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Abstract— Optimization is the process of selecting the best 
possible results among many possible results under given 
circumstances. Mathematically it is finding the global maxima or 
minima of a function. This paper concerns with the optimization 
of a cantilever beam. The governing idea is to reduce the mass of 
the beam for a given strength. The cross section under 
consideration is a rectangular one. A Graphical Approach has 
been adopted to plot SOM equations on Matlab to obtain a 
common acceptable domain. A traditional method, Johnson’s 
method was considered to account for fatigue strength of the 
material and obtain optimum dimensions. Finally COMSOL 
software was used to topologically optimize the beam. 
 
Keywords— Structural Optimization, Cantilever Beam, 
Johnson’s method, topological optimization, COMSOL. 

I. INTRODUCTION 
Optimization is a process of selecting the best possible 

results among many possible results under given 
circumstances. Mathematically it is finding the global maxima 
or minima of a function. Structural Optimization is applying 
optimization to conventional design process to get best 
possible value for design variables based on certain criteria. In 
the simplest case it is the process of selection of materials and 
geometry which satisfy specified and implied functional 
requirements while remaining within the confines of 
inherently unavoidable limitations. 

In this time of advancement and development, everything 
comes at a cost. Today, all organizations look at reducing 
liabilities and improving their profit margin. The concept of 
‘A penny saved is a penny earned’ is the guideline that serves 
validly today. Time is also weighed in gold today. Thereby it 
requires a miser’s attitude to achieve results by keeping a tab 
on both of the above parameters which remain vital pillars 
behind any engineering work. Hence arrives the need for 
optimization.  

This paper explores various tools used for optimization. All 
methods are carried out on a cantilever beam of rectangular 
cross-section.  
     A few popular optimization techniques are as follows: 
 
 

Table I 
Optimization Techniques 

Traditional Optimization 
Techniques 

Modern Optimization 
Techniques 

Calculus Methods Genetic Algorithm 
Gradient Based Simulated Annealing 

Geometric Programming Ant Colony Optimization 
Linear Programming Particle Swarm Optimization 
Quadratic Programming Neural Networks 
Dynamic Programming Fuzzy Logic 
Stochastic Programming  
Multi-Objective 
Programming 

 

II. BEAMS 
A beam is a long structural member with a relatively small 

cross-section dimension and is generally subjected to 
transverse forces. Typical applications of beams are: 

 Support floors and ceilings of building 
 Resists bending due to forces on an aircraft beam 
 Bridges 

A. Stresses in Beams 
Internally beams experience compressive, tensile and shear 

stress as a result of loads applied on them. 

 
Fig.1 Simply supported beam showing cross-section 

The primary tool for structural analysis is the Euler-
Bernoulli Equation[5]. Other mathematical methods for 
determining deflection of beams include “method of virtual 
work”[6] and “slope deflection method”.  

Mathematical methods for determining the beam forces 
(internal forces of the beam that are imposed on the beam 
support) include the “moment distribution method”[7], the 
force or “flexibility method”[8] and the “direct stiffness 
method”[9]. 

The fundamental equations used for Graphical and 
Johnson’s Methods are[10]:  

Flexure Equation 
Basic Deflection Equations  
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Deflection Equation for Cantilever Beam 

III. GRAPHICAL METHOD 
This method can be employed for single-objective 

constrained problems involving one or two variables. It’s the 
simplest type of optimization technique and gives results 
which can be used as a reasonably accurate initial-guess for 
more powerful algorithms.  

In this method all the design equations are plotted 
simultaneously. The intersection of these plots gives the          
optimal design using this method.  

The design of the cantilever beam of rectangular cross-
section, subjected to a point end-load falls into this category. 
 

A. Formulation of Design Equations 
The width (x2) and height (x1) of the beam are the design 

variables. 
Input variables are force applied (F), length of the beam (L), 

Young’s Modulus I, Yield Stress (σb), Factor of Safety (FOS), 
max deflection (δmax) and the limits on the height and width of 
the beam. 

The equations derived by author #1 are as follows: 
 Design Vector (X)= (d,b), (x1, x2) 
 Objective Function, 21)( xxLxf    

 Subsidiary Design Equation 1  
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 Subsidiary Design Equation 2 

o Tip Deflection of Cantilever Beam,  
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     The Matlab software used to create a code which will plot 
the equations is given below: 

clear all; 
close all; 
clc; 
FOS= input(‘ Enter the value for FOS= ‘); 
F= input(‘ Enter Force= ‘); 
L= input(‘ Length= ‘); 
E= input(‘ Enter Youngs Modulus for Material= ‘); 
sigma_y= input(‘ Yield Stress of the Material= ‘); 
def= input(‘ Maximum allowable deflection=  ‘); 
a= input(‘ Minimum depth of the beam= ‘); 
b= input(‘ Maximum depth of the beam= ‘); 
darshan1= 6*F*(L^1.5)*FOS/sigma_y; 
x1= a:0.001:b; 
[r,c]=size(x1); 
x2=x1; 
for i=1:1:c 
    x2(1,i)=darshan1/x1(1,i)^2; 
end 
darshan2=4*F*(L^3)/E*def; 
x3=x1; 
for i=1:1:c 
    x3(1,i)=darshan2/x1(1,i)^3; 
end 
plot(x1,x2,x1,x3); 
 
The following input values were fed into the Matlab Code 

Table II 
Graphical Method Input Values 

Parameter Value Units 
L 1000 Mm 
F 2000 N 
E 200e3 Mpa 

 56 Mpa 
Minimum b 14 mm 
Maximum b 200 mm 

 

B. Results of Graphical Method 

 
Fig.2 Plot of Depth vs Width of the two design equations 

By this method, the optimum dimensions of the beam are 
width 38mm and height 76mm. 
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IV. TOPOLOGICAL OPTIMIZATION USING COMSOL 

A. Introduction to Topological Optimization[3] 
Topology optimization is a mathematical approach that 

optimizes material layout within a given design space, for a 
given set of loads and boundary conditions such that the 
resulting layout meets a prescribed set of performance targets. 

Topology means the way parts of an object are connected 
to each other. It is a more general approach than shape and 
size optimization. No prior assumptions of the shape are 
needed to carry out the optimization. 

Topology optimization treats the material distribution, as 
defined by the finite element mesh, as the design variables. 
Each element in the finite element mesh has an additional 
scalar variable that is used to track the presence of the 
material within that element. The set of these scalar variables, 
one per element, are the design variables to be changed in an 
attempt to improve the cost function, while satisfying the 
constraints. 

Despite being a powerful optimization method and easy to 
set up, Topology Optimization has many issues: 

 
1. The optimal design is often not a candidate for 

manufacture 

2. The resultant design has some dependence on the 
mesh size 

3. Difficult to incorporate geometric constraints 

4. Can result in checker-board pattern 

Therefore, topology optimization should be used early in 
the design process as a guide for the overall structure of the 
system. It becomes more difficult to use efficiently when the 
design is already quite rigid and only minor modifications to 
the design are possible. 
B. Topology Optimization Design Steps 
In general, we distinguish the following steps: 
 
Pre-processing of geometry and loading 
•Choose a suitable reference domain (ground structure) 
•Choose the part to be designed (the solid domain and voids) 
•Construct FE mesh for the ground structure 
•Construct FE spaces for displacements and ρ (design 
variables) 
Optimization 
•Compute the optimal distribution over the reference domain 
of the design variable ρ 
•Displacement base FE method analysis 
•Optimality update criteria scheme for the density 
Post-processing of results 
•CAD representation 

C. Methodology[4] 

The model used is the SIMPS (solid isotropic 
material with penalization) method to determine the optimal 
topology. In this model, this means using a model for Young’s 
modulus E such that E = µ(x)pE0, where 0 < µ(x) ≤1. The 
exponent p is a parameter such that p = 1 corresponds to 
ignoring the binary nature of µ whereas higher values of p 
yields more binary structures. In the model, p is set to 5. 

The objective functional for the optimization, which 
defines the criterion for optimality, is the strain energy in this 
model. The control variable is ρdesign , which is constrained, 
using a pointwise constraint, to a value between 10−4 and one 
(1) and, using an integral constraint to be smaller than the area 
of the design domain (the entire beam geometry) times an area 
fraction, which is a parameter area_frac set to 0.5. 
 An integral inequality constraint which provides 
regularization is set up to reduce the dependency on the mesh 
size and prevent check-board pattern solution. Structural Steel 
is used in the model. 
 
 

 
Fig.3 Geometry used in COMSOL 

 

 
Fig.4 Extra-fine mesh used for model 

The optimization solver used is the SNOPT solver. The QP 
solver used is Cholesky. A direct, fully-coupled stationary 
study is carried out. 

 
 

D. Results 

 
Fig 5 2D plot showing deflection and Von-Mises Stress 
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Fig.6 2D plot showing density distribution 

From the above figure it is clear that the regions seen in red 
are highly stressed while the region show in blue has very less 
stress. 

Hence material from the blue region can be scooped out. 
This results is a truss-like lower weight structure which can 
withstand all the forces. 

V. JOHNSON’S METHOD 

A. Introduction 
In this particular methodology, a beam for simplicity 

purpose, is considered to function in a device as spring 
member. The device is to be manufactured in mass quantity, 
and hence the engineer is required to design its elements on 
the basis of minimum cost. The flat spring is to have a force 
gradient of a specified value K1, a specified length of L, 
constant force of F and a predetermined factor of safety N. 
The spring materials generally preferred are phosphor bronze, 
beryllium copper, or spring steel whose mechanical properties 
are given in Table 3.2. An assumption made here is that the 
spring is manufactured with appropriate production methods 
in quantities sufficiently large that the tooling, labor and fixed 
costs will be the same for any feasible design. Thus, the 
problem of optimum design is to select the optimum material 
and the optimum values for the geometrical parameters b and 
h such that the material cost for the manufactured spring is 
minimized.  

The primary design equation expressing the material 
cost for the manufactured spring is 

C=cW=cwV=cwLbh 
C=cwLbh       

where, C is the material cost for the manufactured spring 
which is to be minimised by optimum design, c is the unit 
material cost in US$ per unit weight, w is the weight density 
of the material in N/m3, L is the specified spring length in m, 
and b and h are geometrical parameters whose optimum 
values are determined by the design procedure. Deflection of a 
cantilever beam with end load is given as  
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Above equation is called subsidiary design equation. E is the 
modulus of elasticity of the material and the other terms are as 
specified before. 

Table III 
Material Properties[12] 

A second subsidiary design equation is written to 
express the significant stresses, corresponding to the selected 
theory of failure. Here, the reasonable and generally 
conservative maximum shearing stress criterion for fatigue 

failure is taken. Thereby, 
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The above relation is valid for any reasonable flat spring 
design. Hence, it is concluded with assurance that it is a 
reasonable assumption. Thus, 
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In the above equation, τmax is the greatest shearing stress in the 
beam at any time and others are as specified as before. 
 From fatigue failure criteria, we obtain a limit 
equation. The greatest shearing stress in the bar at any time is 
given by τmax, and according to the variation of force as 
considered, the mean value for that shearing stress is 0.5 τmax. 
Hence,  
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56 
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where, Se is the fatigue strength of the material for the desired 
spring life determined by a reversed bending type of standard 
test, N is factor of safety, and p is the ratio Se/(St)y, where  
(St)y is the published yield strength of the material from a 
simple tensile test. 
 Another limit equation that is taken, so as to consider 
the space restriction existing on the feasible values of the 
geometrical parameter b is,  

bmax >= b >= bmin   
where, bmax and bmin define the range of feasible values for the 
geometrical parameter b. 

B. Formulation of Objective Equations[11] 
  In this case redundant specifications exist as it is 
cumbersome to obtain an equation involving all limit and 
subsidiary equations at the same time. Thus temporarily 
ignore the limit equation involving geometric parameters. 
Eliminating the independent geometric parameters, we can 
write  

22

42

3

3

2
max

1

94)( LF
hb

L
EbhK











  

Rearranging, 
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Substituting above in the primary design equation, C=cwLbh  , 
we get 
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Rearranging it, we have 
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This equation represents the minimum cost parameter which 
would otherwise have been the final design equation if there 
were no geometrical limit equation. Now to consider the limit 
equation involving geometric parameter, we can write from  
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respectively. 
Equating above equations and rearranging we obtain, 
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Substituting above equation in Cmin  we get 
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This is the final design equation in which cost is a function of 
b. On similar lines, we have  
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Substituting above equation in Cmin, we get 
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This is the final design equation in which the cost is a function 
of h. 

C. Matlab Code  
E=input('Enter Youngs modulus of material in Pa :'); 
L=input('Enter length of Beam in m :'); 
c=input('Enter the cost per unit weight of the material in US$/kg*g :'); 
w=input('Enter the weight density of the material in N/m^3 : '); 
S=input('Enter the fatigue strength of material in Pa :'); 
Y=input('Enter the yield strength of the material in Pa :'); 
N=input('Enter the factor of safety :'); 
F=input('Enter the value of force on the free end of the beam in N :'); 
K1=input('Enter the value of force gradient in N/m :'); 
Bmin=input('Enter the min width of the beam cross section in m :'); 
Bmax=input('Enter the max width of the beam cross section in m :'); 
P=(S/Y) 
Cmin=((9/4)*((F^2)*(N^2)/K1)*((c*w*E*(1+P)^2)/S^2)) 
A=(2^(2/3)*(K1^(1/3)*L^2)*((c*w)/E^(1/3))) 
B=(4*K1*L^4*((c*w)/E)) 
b=0:.01:2; 
h=0:.01:2; 
cost1=A*(b.^(2/3)); 
cost2=B*(h.^(-2)); 
subplot(1,2,1) 
loglog(b,cost1,'b-',Bmin,cost1,'r--',Bmax,cost1,'r--',b,cmin,'g-.') 
title('// MATERIAL NAME//') 
xlabel('breadth of beam (b) in m') 
ylabel('cost of beam in US$') 
gtext('Cmin') 
gtext('Bmin') 
gtext('Bmax') 
gtext('Slope = 2/3') 
subplot(1,2,2) 
loglog(h,cost2,'b-',h,cmin,'g-.') 
title('//MATERIAL NAME//') 
xlabel('depth of beam (h) in m') 
ylabel('cost of beam in US$') 
gtext('cmin') 
gtext('Slope = - 2') 

D. Results 
Analysis is done by looking at the variation of C versus b 

and C versus h for material phosphor bronze as a case study. It 
is done so on a log-log sketch by plotting the main design 
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equations with the geometrical limit equations and the 
minimum cost equation. The common region of the lines give 
the range of geometrical values that are optimized. Thus 
taking the log of (3.11) and (3.12) on both sides, we get 
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is a constant. Hence it represents a straight line with slope 
(2/3). Also,  
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with slope (-2).  
 Subsequent coding is done on Matlab for the material 
phosphor bronze with parameters taken in standard units as 
follows, 
E=111*(109), L=25 
c=1, w=89*(103), Se=172*(106), (Se)y=180*(106) 
N=1.5, F=500, K1=100 
bmin=0.025, bmax=0.5 

 
Fig.7 Plot of cost vs geometrical parameters 

VI. CONCLUSIONS 

These methods were applied to a general problem, 
pertinent to a cantilever beam of rectangular cross-section and 
the results were analysed. It was found that: 

Graphical method gave the breadth and height of a 
rectangular cantilever beam based on basic strength of 
material equations 

Johnson’s method furthered the graphical method and took 
into consideration Fatigue strength of material and spring 
stiffness while minimizing the cost. 

Comsol software gave us a cantilever beam which is 
topologically optimized having a truss-like structure which 
has maximum stiffness and volume about half the initial 
volume of the beam. 

This paper attempted to provide a bird-eye view of the 
structural optimization, with a special emphasis on its relation 
to optimization of cantilever beam.  
The future research in this area will continue to address: 
Technologies for structural optimization in conceptual 
design: method for generating innovative design concepts 
through optimization. 
Technologies for large-scale structural optimization: 
efficient approximation methods for large-scale, nonlinear, 
and robust/reliability optimization problems. 
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