
International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 630

Implementing MOD bus and CAN bus Protocol
Conversion Interface

Umesh Goyal1, Gaurav Khurana2
1 M.E., Electronics & Electrical Communications Department, PEC University of Technology, India
2 M.E., Electronics & Electrical Communications Department, PEC University of Technology, India

Abstract—A number of field buses are available to exchange the
serial data among one or more controllers and a number of field
devices that are communicating with each other. However, field
bus standards are not uniform at present, which brings many
difficulties in system design, as different equipments from
different manufacturers follow different standards. For a
reliable system design there is a need of efficient communication
interface to make the communication possible. CAN bus and
Modbus are two most common field buses used in industrial
control equipments. This paper highlights the basics of these
buses and also explain the designing of CAN bus and Modbus
protocol conversion interface. A complete hardware and
software design detail is also provided in this paper.

Index Terms— Modbus, CAN bus, CANopen, PIC,
Microcontroller

I. INTRODUCTION
Any Embedded system is generally consisting of one or

more micro-processors or micro-controller and a number of
peripherals IC’s like EEPROM, Real time clock (RTC),
watchdog timer and sensors etc. In communication system
design, a key challenge is the ability to make different
components from different manufactures communicates with
each other. Many serial communication protocols like RS-
232/RS-485, I2C, SPI, Modbus and CAN bus etc. compete for
use in embedded systems. All these protocols have their own
advantages and limitations. Generally, different manufactures
follow different protocols and standards. This makes the
system integration task very difficult. So there must be some
means to make this task easier. Protocol conversion interface
is one of the possible solutions for this problem. CAN bus and
Modbus are two most common fieldbus protocol used in
industrial control systems.

Fig. 1 System structure

 This paper implement a CAN bus to Modbus protocol
conversion interface. Both sides of serial connections are
isolated galvanically to provide perfect protection against
lightning, surges, high voltage transients. After the brief
introduction of each protocol, this paper briefly explain the
hardware and software design of CAN bus to Modbus
protocol conversion interface. Fig 1 describes the basic
overview of the system i.e. how different devices are
connected in the system [1].

II. PROTOCOL OVERVIEW
A. MOD bus

Modbus is a serial communications protocol published by
Modicon in 1979. MODBUS Protocol defines a standard
message structure with universal recognition and usage
regardless of the type of networks over which any two devices
communicate. It is a master-slave communication protocol. It
describes the process a master uses to request an access to
slave, and how the slave will respond to these requests, and
how errors will be detected and reported. Master can initiate
transactions (called ‘queries’) and slave respond by supplying
the requested data to the master, or by taking the action
requested in the query. The master can address individual
slaves, or can initiate a broadcast message to all slaves. Slaves
return a message (called a ‘response’) to queries that are
addressed to them individually. Responses are not returned to
broadcast queries from the master. Fig 2 describes the Master-
slave query response cycle.

Fig. 2 Modbus master-slave query-response cycle

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 631

Master’s query consists of slave device (or broadcast)
address, a function code defining the requested action, any
data to be sent, and an error checking field. The slave’s
response contains fields confirming the action taken, any data
to be returned, and an error–checking field. Table I shows the
PDU and ADU of Modbus protocol.

Table I

 Modbus data format
 Protocol data unit (PDU)

Application Data unit(ADU)
1 byte 1 byte Variable 2 bytes

Address
field

Function
field

Data field Error
checking

field

 If the slave makes a normal response, the function code in

the response is an echo of the function code in the query. If an
error occurred in receipt of the message, or if the slave is
unable to perform the requested action, the slave will
construct an error message by modifying the function code
(set the MSB of function code) to indicate that the response is
an error response, and the data bytes contain a code that
describes the error.

Modbus protocol can be established in two kinds of

transmission mode: ASCII mode or RTU mode. In ASCII
mode, each 8–bit byte in a message is sent as two ASCII
characters. In RTU mode, each 8–bit byte in a message
contains two 4–bit hexadecimal characters. The main
advantage of RTU mode is that its greater character density
allows better data throughput than ASCII for the same baud
rate. Modbus protocol has the parity check, besides, the
ASCII mode uses the LRC check, and the RTU mode uses 16
CRC check.

Table II is a comparison between ASCII mode and RTU

mode[2].
Table II

Comparison of ASCII and RTU mode
Mode Beginning

marks
Ending
marks

Check Transmission
efficiency

ASCII : (colon) CR,LF LRC low
RTU Non Non CRC High

According to Table I, the data transmission rate of ASCII
mode is a little lower than RTU mode. So, when need to send
large data, user always uses RTU mode. The standard
Modbus protocol is to use a RS-232C compatible serial
interface, which defines the port pin, cable, digital signal
transmission baud rate, parity.

B. CAN bus(Controller Area Network)

The CAN bus was developed by German automotive

system supplier Robert Bosch in mid-1980’s for automotive
applications in automobile systems. CAN is an International
Standardization Organization (ISO) defined serial
communications bus originally developed for the automotive
industry to replace the complex wiring harness with a two-
wire bus. The specification calls for high immunity to
electrical interference and the ability to self-diagnose and
repair data errors. These features have led to can’s popularity
in a variety of industries including building automation,
medical, and manufacturing.

The can communications protocol, iso-11898, describes
how information is passed between devices on a network and
conforms to the open systems interconnection (OSI) model
that is defined in terms of layers. Actual communication
between devices connected by the physical medium is defined
by the physical layer of the model [3]. The ISO 11898
architecture defines the lowest two layers of the seven layer
OSI/ISO model as the data-link layer and physical layer as
shown in figure 3.

Fig. 3 The layered ISO standard 11898 architecture

The CAN communication protocol is a carrier-sense,
multiple-access protocol with collision detection and
arbitration on message priority (CSMA/CD+AMP). CSMA
means that each node on a bus must wait for a prescribed
period of inactivity before attempting to send a message.
CD+AMP mean that collisions are resolved through a bit-wise
arbitration, based on a pre-programmed priority of each
message in the identifier field of a message. The higher
priority identifier always wins bus access, that is, the last
logic-high in the identifier keeps on transmitting because it is
the highest priority as shown in fig 4. For can, the dominant
bit is logic ‘0’ and recessive bit is logic ‘1’.

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 632

Fig.4 Arbitration on a CAN Bus

A CANopen device can be logically structured in three

parts. One part provides the CAN interface and another
part provides the device's application, which controls e.g. the
Input/output (I/O) lines of the device in case of an I/O module.
The interface between the application and the CAN-interface
is implemented in the object dictionary [4]. The object
dictionary is unique for any CANopen device. It is
comparable to a parameter list and offers the access to the
supported configuration- and process data. To gain access to
the object dictionary, each CANopen device has to implement
a CANopen protocol stack [5]. This CANopen protocol stack
is software, which is usually implemented on the same micro-
controller that is used by the device's application software.
The internal device structure is shown in fig 5.

Fig. 5 Internal Device Structure

III. IMPLEMENTATION
A. Hardware design

Design of this CAN bus to MODBUS protocol conversion
interface is done by using PIC32MX-XXX series
microcontroller. This series of microcontrollers has 6 UART
and 2 CAN modules. These on chip modules are appropriate
of the design of protocol conversion interface. This design
also included a CAN trans-receiver (ISO-1050) and As the
MODBUS using the RS-485 serial interface, this design uses
RS485 trans-receiver (ISO-3050). The ISO-1050 is an
isolated CAN transceiver that meets or exceeds the
specifications of the ISO-11898 standard [6] and ISO-3080 is
an isolated full-duplex differential line drivers and receivers.
This CAN transceiver provides differential transmit capability
to the bus and differential receive capability to a CAN
controller at signalling rates up to 1 megabit per second
(Mbps). The internal oscillator circuit of PIC32
microcontroller is used to generate the system clock. This
system is working on a high frequency of 32 MHz. Block
diagram of protocol conversion interface is shown in figure 8.

Fig 6 shows the schematic diagram for MOD bus

communication using RS 485 and Fig 7 shows the schematic
diagram for CAN bus communication.

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 633

J1

12

RS485_1_B

ISOLATED SUPPLY

C1

ISOLATED GND

+5V_ISO

ISOLATED RS485-1
+5V

R13

C3

R10

A-RX+

R14
12K

RS485_RX1
B-RX-

RS485_EN1

GISO_1

Y-TX+
RS485_TX1

U1

ISO3080

GND1
2

GND1
7

GND1
8

R
3

RE
4

DE
5

GND2
15

Z
12

Y
11

B
13

A
14

D
6

VCC1
1

VCC2
16

GND2
9

GND2
10

Z-TX-

R1

R8 12K

GISO_1

C2

R12

R6

R11

R9

PD-'B'

R5

R3

R4R2

R7

ISO_GND

RS485_1_VISO

RS485_1_Y

RS485_1_GISO

RS485_1_Z

RS485_1_A

Fig. 6 Schematic Diagram for MOD bus Communication

R19

+5V
CANL1

CANRX1

CANH1

CANH1
R17

CANL1R21 0E

R15

0E

U2

IS01050

VCC2
8

CANH
7

CANL 6

GND2 5

VCC1
1

RXD
2

TXD3

GND14

C6

C7

C5C4

R20

C8 C9

CANTX1

R16

GISO_3

+5V_ISO

CAN-1 COMMUNICATION

ISO_GND

CAN_H1

CAN1_GISO

R18
CAN_L1

C10

CAN1_VISO

J2

12

Fig. 7 Schematic Diagram for CAN bus Communication

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 634

CAN1_GISO

CAN_L1

CAN_H1

CAN1_VISO

RS 485

 FOR MODBUS

CAN

P
I
C
3
2
M
X

M
i
c
r
o
c
o
n
t
r
o
l
l
e
r

ISO1050

RS485_EN1

RS485_RX1

RS485_TX1

MODBUS CANBUS

RS485_1_VISO

RS485_1_GISO

RS485_1_Z

RS485_1_Y

RS485_1_A

RS485_1_B

CANRX1

CANTX1

Fig. 8 Conversion Interface

B. Software design

This protocol conversion interface is working on Master-
slave technique and only master can initiate the
communication. Here CAN bus is chosen as the master and
MODBUS as slave i.e. only CAN bus can start the
communication and MODBUS devices can respond
according to request made by the master. The whole
communication is controlled by an event driven interrupt.
Whenever CAN master want to communicate with a device
connected over the MODBUS then it generate an interrupt.
On receiving this interrupt, CPU enters into an interrupt
service routine (ISR). In this routine, CPU receive the data
from CAN master and checks the integrity of the data using
CRC check. If data is found to be valid then program enters
into a routine which convert this data into MODBUS
format. This format contain slave address, function code,
data field and CRC field. Thus this conversion interface
encapsulates the data in Modbus protocol format to send to
the Modbus site. Now slave device receives the data and
responds back with the response data. Conversion interface
receives this response data. After receiving message
conversion interface analyses data, and then convert to
CAN protocol format, send to master. Note that, due to the
length of CAN bus data transmission up to 8 bytes, if
Modbus protocol transmits data is longer than 8 bytes it
will send data many times.

C. Flow Chart

The flow chart as shown in figure 9 described the working
of the system i.e. how the data from one bus is sent to other
bus with their data formats changed using PIC32MX
microcontroller.

Fig. 9 Flow Diagram of Conversion Interface

International Journal of Engineering Trends and Technology (IJETT) - Volume4Issue4- April 2013

ISSN: 2231-5381 http://www.ijettjournal.org Page 635

IV. RESULTS
By using the hardware and software logic as explained

above CAN bus to Modbus protocol conversion interface is
implemented and results are shown in figure 10 and 11.
Figure 10 shows the data sent by CAN bus device to the
protocol conversion interface and figure 11 shows the data
sent by protocol conversion interface to Modbus device.

Fig. 10 data from CAN bus to conversion interface

Fig. 11 data from conversion interface to Modbus.

REFERENCES
[1] Guohuan Lou, Zhang Hao, Zhao Wei, “Research on Designing

Method of CAN Bus and Modbus Protocol Conversion Interface”.
In Proceeding of 2009 International Conference on Future Bio-
Medical Information Engineering.

[2] Modbus Application Protocol Specification V1.1b, Modbus-IDA,
December 2006, pp. 1-51, [Online] available at
http://www.modbus-IDA.org.

[3] H. Boterenbrood, “Canopen high-level protocol for CAN-bus,”
NIKHEF, Amsterdam, March 20, 2000.

[4] Rao Yuntao. Principle and Application of CAN field bus
technology.

[5] Rauchhaupt L., System and Device Architecture of a Radio Based
Fieldbus -The RFieldbus System[C], In Proceeding of the 2002
IEEE International Workshop on Factoty Communication Systems,
2002,8.pp.193-202

[6] ISO-IS 11898 Road vehicles - Interchange of digital information -
Controller Area Network (CAN) for high speed communication,
1993

Umesh Goyal, born on 18 July 1990 at Moga, Punjab, India. He is

currently pursuing Masters in Engineering in
Electronics field from PEC University of
Technology, Chandigarh, India. His Masters in
Engineering will be completed by June, 2013.
He has completed his Bachelors of Technology
in Electronics and Communication Engineering
from Chitkara Institute of Engineering &
Technology, Punjab, India in year-2011. The
major field of his work is related to Electronic
Embedded Systems, Digital Signal Processing,
and System Design.

Gaurav Khurana, born on 07 September 1987 at Ambala Cantt, Haryana,

India. He is currently pursuing Masters in
Engineering in Electronics field from PEC
University of Technology, Chandigarh, India.
His Masters in Engineering will be completed
by June, 2013. He has completed his Bachelors
of Technology in Electronics and
Communication Engineering from Ambala
college of Engineering & Applied research,
mithapur, Haryana, India in year-2009.
The major field of his work is related to
Microcontroller and Embedded Systems,

Digital Signal Processing and digital communication.

