the n-th junction is obtained as follows  
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( )( ) ( ) ( ) ( )( ) ( ) ( ),n b n a n b n a
l d l r d r E C E E C E  (23) 

in which the matrix ( )n

JS  is referred to as the junction 
transfer matrix at the n-th BBP junction, and the 

representations for ( ) ( ),a a
l rE E ,

( ) ( ) ( ) ( ) ( ), , , ,n n n n n

ll lr ld rl rr
J J J J J  and 

( )n

rdJ are given in [21]. It is noted that for a periodic viaduct, 
the junction transfer matrix is identical for all the BBP 
junctions. By using equation (23) and the transfer matrices for 
the beams of the n-th span, one has the following relation for 
the state vectors at the right and left ends of the n-th span 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )( )n n b n n b n

b R J L b

e
L

e
R xx  ψψ T S T  (24) 

where ( )( )n b

L
T and ( )( )n b

R
T are the transfer matrices for the left 

and right beams; ( ) ( )
( )

n

b

e
Lxψ  and ( ) ( )( )n

b

e
Rxψ  are the state 

vectors for the left and right ends of the n-th span, 
respectively; ( )e

Lx and ( )e
Rx denote the x-coordinates of the left 

and right ends of the n-th span in the local coordinate system 
(Figure 1). Note that for the standard span, the transfer 
matrices for the left and right beams ( )( )n b

LT  and  ( )( )n b

RT are 
identical and given by  

( ) ( ) ( ) ( )
2

b b b

L R

L
 T T T  (25) 

where L is the length of the standard span of the viaduct; 
( ) ( / 2)b LT is the transfer matrix for the left and right beams . 

V. THE EIGHEVALUE EQUATION FOR THE 
SUPER-CELL OF THE DPV 

A periodic structure with defects usually displays 
characteristics associated with defect state [1]. Furthermore, 
the defect state characteristics of a periodic structure are 
usually relevant to its dynamic response. Consequently, to 
fully understand the dynamic response of a defected viaduct, 
it is necessary to investigate the defect state of the defected 
viaduct. In this section, by means of the super-cell method 
and transfer matrix method, the eigenvalue equation for a 
super-cell of the defected viaduct will be derived, whereby the 
defect state of the defected viaduct can be identified. 

To investigate the defect state of the DPV, it is necessary to 
define a super-cell for the DPV. The super-cell of the viaduct 
should contain the defected span and also it should contain 
sufficient number of spans of the viaduct to make the 
responses of the super-cell associated with the defect state 
mode negligible at the edges of the super-cell. It is supposed 
that the super-cell contains 2 1N   spans of the viaduct, the 
central span (the 0th span) being the defected span. 

Equation (24) implies that the transfer matrix for standard 
and defected spans of the DPV has the following expressions 

( ) ( ) ( )( ) ( )
2 2J

s b bL L
 ST T T , 

( ) (0)( ) (0) (0)( )q b b
R J LT T S T  (26) 

where the superscripts s and q denote the standard and 
defected spans of the viaduct, respectively; JS denotes the 
junction transfer matrix for the standard span of the viaduct. 

By using the transfer matrices for the standard and defected 
spans, the relation between the state vectors at the right and 
left ends of the super-cell is obtained as follows 

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )
2 2

N N

N s s q s s N

b b

L L ψ T T T T T ψ 

 

 
(27) 

Using the Bloch theorem [22] and equation(27), the following 
eigenvalue equation is derived for the super-cell of the 
viaduct 

i( ) ( ) ( ) ( ) ( ) ( )

6 6[ ] ( )
2

S

N N

Ls s q s s N

b
s

L
e   


  T T T T T I ψ 0 

 
, 

2S qL NL L   (28) 

in which s denotes the wavenumbers for the characteristic 
waves of the super-cell; Lq 

and Ls are the lengths of the 
defected span and super-cell, respectively. Solution of 
equation (28) yields the energy bands of the super-cell, 
whereby the defect state of the super-cell of the DPV can be 
identified. 
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 (a)                              (b) 

Fig. 3 The discretization schemes for the top and bottom of the piles as well 
as that for the surface of the half-space soil: (a) the discretization scheme for 

the piles; (b) the discretization scheme for the soil 

VI. NUMERICAL RESULTS AND CORRESPONDING 
ANALYSIS 

In this section, based on the proposed model, influence of 
the defected span on the defected periodic viaduct (DPV) will 
be investigated. In the numerical examples, the cross-sections 
of the piles and piers of the viaduct are assumed to be circular, 
while those of the beams are rectangular. The parameters for 
the soil, piles, piers, beams and spring stiffnesses of the 
standard span are given by Tables 1 and 2. For the defected 
span, the height of the pier is 15.0m, while other parameters 
are the same as those of the standard span. 

The 2-D eight-node isoparametric boundary element [23] is 
used to discretize the boundaries of the pile and half-space 
soil. The top and bottom of the piles in both the standard span 
and defected span are discretized by twelve isoparametric 
boundary elements as shown in Figure 3 (a). The side of the 
pile is divided into fifteen segments evenly, and each segment 
is discretized by eight elements evenly. To truncate the 
surface of the half-space soil, the surface of the half-space soil 
is covered by some numbers of vertical and horizontal 
boundary element layers (Figure 3(b)). The numbers of 
vertical and horizontal boundary element layers used to cover 
the soil surface for different frequency ranges are given in 
Table 3.  
Table 1 The geometrical and material parameters of the soil, piles, piers and 

beams 

The shear modulus, Poisson’s ratio and density for 
the half-space soil (µs, νs, ρs) 

2.0×107 Pa, 0.4,  
2.0×103 kg/m3 

The length and radius of the piles (Lp, Rp) 15.0 m, 1.0 m 
The Young’s modulus, Poisson’s ratio and density of 

the piles (Ep, νp, ρp) 
2.8×1010 Pa, 0.2,  
2.4×103 kg/m3 

The height and radius of the piers (Ld, Rd)  10.0 m, 1.0 m  
The Young’s modulus, Poisson’s ratio and density of 

the piers (Ed, νd, ρd) 
2.8×1010 Pa, 0.2,  

3.0×103 kg/m3 

The length of each span of the periodic viaduct (L) 20.0 m 

The width and depth of the rectangular cross-section 
of the beams (wb, hb) 

3.0 m, 1.0 m 

The Young’s modulus, Poisson’s ratio and density of 
the beams (Eb, νb, ρb) 

2.8×1010 Pa, 0.2,  
3.6×103 kg/m3 

The calculated frequency range (f) 0~50 Hz 

Table 2 The stiffnesses of the beam-beam, left beam-pier and right beam-pier 
springs of the standard span of the viaduct 

The stiffnesses of the beam-beam spring for the 

in-plane vibration (
( )t

tk , 
( )s

tk , 
( )b

tk )   

1.0×108 N/m,  
1.0×108 N/m,  

1.0×108 N.m/rad 
The stiffnesses of the left beam-pier spring for the 

in-plane vibration (
( )t

lk , 
( )s

lk , 
( )b

lk )   

1.0×108 N/m,  
1.0×108 N/m,  

1.0×107 N.m/rad 
The stiffnesses of the right beam-pier spring for 

the in-plane vibration (
( )t

rk , 
( )s

rk , 
( )b

rk ) 

1.0×108 N/m,  
1.0×108 N/m,  

1.0×107 N.m/rad 

Figure 4 shows the energy band of the third characteristic 
wave of the super-cell (consisting of twenty-three spans) of 
the DPV. It is noted that as the first and second characteristic 
waves are highly attenuative, only the energy bands for the 
third characteristic wave are presented. Figure 5 depicts the 
wave mode for the axial displacement at the left ends of 
different spans of the ordered and defected super-cell when 
the frequency is equal to 33.25Hz. 
Table 3 The numbers of the vertical and horizontal boundary element layers 

used to discretize the surface of the half-space soil 

Frequency range BEM for a single pile 
(vertical horizontal) 

0-5Hz 18 18 
5-20 Hz 16 16 
20-40Hz 18 18 
40-50 Hz 20 20 

Figure 4 shows that 33.25Hz is located in a stopband of the 
ordered super-cell while in a passband of the defected 
super-cell, implying that frequency 33.25Hz is a defect state 
frequency for the defected super-cell of the DPV. Figure 5 
indicates that, when the frequency coincides with the defect 
state frequency of the super cell, the axial displacement at the 
left end of the defected span is much larger than those of other 
spans, indicating that the axial displacement of the spans near 
the defected span is amplified significantly due to the 
presence of the defected span. Figure 5 also indicates that, for 
the ordered super cell, the axial displacement decays steadily 
along the spans and no amplification phenomenon occurs.  
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Fig. 4 Influence of the defected span on the energy band of the third 
characteristic wave of the super-cell 
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Fig. 5 The wave modes for the third characteristic wave of the ordered and 

defected super-cells when the frequency equals to 33.25Hz 

VII. CONCLUSIONS 
A model for the analysis of the influence of the defected 

span on the energy bands of the super cell for a DPV has been 
developed in this paper. Although the cross-section of the 
piers and beams are assumed to be uniform, the proposed 
approach is also applicable to the viaduct whose piers and 
beams have non-uniform cross-section if sub-division of piers 
and beams is performed. Alternatively, the finite element 
method can be used to discretize the non-uniform piers and 
beams and similar models can also be developed. Also, our 
model can be easily extended to deal with the DPV with 
several neighboring defected spans.  

Numerical results show that, the defected span in an 
otherwise periodic viaduct will generate additional passband 
and confine the vibration of the DPV around the defected 
span, which makes the DPV more vulnerable when exposed 
to external loads. 
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APPENDIX-- THE FREQUENCY DOMAIN GREEN’S 
FUNCTION FOR A THREE-DIMENTIONAL ELASTIC 

MEDIUM 

The 3-D frequency domain Green’s functions ijU  and ijT  
for an elastic medium have the following forms 

 , ,

1

4ij ij i jU r r 


  , 

,
1

4ij ij j iT
rA r n




      n  

, , , , , ,2j i i j j i i j
r rB n r r r Cr r Dr n           n n  

(A. 1) 

and 
2 1i / i /2 2 2

2 2 2 1 1

2 2 2 2 2

1

( i 1) i
r C r CC C C C Ce e

r r r C r r r

 


   

 

     
 
 
 

, 

2i /2

2 2

2 2

3 3
( i 1)

r CC C e

r r r




 



   

 
1i /2 2

2 1 1

2 2 2

1

3 3
i 1

r CC C C e

C r r r



 



  
 
 
   

(A. 2) 

where / /A d dr r   , 2 /B r  , 2 /C d dr  , 

   2 2

1 2/ 2 / / 2 /D C C d dr d dr r      ,    is the shear 

modulus of the elastic medium, and 1 2,C C  are the 
compressive and shear wave velocities of the elastic medium, 
respectively.  
 


