
International Journal of Engineering Trends and Technology Volume 70 Issue 4, 360-372, April 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I4P231 © 2022 Seventh Sense Research Group®

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article
Hybrid State Analysis with Predictive Model

Control on Memory Controller using Machine

Learning Algorithms

Vijayalakshmi ch1, Jaikaran Singh2

1,2Department of ECE, LNCT University, Madhyapradesh, India.

1vijji.lnctphd@gmail.com

Received: 13 February 2022 Revised: 20 March 2022 Accepted: 26 March 2022 Published: 30 April 2022

Abstract - The design perspective of the memories and their implementation have become computational storage for all the

different scenarios of applications governed by the current AI market. The feature of low latency devices or hardware for the

application on Mobiles, laptops, etc., is implicated with AI technology with improved memory control and power modules

encapsulating the output performance. One such model and structural changes have been implemented with the Hybrid model

on low latencies with probabilities, also the memory bandwidth of the proposed controller and memory unit utilized in Wireless

applications. With the feature of Area, power, and delay, our Design investigates the feature of reliability of the data storage

on the memory model and its formulation approach for low latency. An intuitive approach to gate-level Design with flash

memories is implicated with predictive memory array structures for the low area and power efficiency.

Keywords - Built-in self-test (BIST), Computational Memory Architecture (CMA), Design for testability (DFT).Field-

programmable gate array (FPGA), Processing Elements (PEs).

1. Introduction
There was a huge growth in the want for laptop

processing capability during the preceding decade. Because

of the increasing need for computing capacity, heterogeneous

systems, comprised of a range of high-performance

processing devices, have been created in response to this

demand. [1] Field-programmable gate array (FPGA) and

other similar components are used with standard CPUs to

create a high-speed network. It is possible to considerably

increase the performance of computationally intensive

applications by merging numerous Processing Elements

(PEs), which provide a considerable speed boost. [2] When

examining the numerous aspects of the design views and

efficiency of the homogeneous system, the energy

consumption of the homogeneous system would entail a

significant application value. Reconfigurable computing has

progressively risen in popularity since its introduction at the

beginning of the previous decade to speed up

computationally intensive applications. FPGAs are a

particularly attractive choice if you're looking for a high-

performance solution for the implementation and realization

of the hardware of computationally intensive applications.

The ability to program or reconfigure a chip to perform a

different function for each application distinguishes it as

programmable or reconfigurable. When used in conjunction

with FPGAs capable of executing specialized application

processors, the flexibility of general-purpose processors may

be increased. The hardware designer must map hardware to

FPGAs to customize the hardware for a specific application.

With the selection of various domains, FPGA has emerged as

a key component of sleek Design and scalable architecture.

FPGAs have become more popular due to their ability to

include a large number of parallel arithmetic and logical

units and their high memory bandwidth[3]. When a multi-

core CPU and FPGA devices [1–5] are combined, the goal is

to increase the speed of computationally demanding

applications. When developing FPGA-based total hardware

accelerators, the construction of a reliable device for facts

switch among the external memory and the hardware

accelerator itself is the toughest task to deal with. Generally

speaking, the time had to retrieve data from external memory

is the important thing stumbling block in most FPGA-based

systems.

Machine learning, deep learning, photograph/video

processing, and big data are all examples of compute-

intensive programs that need to be used when coping with

big amounts of records (or facts). [4-5] Because FPGAs do

not have sufficient on-chip memory to fulfil the workload,

the records to be processed at the FPGA should be stored and

retrieved from off-chip memory. It is much slower in the

case of compute-extensive packages to get admission to

information from external memory than utilizing FPGA-

based total hardware accelerators. Consequently, the

confined memory bandwidth has a detrimental influence on

the overall performance of hardware accelerators, as

previously stated.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:1vijji.lnctphd@gmail.com

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

361

2. Existing Model
2.1 ASP-MC

[16] This model from the design feature represents the

specific scenario where a single application is only intended

for the device. Considering the figure, we have the Read and

write address feature with 64bits is the implication with the

Data unit and control unit. To access the data governing the

different process models with elements based on the

condition aspects that interface the data and control unit. The

process elements are key aspects for control and R/W

operations for each set of core modules introduced for the

application-specific processing.

Fig. 1 ASP-MC operational diagram

[17] The output memory keeps the consequences

produced after the FPGA processes the information. In the

case of reading controllers, they're in charge of transmitting

the alerts required to read data from many input memory

locations at an identical time from the equal area. In a similar

vein, the write controller sends a signal to the write

controller, teaching it to write data to several output memory

locations simultaneously. The main controller is in charge of

controlling the Read and write controllers, respectively. In

the case of the basic and sophisticated cores, ASP

demonstrates that they can process 32-bit data, but the

memory on the FPGA board can process 64-bit data. When

using a single input and output memory, PE cores are had to

method 64-bits of records from the input memory and write

64-bits of records to the output memory, assuming that our

structure contains simply one input and one output memory.

As an effect, c cores will be needed to investigate the

information for a total of m memories, resulting in a

complete of m memories. In this example, it's possible to

have a 2:2 Memory model on the same laptop (m should be

even). Figure 2 depicts the memory structure we utilized in

our studies, with two inputs and outputs (right).

Fig. 2 Memory architecture that we used in our research

The one-input, one-output memories structure is

required to develop the multiple, two-data memory

architecture [17]. Four Natural Logarithm function cores are

contained inside the two-input, two-output memory

architecture frame. There are many procedures performed by

it, including taking four 32-bit floating-point values from the

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

362

input ram and, after they have been processed, outputting

four 32-bit floating-point values to the output memory after

they have been processed.

Fig. 3 The traditional floating-point operation core

[20] The consequence is that it is adept at accessing data

from and into memory up to 128 bits in size. Compared to

the one-input, one-output memory design, the multiple,

separate memory architecture delivers two times the speed

up. Specifically, data processing speed is doubled when a

memory architecture with two inputs and two outputs is used

compared to a system with one input and one output. The

four-core architecture requires twice the amount of hardware

to execute all memory interfaces and lower overall

processing time by a factor of two. With a floating-point

value of 1, the traditional floating-point operation core is

shown in Figure 3.

[21] The functionality of the design model where our

feature has one or more floating-point inputs of single

precision and one or more floating-point outputs of single

precision; is true for all of the functions in our project. The

Enable and Done pins provide a basic structured control

interface that is easy to use. The ASP can communicate with

any of the cores with relative ease. When valid data is

available on the inputs, the Enable Pin indicates this, and

when valid data is present on the outputs, the Done Pin

indicates this. The rudimentary floating-point arithmetic

function cores are concatenated together to form more

advanced floating-point arithmetic function cores. It is

possible to produce a basic netlist that defines the

connections between the primitive function cores by using a

tool called FUNCOREGEN, which was developed in our lab

and is available online. Using a set of input parameters, Fun-

core-gen automatically creates the hardware description of

basic function cores that could be directly built from the

hardware description generated by the software.

2.2 DDR-RAM

[22] The data rate doubling of the synchronous dynamic

ram memory is emphasized in this design model, which

utilizes low power and high-speed requirements to achieve

this. To work on such a unique model design, it was

necessary to address certain requirements for the design

circuit to function at low power and high speed

independently. In accordance with the complexity of the

designed controller, encoder, and decoder used on the

suggested design model, as indicated in the figure, the

condition would vary.

Fig. 4 Representing the Component Diagram for initiating the Low power model for DDR RAM

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

363

2.3 Design Units Description For The SRAM-Memory Design Model

Fig. 5 SDR SDRAM controller design block diagram

The SDR SDRAM Controller comprises four main

modules: the SDRAM controller, the control interface, the

direction, and the information interface modules. The

SDRAM controller module is the highest-level module, and

it is responsible for launching the three lower-level modules

and bringing the whole plan together. Directions and

associated memory addresses are acknowledged by the

control interface module from the host, disentangling the

order and forwarding the request to the order module. In

response to directions and addresses received from the

control interface module, the direction module generates the

best feasible directions to the SDRAM. During the WRITEA

and READA directions, the information interface module is

in charge of handling the specified information tasks.

2.4 Low Power Analysis on DDR_SDRAM

• To provide perfect synchronization on the design

Unit to impart better data synchronization.

• Efficient decoder scheme to provide less time to

execute the command and perform synchronization

and fast data transfer

As a result, our Design uses three different techniques to

initiate the low-power synchronized model to analyze the

instability observed as a result of the use of synchronization

based on Toggle, Gray, and FIFO Synchronizer, all of which

have an impact on the relationship of Metastability. Since

our Design understands that Metastability is directly related

to the meantime failures, which can be predicted accurately

depending on the Flip flop utilized, we can leverage this

knowledge. Compared to conventional FF, the Design

focuses on Dual-D FF, which has superior and higher PAD

parametric criteria than the Design.

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

364

2.5 Flow Diagram for Simplest Memory Controller

.
Fig. 6 The Simplest Memory Controller Flow Diagram

Because of this, the Design utilized a finite state model

to represent the LP-DDR RAM in accordance with the

design requirements. It is anticipated that our proposed study

would offer outstanding performance opportunities in both

Design and the algorithms used to enhance the low-power

capabilities. In this case, the DDR RAM would store the

controlling changes seen from the control signals used in

modelling the state diagram changes to take advantage of

better and quicker reaction times produced on each cycle of

the program's execution.

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

365

3. Proposed Memory Control Architecture with

Low Latency
The design estimation and its features on control

architecture are estimated with different performance factors,

and one such factor is Low latency. This factor majorly

controls the design access speed from memory to bus and

other related subsystems that are interlinked. Low latency

implicates less delay and hence better speed. On the contrary,

multiple algorithms have been established implicating the

design aspects of the controller for high speed and low power

applications. In the case of understanding the low latency

problem, our model has been improvised with a predictive

heuristic approach on the data path and data bus for each set

of communication processes leading to memory output

bandwidth. This model consists of four modules that are

implemented and scaled with 8 bit, 16 and 32

simultaneously, as mentioned in figure 7.

Fig. 7 Representing the Proposed Block diagram for the control process architecture for memory

Figure 7 comprises the control unit, memory process,

direct access, data acquisition, with a process control

scenario where the design platform for the working scenario

is controlled with MCU (memory control unit) designed

using HFSPM (hybrid finite-state predictive memory). This

predictive concept of the memory consists of the concurrent

FSM with predictive algorithms for state analysis and state

control data. These two features are estimated by implicating

the algorithm as mentioned below:

3.1 Procedure

• Initiate the MPC (model process control) satisfying set

of constraints as low latency for the memory

controller.

• Implement the process architecture for Memory

operations with commands and data feature

initialization

• Acquire a new set of specifications according to the

access for different external devices.

• Encapsulate the different input commands and data

sequences for memory and bus operations.

3.2 Algorithm1

• Input and output width of 16 bits is initiated to process

the two-stage address and data transfer.

• Bus width of 24 bit is chosen for direct data transfer.

• To initiate the input and output criteria with a Write

address, read address, enables, busy, ready, bank

address, clocks and its enables, data-padding with low

and high values.

• An improved interface model is implemented with

both manual and auto features for real time

applications

3.3 PSEUDO Code for Commands and Address

Sd_ram_bank_addr=(state[4])? Sd_ram_bank_addr_r :

command[2:1];

Addr_main = (state[4] | state == INIT_LOAD) ? addr_read :

{ {SDRADDR_WIDTH-11{1'b0}}, command[0], 10'd0 };

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

366

4. Flow Diagram for Proposed Memory Fifo Model

Fig. 8 Representing the Dual-FIFO model and its implementation using read-write conditions

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

367

4.1 Algorithm2

1. Input and output widths of 16, 32 and 64 bits are

initiated to process the two-stage address and data

transfer.

2. Bus width of 48 bit is chosen for direct data transfer.

3. To initiate the input and output criteria with a Write

address, read address, enables, busy, ready, bank

address, clocks and its enables, data-padding with

low and high values.

4. The hybrid Predictive Model interface model is

implemented with manual and auto features for real-

time applications.

4.2 Hybrid Predictive Algorithm

4.2.1 RFR

A technique that uses "boosting" (adjusting the weight

of an observation) (which creates subsets of data from

training samples, chosen randomly with replacement).

Bagging is a method that Random Forest employs.

Fig. 9 Representing the RFR algorithm for implementing the Training

models and test

4.3 K-Means

One of the most popular high-speed algorithms is K-

means, which finds data points based on similarities and

places them in distinct groups. This method is used in the

clustering algorithm. K-means attempts to identify and group

the common features among all the people and groups. This

is extremely tough to accomplish with one million

individuals.

Pseudo code:

Input:

Output:

Initiate values for m1,m2,m3---mk defining the centroids

of each element Estimate the distance d for each element

and centroid based on the distance algorithms

Finally, compare the distance of each element and centroids

based on the proposed threshold values.

4.4 Probability Solution

On this predictive logic, our Design has to estimate the

latency of each of the modules and its functional capacity

that governs the Design. The functional features are

estimated with the modules utilized and implemented based

on Algorithms such as RFR and Kmeans, implicating the

mathematical formulations for calculating predictive latency

values estimated based on the formula as mentioned below:

4.4.1 Formulations

Let a random probability function (RPF) govern the

latency property as defined by the processing time for each

module governing the Design. Let P(M) defines the RPF for

each module utilzied as:

 (1)

Here implicating the modules

and their probabilities as the additive function. To calculate

the module's latency and features, our Design has presented

the controller, read and Write modules, Temporary storage

(Dual-FIFIO), and a predictive interface for latency

calculation from the perspective of in and out of the counters

for data initializations.

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

368

Fig. 10 Representing the Block diagram for Memory controller based on Hybrid Predictive algorithm

 (2)

 (3)

The value defines the output time probability, which

will be dependent on each module connected to the interface.

These formulations have been improvised with a probability

factor between the

K-means and RFR conditions mentioned above based on

pseudo-code.

4.5 PSEUDO Code

Fig. 11 Representing the PSUEDO code for IDLE state

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

369

Fig. 12 Representing the States for Refresh for 6.5 us as per the design characteristics

5. Simulation Results
5.1 Data Reading

Fig. 13 Representing the Data reading for the input sequence value

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

370

Fig. 14 Representing the data written for the input sequence

Figures 13 and 14 implicate the data reading and writing

for the different sequences of the input that have been

implicated in the figure representing the model sim output.

For each address, our Design was estimated with input

values from the test bench as represented with the pseudo-

code:

Fig. 17 Representing the pseudo-code for the Proposed Controller

model

6. Systhesis Results
6.1 Area

Table 1. Representing the Area report for the proposed memory

controller (two algorithms)

Resource Utilization Available Utilization

%

LUT 235 133800 0.18

FF 201 267600 0.08

IO 26 500 5.20

BUG 1 32 3.12

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

371

6.2 Delay

Table 2. The timing report for the design unit for worst slack for both setup and hold times

7. Comparition Results

Table 3. Representing the overall comparison report with the proposed

two algorithms and with the existing Design of the progressive

algorithm

S.n

o

Paramete

rs

Existing

Design

with a

progressi

ve

algorithm

Proposed

algorithm

1 for

memory

control

Proposed

algorithm

2 for

memory

control

1 AREA 22.56 8.32 8.9

2 POWER 3.345 2.43 1.153

3 DELAY 286 (ns) 187 (ns) 148 (ns)

4 LATENC

Y

128 ns 65ns 58 ns

From a design perspective, our Design has depicted

different scenarios of the algorithms and their procedure to

implicate the Area, power, and delay with latency using

hybrid prediction algorithms as mentioned in section 4. As

Table 3 provides the comparison table, 61% of the area

improvement has been observed with the proposed

algorithms. As per the power factor, there is not much

difference since the Design desires high-speed configurations

with delay and latency. Since employed with machine

learning predictive models, algorithm 2 provides maximum

performance factors for delay and latency.

8. Conclusion
This Design on the memory controller provides a new

step-up challenge to implicate the low latency for each

module, and its overall factor based on the circuitry

developed. Both algorithms have proved a consistent change

to implicate a test and train scenario for the control and

latency factors that govern the design performance. Each

algorithm representation and its implementation with PADL

factors are mentioned in Table 3. Algorithm 1 has better

features in all aspects compared to Existing for the area only,

even though for algorithm 2, the Design implicates a hybrid

predictive approach based on RFR and K-means for

calculating latency for each module.

SCOPE
The implementation of the Memory controller is a

Hybrid approach to the two scenarios of the Design, which

full-fills

The design latency only while the other factors of

performance aren’t considered. With design structure

accuracy, routing models, place,ment features, an FPGA

would require a deep learning approach for each set of

memory control.

References
[1] Vanya Gupta, Garima Singh and Abhijit Asati, BIST Architecture for Combinational Circuit, 530th International Academic Conference on Engineering

Technology and Innovations (IACETI). (2019) 6-7.

[2] Joseph P Elsa and Antony P Rony, VLSI Design and Comparative Analysis of Memory BIST Controllers, International Conference on Computational
Systems and Communications (ICCSC). (2014) 17-18.

[3] Charles E. Stroud, A Designer's Guide to Built-In Self-Test in, Kluweracademic Publishers (KAP). 19 (2002).

[4] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch and O. Mutlu, Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process
Variation, Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems New York NY USA. (2018) 106-

106.

[5] S. Mittal and J. S. Vetter, A Survey of Software Techniques for Using Non-Volatile Memories for Storage and Main Memory Systems, IEEE Trans.
Parallel Distrib. Syst. 27(5) (2016) 1537-1550.

[6] L. Zuo, C. Zambelli, R. Micheloni and P. Olivo, Solid-State Drives: Memory Driven Design Methodologies for Optimal Performance, Proc. IEEE.

105(9) (2017) 1589-1608.
[7] K. Mizoguchi, T. Takahashi, S. Aritome and K. Takeuchi, Data-Retention Characteristics Comparison of 2D and 3D TLC NAND Flash Memories, 2017

IEEE International Memory Workshop (IMW). (2017) 1-4.

Vijayalakshmi ch & Jaikaran Singh / IJETT, 70(4), 360-372, 2022

372

[8] Y. Luo, S. Ghose, Y. Cai, E. F. Haratsch and O. Mutlu, Improving 3D NAND Flash Memory Lifetime by Tolerating Early Retention Loss and Process

Variation, Abstracts of the 2018 ACM International Conference on Measurement and Modeling of Computer Systems New York NY USA. (2018) 106-

106.

[9] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers and Z. Zhang, High-Level Synthesis for FPGAS: From Prototyping to Deployment, IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems. 30(4) (2011) 473-491.

[10] S. S. Jadhav, C. Gloster, C. Doss, Y. Kim and J. Naher, A Remote Field-Programmable Custom Computing Machine Accelerator, 2019 IEEE 9th Annual

Computing and Communication Workshop And Conference (CCWC). (2019) 0513-0520.
[11] (2011). H. Devos, J. Van Campenhout, I. Verbauwhede and D. Stroobandt, Transactions on High-Performance Embedded Architectures and Compilers

III, Constructing Application-Specific Memory Hierarchies on FPGAS. [Online]. Available: Http://Dl.Acm.Org/Citation.Cfm?Id=1980776.1980790.

[12] S. S. Jadhav, C. Gloster, C. Doss, Y. Kim and J. Naher, Autorare: An Automated Tool for Generating FPGA-Based Multi-Memory Hardware
Accelerators for Compute-Intensive Applications, 2018 IEEE 37th International Performance Computing and Communications Conference (IPCCC).

(2018) 1-8.

[13] B. Betkaoui, D. B. Thomas, W. Luk and N. Przulj, A Framework for FPGA Acceleration of Large Graph Problems: Graphlet Counting Case Study,
Field-Programmable Technology (FPT) 2011 International Conference On. (2011) 1-8.

[14] Data Sheet S28HS512T / S28HS01GT S28HL512T / S28HL01GT 512-Mb (64-MB) 1-Gb (128-MB) HS-T (1.8-V) HL-T (3.0-V) Semper Flash with

Octal Interface. (2018).
[15] X. Guo et al., Fast Energy-Efficient Robust and Reproducible Mixed-Signal Neuromorphic Classifier Based on Embedded NOR Flash Memory

Technology, IEEE IEDM. (2017) 151-154.

[16] H. Om’mani et al., A Novel Test Structure to Implement a Programmable Logic Array Using Split-Gate Flash Memory Cells, ICMTS. (2013) 192-194.

[17] S. Jain, A. Ranjan, K. Roy and A. Raghunathan, Computing in Memory with Spin-Transfer Torque Magnetic RAM, IEEE Trans. Very Large Scale

Integr. (VLSI) Syst. 26(3) (2018) 470-483.

[18] G. H. Loh, 3D-Stacked Memory Architectures for Multi-Core Processors, SIGARCH Comput. Archit. News. 36(3) 453-464 (2008).
[19] V. K. Chippa, S. T. Chakradhar, K. Roy and A. Raghunathan, Analysis and Characterization of Inherent Application Resilience for Approximate

Computing, Proc. 50th Annu. Design Autom. Conf. (DAC). (2013) 1-9.

[20] S. Venkataramani, S. T. Chakradhar, K. Roy and A. Raghunathan, Approximate Computing and the Quest for Computing Efficiency, Proc. 52nd Annu.
Design Autom. Conf. (DAC). (2015) 120:1-120:6.

[21] Q. Xu, T. Mytkowicz and N. S. Kim, Approximate Computing: A Survey, IEEE Des. Test. 33(1) (2016) 8-22.
[22] K. Cho, Y. Lee, Y. H. Oh, G.-C. Hwang and J. W. Lee, EDRAM-Based Tiered-Reliability Memory with Applications to Low-Power Frame Buffers,

Proc. Int. Symp. Low Power Electron. Design (ISLPED). (2014) 333-338.

Vijayalakshmi chintamaneni is a research scholar at lnct university, Bhopal. She received her PG

degree in VLSI & Embedded Systems from JNTU Kakinada in 2012. She has 8 years of teaching

experience from 2008-to 2018. She received MBA in finance from IGNOU, New Delhi. She

published more than 22 papers in various national & international journals and conferences. She is a

life member of ISTE, IETE. She is awarded as state-level best service personnel in teaching for the

year 2019 by little champs academy of India. She published 2 books in IOT & FOG Computing

domains.

Dr. Jaikaran Singh was awarded the Ph.D. degree in Electronics and Communication Engineering by

Rajiv Gandhi Technical University (Technical University of MP Government) Bhopal, MP India, in

2016. He passed his M.Tech. Degree in ECE with honour in 2009. He has more than 22 years of

teaching experience. Dr Singh has published 2 books and more than 100 research papers in various

National/International Journals/conferences. He has guided more than 30 M.Tech. Students and

having more than 6 Life membershipS of professional bodies. He has organized/conducted more than

50 technical events.

