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Abstract—This paper presents free vibration analysis of an edge 

cracked functionally graded cantilever beam. The differential 

equations of motion are obtained by using Hamilton’s principle. 

The considered problem is investigated within the Euler-

Bernoulli beam theory by using finite element method. The 

cracked beam is modeled as an assembly of two sub-beams 

connected through a massless elastic rotational spring. Material 

properties of the beam change in the thickness direction 

according to exponential distributions. In order to establish the 

accuracy of the present formulation and results, the natural 

frequencies are obtained, and compared with the published 

results available in the literature. Good agreement is observed. 

In the study, the effects of the location of crack, the depth of the 

crack and different material distributions on the natural 

frequencies and the mode shapes of the cracked functionally 

graded beams are investigated in detail.  
 
Keywords—Open edge crack, Free vibration, Functionally 

graded materials, Finite element analysis 

 

I. INTRODUCTION 

The effect of crack on the vibration behavior is an important 

topic in structural safety assessment and has received 

increasing research efforts. 

 

Functionally graded materials (FGMs), a novel class of 

composites whose composition varies continuously as a 

function of position along thickness of a structure to achieve a 

required function. Functionally graded  structures have been 
an area of intensive research overthe last decade. 

 

In the literature, the free vibration and dynamic behavior of 

homogeneous cracked beams have been extensively studied 

[1-27]. In recent years, the dynamic behavior of cracked FGM 

beams has been a topic of active research. Sridhar et al. [28] 

developed an effective pseudo-spectral finite element method 

for wave propagation analysis in anisotropic and 

inhomogeneous structures with or without vertical and 

horizontal cracks. Briman and Byrd [29] studied the effect of 

damage on free and forced vibrations of a functionally graded 
cantilever beam. Yang et al. [30] investigated an analytical 

study on the free and forced vibration of inhomogeneous 

Euler–Bernoulli beams containing open edge cracks that the 

beam is subjected to an axial compressive force and a 

concentrated transverse load moving along the longitudinal 
direction. Yang and Chen [31] investigated free vibration and 

buckling analysis of FGM beams with edge cracks by using 

Bernoulli–Euler beam theory and the rotational spring model. 

Free vibration and elastic buckling of beams made of FGM 

containing open edge cracks are studied within Timoshenko 

beam theory by Ke et al. [32]. Yu and Chu [33] studied the 

transverse vibration characteristics of a cracked FGM beam by 

using the p-version of finite element method. Ke et al. [34] 

investigated the post-buckling analysis of FGM beams with an 

open edge crack based on Timoshenko beam theory and von 

Kármán nonlinear kinematics by using Ritz method. Matbuly 
et al. [35] studied the free vibration analysis of a cracked 

FGM beam resting on a Winkler–Pasternak foundation by 

using differential quadrature method. Ferezqi et al. [36] 

studied an analytical investigation of the free vibrations of a 

cracked Timoshenko beam made up of FGM. Yan et al. [37] 

studied dynamic response of FGM beams with an open edge 

crack resting on an elastic foundation subjected to a transverse 

load moving at a constant speed. Akbaş [38] investigated 

static analysis of an edge cracked FGM beam resting on 

Winkler foundation by using finite element method. Yan et al. 

[39] investigated the nonlinear flexural dynamic behavior of a 
clamped Timoshenko beam made of FGM with an open edge 

crack under an axial parametric excitation which is a 

combination of a static compressive force and a harmonic 

excitation force based on Timoshenko beam theory and von 

Kármán nonlinear kinematics. Wei et al. [40] studied the free 

vibration of cracked FGM beams with axial loading, rotary 

inertia and shear deformation by using an analytical method. 

In a recent study, Akbaş [41] investigated geometrically 

nonlinear analysis of edge cracked Timoshenko beam by 

using Total Langragian finite element method. 

 

In the literature studies, the effect of the parameter of FGM 
property distribution on response of vibration and crack is 

limited in numerical results. To obtain more realistic answers 

and understand to edge cracked FGM beam, more the 

parameter of FGM property distribution must be used in
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 numerical results. Hence, a lot of the parameters of FGM 

property distribution are used in this study. 

 

The differential equations of motion are obtained by using 

Hamilton’s principle. The considered problem is investigated 
within the Euler-Bernoulli beam theory by using finite 

element method. The cracked beam is modeled as an assembly 

of two sub-beams connected through a massless elastic 

rotational spring. Material properties of the beam change in 

the thickness direction according to exponential distributions. 

In the study, the effects of the location of crack, the depth of 

the crack and different material distributions on the natural 

frequencies and the mode shapes of the functionally graded 

beams are investigated in detail. Also, some of the present 

results are compared with the previously published results to 

establish the validity of the present formulation. 

II. THEORY AND FORMULATIONS 

Consider a cantilever FGM beam of length L, width b, 

thickness h, containing an edge crack of depth a located at a 

distance 
1

L  from the left end as shown in Figure 1. It is 

assumed that the crack is perpendicular to beam surface and 

always remains open. 

 
Figure 1. A cantilever FGM beam with an open edge crack 

and cross-section. 

 
In this study, Young’s modulus ( )E Y  and mass density 

( )Y  vary continuously in the thickness direction ( Y axis) 

according to exponential distributions as follows; 
 

0( ) YE Y E e ,   0( ) YY e                               (1) 

 

A. Governing equation of free vibration of intact FGM beams 
 

Acoording to the coordinate system (X,Y,Z)  shown in figure 1, 

based on Euler-Bernoulli beam theory, the axial and the 

transverse displacement  field are expressed as 

                                

0

0

,
-

( )
( , , ) ( , )

v X t
u u Y

X
X Y t X t                       (2) 

 

0
( , , ) ( , )v vX Y t X t                                            (3) 

 

Where 0u  and 0v  are the axial and the transverse 

displacements in the mid-plane, t  indicates time. Using Eq. 

(2) and (3), the linear strain- displacement relation can be 

obtained: 

                     
2

0 0

2

, ,( ) ( )
xx

u X t v X tu
Y

X X X
      (4) 

 

According to Hooke’s law, constitutive equations of the FGM 

beam are as follows: 

                  

2

0 0

2

, ,( ) ( )
( ) ( )

xx xx

u X t v X t
Y

X X
E EY Y         (5) 

 

Where xx and xx are normal stresses and normal strains 

in the X direction, respectively. Based on Euler-Bernoulli 

beam theory, the elastic strain energy (V) and kinetic energy 

(T) of the FGM beam are expressed as 

0

1

2

L

xx xx

A

V dAdX                                             (6) 

                                  
2 2

0 A

1
( )

2

L
u v

T Y dAdX
t t

              (7) 

 
With applying Hamilton’s principle, the differential equations 

of motion are obtained as follows: 

                          
2 2 2 2

0 0 0 0
1 22 2 2 2XX XX

u v u v
A B I I

X X t t X
         (8) 

                  
2 22 2 2

0 0 0 0
3 12 2 2 2 2XX XX

u v v v
B D I I

X X X X t X t
         (9) 

 

The stiffness components are defined as 

                
2, , (1, , )( )( )

A

XX XX XXB Y YE Y dAA D           (10) 

2

1 2 3, , ( )(1, , )( )
A

I Y YY dAI I                            (11) 

 
B. Finite Element Formulations 

 
The displacement field of the finite element shown is 
expressed in terms of nodal displacements as follows: 

                      

10 1 2 2( , ) ( ) ( ) ( ) ( )
U Ue

X t X t X tu u u                (12)
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( ) ( ) ( )

( ) ( )

0 1 1 2 1

3 2 4 2
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( ) ( ) ( ) ( )

e V V

V V

X t X t X t

X t X t

v v

v

               (13) 

 

where 
i

u , 
i

v  and 
i

 are axial displacements, transverse 

displacements and slopes at the two end nodes of the beam 

element, respectively. 
( )U

i
 and 

( )

i

V
 are interpolation 

functions for axial and transverse degrees of freedom, 

respectively, which are given in Appendix. Two-node beam 

element shown in figure 2. 
 

 
Figure 2. A two-node beam element 

 

With using the standard procedure of the Galerkin finite 

element method, the stiffness matrix and the mass matrix are 

obtained according to Eqs. (8) and (9). The equation of motion 

as follows: 

                                                     

0{ } { }q qK M                                        (14) 

 

where [ ]K  is the stiffness matrix and [M] is the mass matrix. 

{ }q  is nodal displacement vector which as follows 

 

, ,{ } { }Tu vq                                                             (15) 

 

The components of the stiffness matrix [ ]K : 

 

T

A B

B D

K K

K K
K ,                      (16a) 

Where 

0

( ) ( )e
TL

XX

U U
A A

d d
K dX

dX dX
,                      (16b) 

 

0

2

2

( ) ( )e
TL

XX

V U
B B

d d
K dX

dXdX
,                 (16c) 

 

0

2 2

2 2

( ) ( )e
T

L

XX

V V
D D

d d
K dX

dX dX
,                 (16d) 

 

The mass matrix M  can be expressed as a sum of four sub-

matrices as shown below: 

                                            

U V UM M M M M                    (17) 

 

Where 
UM , 

V
M  and M  are the contribution of u, v 

and  degree of freedom to the mass matrix, UM  is 

coupling mass matrix due to coupling between u and . 

Explicit forms of [ ]M  are given in Appendix.   

 
C. Crack Modeling 

 
The cracked beam is modeled as an assembly of two sub-

beams connected through a massless elastic rotational spring 

shown in figure 3. 

 

 
Figure 3. Rotational spring model. 

 

The bending stiffness of the cracked section 
T

k  is related to 

the flexibility G by 
 

1
T

k
G

                                                         (18) 

 

Cracked section’s flexibility G can be derived from Broek’s 

approximation [42]: 

                                                   
2 2 2

1 dG

2 da( )

( )
I

K M

E a
                                  (19) 

 

where M  is the bending moment at the cracked section, 
I

K  

is the stress intensity factor (SIF) under mode I bending load 

and is a function of the geometry, the loading, and the 

material properties as well.  indicates Poisson’s ratio which  
is taken to be constant since its influence on the stress 

intensity factors is quite limited [43]. For an FGM strip with 

an open edge crack under bending, the analytical solution and 

the expression of SIF is given Yu And Chu [33] that obtained 

from the data given by Erdogan and Wu [43] through 

Lagrange interpolation technique: 

                                          

2

6
, /( )

I R

M
K a F

bh
E a h                     (20) 

 

Where, a  is crack of depth, 
R

E  is the ratio of Young’s 

modulus of bottom and top surfaces of the beam ( /
B T

E E )
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 and F  is an unknown function of two independent variables. 

The function F  is can be expressed as follows [33]; 
 

2 3

2

2

1 2 3 4 5 6

2 3

7 8 9 10 11

ln ln ln / /

1 ln ln / / /

[ ] [ ] ( ) ( )
, /

[ ] ( ) ( ) ( )

( ) ( ) ( )

( ) ( )
( ) R R R

R R

R

p p E p E p E p a h p a h
F

p E p E p a h p a h p a h
E a h  (21)  

            

Where the coefficients 1p , 2p , …, 10p , 11p =1.1732, -

0.3539, 0.0289, -0.0061, 0.6625, 3.072, -0.0014, -0.0017, 

1.9917, -0.3496, -3.0982 are given in Yu And Chu [33] that 
are determined by fitting Eq. (20) based on the least square 

method to the numerical values of the SIF for specific material 

gradients and normalized crack size given by Erdogan and Wu 

[43]. 

 
The spring connects the adjacent left and right elements and 
couples the slopes of the two FGM beam elements at the crack 

location. In the massless spring model, the compatibility 

conditions enforce the continuities of the axial displacement, 

transverse deflection, axial force and bending moment across 

the crack at the cracked section (
1

X L ), that is, 

1 2
u u , 1 2

v v , 1 2
N N , 1 2

M M                        (22) 
 

The discontinuity in the slope is as follows:  
 

   1 2
1 2 1( )

T T
k k

dv dv
M

dX dX
          (23) 

 

Based on the massless spring model, the stiffness matrix of 

the cracked section as follows: 

                             

( )

1/ 1/

1/ 1/
[ ] T T

T T

Cr

k k

k k

G G
K

G G
  (24) 

 

The stiffness matrix of the cracked section is written 

according to the displacement vector: 

    

1 2( ) ,{ } { }T
Crq                                                      (25) 

 

Where 
1
 and 

2
 are the angles of the cracked section. With 

adding crack model, the equations of motion for the finite 

element and by use of usual assemblage procedure the 
following system of equations of motion for the whole system 

can be obtained as follows: 
 

( ) 0([ ] [ ] ){ } [ ]{ }Cr M qK K q                (26) 

 

If the global nodal displacement vector { }q  is assumed to be 

harmonic in time with circular frequency , i.e 

{ } { } i t
eq q  becomes, after imposing the appropriate end 

conditions, an eigenvalue problem of the form: 

 
2

( ) 0[ ]([ ] [ ] ){ }CrK K qM                    (27) 

 

Where { }q  is a vector of displacement amplitudes of the 

vibration. The dimensionless quantities can be expressed as 
 

0

10

, ,

, , BB
R R

T T

X
X

LD
I

Y

h

E
Y

E
E

                                   (28) 

 

Where  is the dimensionless frequency, 
R

E  is the ratio of 

Young’s modulus of bottom and top surfaces of the beam, 
R

 

is the ratio of mass density of bottom and top surfaces of the 

beam. 0D  and 10I  indicate the value of 
XX

D  and 
1

I  of an 

isotropic homogeneous beam. 

 

III. NUMERICAL RESULTS 

In the numerical examples, the natural frequencies and the 

mode shapes of the beams are calculated and presented in 

figures for different the location of crack,s the depth of the 

cracks, material distributions. The beam considered in 

numerical examples is made of Aluminum 

( 70 ,E GPa 0.33,
3

2780 /kg m ) which the material 

constants change exponentially as in Eq. (1). The top surface 

of the FGM beam is Aluminum. In the numerical integrations, 

five-point Gauss integration rule is used. Unless otherwise 

stated, it is assumed that the width of the beam is 0.1b m , 

height of the beam is 0.1h m  and length of the beam is 

30L h  in the numerical results. In the numerical 

calculations, the number of finite elements is taken as n = 100. 

 
In order to establish the accuracy of the present formulation 

and the computer program developed by the author, the results 

obtained from the present study are compared with the 

available results in the literature. For this purpose, the 

fundamental frequency of a cantilever isotropic homogeneous 
beam with an open edge are calculated for various the location 

of crack (
1
/L L ) for 0.2L m , 0.0078h m , / 0.2a h , 

216 ,E GPa  
3

7850 /kg m , 0.28,  and compared 

with those of Kısa et al. [3] and Ke et al.[32]. As seen from 

Table 1, the present results are close to the results of Kısa et al. 

[3] and Ke et al.[32]. 
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TABLE I 

Fundamental frequency 
1
 of a cantilever isotropic homogenous beam with 

an edge crack 

 1
/ 0.2L L

 
1

/ 0.4L L

 
1

/ 0.6L L

 

Intact 

Beam 

Present 1021.6 1031.2 1036.2 1037.09 

Kısa et 
al. [3] 

1020.0137 1030.095 1035.284 1037.0189 

Ke et 
al.[32] 

1020.098 1029.853 1034.932 1037.0106 

 
To further verify the present results, the dimensionless 

fundamental frequency of a FGM cantilever beam without 

crack are calculated for various 
R

E  ratio for / 20L h  

compared with those of Yang and Chen. [31] and Ke et al.[32]. 

As seen from Table 2, the present results are in good 

agreement with that the results of Yang and Chen. [31] and Ke 

et al.[32]. 

 
TABLE II 

Comparison of the dimensionless fundamental frequency 
1
 of intact FGM 

beams 

RE  Present 
Yang and 
Chen [31] 

Ke et 
al.[32] 

0,2 0.8283 0.83 0.8235 

1 0.8786 0.88 0.8752 

5 0.8283 0.83 0.8235 

 

In figure 4, the effect of Young’s modulus ratio 
R

E  on the 

dimensionless fundamental frequency 
1

 of edge cracked 

FGM beams (
1

/ 0.05L L ) is shown for different the crack 

depth ratios /a h .  
 

 

Figure 4 The effect of Young’s modulus ratio 
R

E  on the 

dimensionless fundamental frequency 
1
 for different the 

crack depth ratios /a h . 

 

It is seen from figure 4 that with increase in the crack depth, 

the fundamental frequency decreases, as expected. It is an 

interesting point for Fig. 4 that there is an exponential 

symmetry with respect to the vertical line at 1
R

E  for intact 

FGM beam ( / 0a h ) that the effective material properties 

are expressed as an exponential function (Eq. 1). It is seen 

from figure 4 that the dimensionless fundamental frequencies 

of Young’s modulus ratios 2
R

E  and 0.5, 5
R

E  and 0.2, 

8
R

E  and 0.25… etc. are same for intact FGM beam 

( / 0a h ). Because their values of 
10 10/I A  are almost 

identical. It is pointed before that 10I  and 10A  indicate the 

value of 1I  and XXA  of an isotropic homogeneous beam, 

respectively. There is no an exponential symmetry with 

respect to the vertical line at 1
R

E  for cracked FGM beam 

( / 0a h ). Hence, the dimensionless fundamental frequencies 

of Young’s modulus ratios 2
R

E  and 0.5, 5
R

E  and 0.2, 

8
R

E  and 0.25… etc. are not same for cracked FGM beam 

( / 0a h ). With increase Young’s modulus ratio 
R

E , the 

fundamental frequency increases for cracked beam. It is 

observed from figure 4 that there are significant differences of 

the mechanical behaviour for the cracked and intact FGM 

beams. 

 

In figure 5, the effect of Young’s modulus ratio 
R

E  on the 

dimensionless fundamental frequency 
1

 of edge cracked 

FGM beams ( / 0.6a h ) is shown for different the crack 

locations (
1

/L L ) from the left end. 

 

 

Figure 5 The effect of Young’s modulus ratio 
R

E  on the 

dimensionless fundamental frequency 
1
 for various the 

crack locations (
1

/L L ) 

 

It is obviously observed from figure 5 that with the crack 

locations get closer to the left end, the fundamental frequency 

decreases. Because the fixed support has the most stress, 
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strain and the rigidity point in the beam. Hence, the crack 

gets closer to fixed support, the beam gets more flexible. The 

crack gets closer to free end, the effect of crack on the 

fundamental frequency for FGM beam decrease. An another 

result of the figure 5 that with the increase Young’s modulus 

ratio 
R

E , the difference between with cracked and intact of 

FGM beam decreases seriously. It shows that with the suitable 

choice of 
R

E , the negative effects of the crack can be reduced. 

Also, it is seen figure 5 that with the crack gets closer to free 

end, the vibration characteristics of cracked beam seem like 

intact beam. It is observed the results; the distribution of the 

material plays an important role on the vibration 

characteristics. 

 

In figure 6, the effect of crack locations (
1

/L L ) from the left 

end on the dimensionless fundamental frequency 
1
 of edge 

cracked FGM beams ( / 0.6a h ) are shown for 2
R

E  and 

0.5
R

E . 

 

 
Figure 6 The effect of crack locations (

1
/L L ) on the 

dimensionless fundamental frequency 
1
 for 2

R
E  and 

0.5
R

E . 

 

It is seen from figure 6 that there is a significant difference 

between 2
R

E  and 0.5
R

E  in case of the lower value of 

1
/L L . It is mentioned before in the results of the figure 4 that 

the dimensionless fundamental frequencies of Young’s 

modulus ratios 2
R

E  and 0.5
R

E  are same in the case of 

intact beam situation. In case of the crack situation, the 

dimensionless fundamental frequencies of Young’s modulus 

ratios 2
R

E  and 0.5
R

E  are different. It is seen figure 6 

that with the crack gets closer to free end, the difference 

between of 2
R

E  and 0.5
R

E  decrease. Because, with 

the crack gets closer to free end, the effect of crack on the 

vibration characteristics of the beam decrease and the cracked 
beam seems like intact beam. It is observed the results; the 

crack locations have a great influence on the vibration 

characteristics of the FGM beam. 

 
In figure 7, the effect of the crack depth ratio /a h  on the 

dimensionless fundamental frequency 
1

 of edge cracked 

FGM beams (
1

/ 0.05L L ) are shown for 2
R

E  and 

0.5
R

E . 

 

 
Figure 7 The effect the crack depth ratio /a h  on the 

dimensionless fundamental frequency 
1
 for 2

R
E  and 

0.5
R

E . 

 

It is seen from figure 7 that with increase in the crack depth 

ratio /a h , the difference between the dimensionless 

fundamental frequency of 2
R

E  and 0.5
R

E  increases. 

Although the dimensionless fundamental frequencies of 

Young’s modulus ratios 2
R

E  and 0.5
R

E  are same in the 

intact beam, there is a significant difference between with 

2
R

E  and 0.5
R

E  for different crack depth ratio /a h . 

 

Figure 8 displays the effect of crack depth ratio /a h  on the 

first and second normalized vibration mode shapes for 

2
R

E , 
1

/ 0.05L L . Figure 9 displays the effect of the 

crack location 
1

/L L   on the first and second normalized 

vibration mode shapes for 2
R

E , / 0.6a h . 

 

 
Figure 8 The effect the crack depth ratio /a h  on the a) first 

and b) second normalized vibration mode shapes. 
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Figure 9 The effect the crack location 

1
/L L  on the a) first 

and b) second normalized vibration mode shapes. 

 

It is seen from figure 8 and figure 9 that the crack depth ratio 

/a h  and the crack location 
1

/L L  play important role on the 

vibration mode shapes.  

 

IV. CONCLUSIONS 

 

Free vibration analysis of an edge cracked FGM cantilever 
beam is investigated within the Euler-Bernoulli beam theory 

by using finite element method. Material properties of the 

beam change in the thickness direction according to an 

exponential function. The differential equations of motion are 

obtained by using Hamilton’s principle. The cracked beam is 

modeled as an assembly of two sub-beams connected through 

a massless elastic rotational spring. The obtained results are in 

a very good harmony with the related available results in the 

literature. The influences of the location of crack, the depth of 

the crack and different material distributions on the natural 

frequencies and the mode shapes of the FGM beams are 
examined in detail.  

 

The following conclusions are reached from the obtained 

results: 

(1) The crack locations and the crack depth have a great 

influence on the vibration characteristics of the FGM beam. 

(2) The distribution of the FGM plays an important role on the 

vibration characteristics. 

(3) There are significant differences of the mechanical 

behaviour for the cracked and intact FGM beams. 

(4) With the suitable choice of the distribution of the FGM, 

the negative effects of the crack on the beam can be reduced. 

 
Appendix 

 

The interpolation functions for axial degrees of freedom are 

 
( ) ( ) ( )

1 2( ) ( ) ( )[ ]U TU UX X X ,                     (A1) 

 

Where 

 

1

( )
1( )U

e

X
X

L
,                                     (A2) 

2

( ) ( )U

e

X
X

L
,                       (A3) 

 

The interpolation functions for transverse degrees of freedom 

are 

 
( ) ( ) ( ) ( ) ( )

1 2 3 4( ) ( ) ( ) ( ) ( )[ ]V V V V V TX X X X X ,    (A4) 

 

Where 

1

2 3

2 3

( ) 3 2
( ) 1V

ee

X X

L L
X ,                                    (A5) 

2

2 3

3

( ) 2
( )

e e

V X X

L L
X X ,                      (A6) 

3

2 3
( )

32

3 2
( )

e

V

e

X X
X

LL
,                       (A7) 

( )

4

2 3

3
( )V

e e

X
X X

L L
,                      (A8)

      

Where 
e

L  indicates the length of the finite beam element.  

The components of the mass matrix [ ]M : [ ]UM , [ ]VM , 

[ ]M  and [ ]UM  are as follows 

1

0

( ) ( )[ ][ ] [ ]
e

L

U T U

U IM dX                                     (A9) 

1

0

( ) ( )[ ][ ] [ ]
e

L

V T V

V IM dX                     (A10) 

( )

3

0

( )

[ ]
e

TL VV
d d

I
dX dX

dXM                                   (A11) 

2

0

( ) ( )
( ) ( )[ ]

e
TL V V

T
U U

U I
d d

M dX
dX dX

    (A12) 
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