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Abstract - The present study investigated the experimental analysis of microhardness of Al-Y2O3 composite material developed 

through the friction stir processing (FSP) route. The microhardness values were measured for a different set of experiments, 

and then these data were used for various machine learning (ML) models. All measured data sets were divided into two 

portions in which 75% of rules were used for training, and the remaining 25% of the data rules were used for testing the 

regression models. Experiments were carried out on various input parameters such as tool traverse speed (TS), Spindle speed 

(SS), number of passes and direction of rotation (tool). The micro-hardness data is considered as output response. The 

microhardness value increased 34.47% from BM, reaching a maximum of 147 HV on 1000rpm SS and 100 mm/min TS, with 

double pass FSP in which the direction of rotation of the tool is in the opposite direction. To predict microhardness values, 

various ML-regression algorithms have been considered, mainly: Fine tree (FT), Linear regression (LR), Interactions Linear 

regression (ILR), and Robust Linear regression (RLR), Stepwise Linear regression (SLR) and support vector machines (SVM). 

It is found that RLR generated appropriate prediction of microhardness with minimum errors based on measurement of Root 

Mean Square Error (RMSE), Error score (R2), Mean squared error (MSE) and mean absolute error (MAE). 

Keywords - Friction stir processing, Machine learning, Support vector machine, Regression algorithm, Microhardness. 

  

1. Introduction 
According to society's demand, new products keep 

coming into the market, and this will continue forever. But 

nowadays, Safety is a major issue in the automotive, aviation 

and other transport industries. Every modern industry 

requires strong, lightweight, corrosion-resistant and cost-

effective materials [1]. Aluminium-based alloys have the 

highest strength-to-weight ratio of any other metals. Thus, 

they are commonly suited to aerospace applications [2]. But 

Al alloys are less dense than steel alloys, leading to 

decreased strength and stiffness. Therefore, research's shown 

through their results that the mechanical properties of the Al 

alloy specimens could be improved by binding of 

reinforcement matrix [3]. Aluminium metal matrix 

composites (AlMMCs) are successfully accepted by industry 

due to their rigorous properties such as being light in weight, 

highly resistive to corrosion, wear resistance and cost-

effective [4].  

 

 Stir Casting, infiltration, powder metallurgy, diffusion 

bonding, and spray deposition are major fabrication 

techniques for developing Al-MMCs [5]. But most of the 

methods are muddled with high lead time. FSP is a 

pressurized heat, solid-phase surface modification process 

that combines the advantages of conventional solid-state 

deformation processes [6]. Friction stir welding (FSW) is the 

foundation of FSP's operation, which was developed in the 

early 1990s by the Battelle Memorial Institute and The 

Welding Institute (TWI) in the United Kingdom [7]. FSP is a 

process that uses a rotating tool to stir the material while it is 

being deformed. The tool is rotated at a constant speed, and 

the material is deformed at a constant rate [8]. FSP has been 

used to manufacture biomedical implants, aircraft 

components, light composite panels, sports goods, and many 

automotive, aircraft, military, and various industrial parts to 

improve their effectiveness and reduce the overall production 

cost [9].  

 

In recants years, numerous researches have been 

published on the FSP process parameter's effects on 

microhardness, UTS, tribology and metallurgical behaviours 

[10]. In FSP, the most likely process parameters are tool pin 

profile [11], spindle rotation speed [12], traverse speed [13], 

shoulder diameter, number of passes [14] & tool tilt angles 

[15]. Luo X et al. [16] looked into the impact of double-pass 
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on elongation and fracture strength of AZ61 magnesium 

alloy by the FSP route. They observed the processing of the 

composite improved the surface modification, resulting in an 

increase in UTS and ductility. Shojaeefard M et al. [17] The 

particle distribution in the B4C/aluminium composite 

manufactured with the square pin profile is more uniform 

than that in the composite fabricated using the hexagonal and 

cylindrical pin profiles. Kumar A. [18] The microstructural 

development, mechanical characteristics, and corrosion 

behaviour of the FSPed alloy plates were examined using 

FSP on Al 7075 alloy at varied traverse speeds and spindle 

rpm. The results revealed that when the traverse (mm/min) 

and spindle speed (rpm) increased, the microstructure of the 

FSPed alloy plates got finer. The alloy sheet's tensile 

strength, elongation, and corrosion resistance improved as 

the traverse rate, and spindle speed increased. 

 

The data obtained from these works are the fuel for new 

research and innovation. The more data you have, the more 

insights can be generated and the better proofing of your 

research. Machine learning (ML) is commonly used in the 

research field. The ML is a method of training machines to 

learn from past rules without being categorically 

programmed. Predictive modelling is a branch of ML used to 

predict future events [19]. ML can be classified into 3 types: 

supervised, unsupervised, and reinforcement learning. 

Regression analysis is a branch of machine learning that 

deals with the problem of predicting the value of a 

continuous variable. The type of regression analysis 

determines the type of linear relationship between the two 

variables. The Support Vector Machine (SVM) algorithm is a 

supervised learning algorithm used for classification and 

regression. Numerous researchers have adopted ML and 

artificial intelligence (AI) techniques to predict the various 

properties of MMCs. In this way, Banerjee T. et al. [20] used 

an Artificial neural network (ANN) to predict & optimized 

the tribological properties of Al composite. Jun Liu et al. 

[21] demonstrated the effect of elastic constant and UTM on 

graphene reinforced aluminium (Gr/Al) nanocomposites by 

SVM and ANN models. Shozib I. et al. [22] developed a 

prediction algorithm on ML to optimize the microhardness of 

TiO2 composite. 

 

In this study, some machine learning algorithms were 

developed to predict the microhardness of fabricated 

aluminium composite. Fine Tree, linear, interactions, robust, 

stepwise, SVM regression models optimize the dependent 

variables concerning several errors. Almost 240 experimental 

data sets were incorporated with mentioned ML models. The 

data set is divided into 75% and 25% for training and testing, 

respectively. For the present research work, the fabrication of 

composite through the FSP route and the effect of process 

variables on microhardness is explained in section 2. The 

implementation of the ML algorithm, regression analysis, 

error calculations and modelling are described in section 3. 

Finally, section 4 is devoted to a conclusion.  

2. Materials and Method 
2.1 Fabrication of Surface Composite 

  The aluminium 2219 alloy is mainly used to produce 

aircraft parts, particularly for the airframe and landing gear. 

This is because the AA2219 alloy has high strength and high 

corrosion resistance. This alloy has been widely used in the 

aerospace industry for many years since it has high tensile 

strength and can withstand harsh environments. Yttrium 

aluminium garnet is a composite with good wear and thermal 

shock resistance. It can be used for making electrodes and 

linings in high-temperature furnaces. Yttrium is very hard 

and refractory and does not react with water and air. It has a 

high melting point of 3290°C and thus is used in military and 

industrial applications where heat resistance is needed. Thus, 

in this research, an attempt has been made to develop an 

aluminium-ytrium composite material by the FSP route.  

  The underwater FSP improves the corrosion resistance 

of the substrate. The low-temperature frictional deformation 

enhances the Al-yttrium oxide (AA2219-Y2O3) composite 

hardness and wears resistance. The non-conductive nature of 

water prevents electrochemical reactions from occurring 

between the tool & composite plate. When the material is 

being processed in FSP, it is crucial to understand two 

important parameters, i.e., TRS & TTS. When changing 

these two variables together, there can be significant changes 

in the properties of processed materials. The heat generated 

in the film stack is highly dependent on the thickness of the 

thermal barrier and thermal resistance coefficient. The heat 

generated will also decrease with a decrease in the TTS and 

increase in TTS, respectively, affecting the grains, depending 

on the desired to get the desired properties in an FSPed 

material to optimize the TRS & TTS. The dimensions of the 

Al plates were 200 mmx50mmx6mm. The mechanical 

properties and chemical composition of alloy material are 

shown in Tables 1 & 2. 
 

Table 1. Chemical composition of AA2219 alloy 

Element  Cu 
 

Mn 
 Zr V Ti  Al 

Wt. (%) 6.3 0.3 0.18 0.1 0.06 Balance 

 
Table 2. Mechanical properties of AA2219 alloy 

Material 

Yield 

strength 

(MPa)  

Ultimate 

tensile 

strength 

(MPa)  

Elongation 

(%) 

Vickers 

hardness 

(0.5 kg)  

Base 

Material 
310 408 23 140 

 

   

  Three longitudinal circular holes were drilled on an 

aluminium plate with 3 mm diameter and 180mm length at 

the centre of the plate. The hole was filled with Y2O3 powder 

as a reinforcement particle. All holes are evenly spaced, 
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which creates an even distribution of material throughout the 

plates for added strength. Fabrication of surface metal matrix 

composite, Al 2219 alloy in plate structure as a base material 

and yttrium oxide (Y2O3) particles were used as a 

reinforcement with an average size between 67 to 123 µm as 

measured from SEM. For making the composite, the weight 

percentage of Y2O3 was taken at 10% because it provided the 

highest ratio of tensile strength to elongation as obtained 

from the trial experiment.  

 

 
Fig. 1 Schematic diagram of the FSP H13 tool used for this study 

 

  A non-consumable tool with a unique material H13 hot-

die steel design, with shoulder diameter of 30 mm and 

external right hand threaded (M6) pin of 4 mm length as 

shown in figure 1. Preparation of surface composite was 

carried out on a Vertical milling centre (VMC) made by Jyoti 

CNC Automation Limited, and the tool shoulder pressure 

was kept constant for all specimens. Experiments were 

performed with a 2-degree tilt angle from the y-axis. The 

process input parameters applied for these experiments 

included different spindle speeds in rpm, four traverse 

speeds, and the different number of passes. A schematic 

diagram showing the overall setup is shown in figure 2(a, b). 

 

 

 
 

 
Fig. 2 Schematic diagram of underwater FSP 

 (a) Isometric view of setup with the double-pass tool  

(b) End view of longitudinal holes 
 

The FSP of the composite plate has been done with 

various combinations of machine parameters along with 

variable tool number of passes and direction of rotation, as 

presented in table 3. The literature review sets the ranges of 

all input parameters. Production of FSPds composite, the tool 

rotation speed has three levels 600, 1200 & 1600 rpm with 

different traverse speeds 60, 100 & 140 mm/min. The 

rotating speed of the stirring tool in a processing zone has a 

significant effect on the stirring action. It improves the 

properties of that stir zone up to a certain limit, but after that 

point, it causes defects to form due to high turbulence. After 

FSP, specimens for testing were sliced from the stir zone, as 

shown in fig. 3, and these samples were cut by the wire cut 

EDM (make CAM-TECH ENGINEERS). Specimen 

dimensions and preprocessing as per ASTM standard. 
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Fig. 3 Schematic illustration of FSP & hardness samples extraction 

 

3. Experimental Results 
3.1 Microstructural characterization 

Exerted, polished and etched the specimens using a 

mixture of hydrochloric acid, hydrofluoric & nitric acids 

(180 millilitres distilled water, 3.5 ml Hydrochloric acid, 2 

ml HF (hydrofluoric acid) & 5 ml HNO₃ (nitric acid). A 

scanning electron microscope (SEM) is used to look at the 

surface of an object, whereas optical microscopy is used to 

measure the interior. Optical microscopy (OM) and scanning 

electron microscopy (SEM) investigated the grain 

characterization, particle distribution, and overall 

microstructure. Figure 4 (a, b) shows the grain refinement 

and dispersion of reinforcement particles on single and 

Double passes of the FSP tool on the Al plate. 

 

3.2 Microhardness Hardness 

  The average hardness of as-received AA2219 aluminium 

was 140 HV. The microhardness of AA2219 and Al-Y2O3 

composite samples were tested according to the ASTM 

standard test method. Vickers hardness tester (Leco LM 248 

AT) was used by applying a force of 100 grams for 10 

seconds as a dwell time on the substrates. The hardness 

measurement was observed 3 times for each specimen in 

different locations, and average values were taken for 

microhardness. 

  

  In specimen FSPed without mixing reinforcement 

particles, compared with as-received material, the average 

hardness value increased and reached the maximum of 78 

HV in the processed zone. Statement to the Hall-Petch 

relationship, the hardness of the material is proportional to 

the temperature and stress applied to the material. Here 

reduction of grain size increases the value of hardness [24]. 

The process of annealing is used to improve the properties of 

a material. On the other hand, the temperature rise during 

FSP anneals material in a stirred zone.  

   

  The existence of reinforcement in the aluminium matrix 

and the quench hardening effect is caused by variations in the 

aluminium matrix's thermal contraction coefficient. And 

Y2O3 particles [25]. The annealing action can reduce 

hardness, referring to Fig. 4(a, b); consistency improvement 

in hardness can be responsible for uniformity of reinforced 

particles dispersion after FSP, which gives rise to a more 

influential distribution of hardening. Further, dislocation 

density and substantial grain refinement are also responsible 

for enhancing the hardness. Maximum hardness was 

achieved with the fabrication of Y2O3 particles (maximum 

147 HV) due to severe grain size reduction, as shown in fig. 

4(a, b). The uniform distribution of particles in the 

aluminium matrix and the presence of a higher number of 

Y2O3 particles in the composite layer.  
 

 
Fig. 4 SEM images of Fraction stir processed zone at 1000 rpm (SS), 100 

mm/min (TS) on: (a) Single pass same direction (SPSD) (b) Double pass 

opposite direction (DPOD) [23] 

 

4. Effect of Process Parameters  
  Fig. 5(a, b) illustrates the effect of tool rotation speed 

(RPM) on FSPed Al-Y2O3 surface composite. Various 

research investigated the effects of FSP process parameters 

on mechanical and metallurgical properties of Al-

composites, already discussed in the introduction section. For 

this study, only four process parameters were considered to 

determine and optimize the effect on hardness 

interconnection to material characterization, whose details 

are as follows:   

 
4.1 Spindle Speed 

  The hardness of the processed zone is shown in Fig. 5 

(a) and 5(b) concerning traverse speed and tool rotation 

direction. Here the microhardness of the stir zone has been 

improved from 67 HV to 147 HV on 1000 RPM at the 

Double pass-opposite direction (DPOD) due to refinement of 

the grain size and strain hardening. Modification of surface 

due to proper heat distribution and pressure; therefore, the 

Y2O3 reinforcement particles were fully penetrated in the 

base alloy. According to the Hall-Petch scientific 

relationship, the strength of a processed Composite is 

proportional to the square root of its particle size [26]. The 

relationship is based on the idea that as the grain size 

decreases, its strength increases. This is because smaller 

grains have a higher surface-to-volume ratio and are more 
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susceptible to defects and fracture. But the hardness of the 

processed material doesn't need to increase with spindle 

speed. It is often observed that it decreases after a range of 

spindle speed [27], mainly due to the porosity of the 

processed composite material, which is generated due to 

excessive heat. As seen in the figure, it is natural to fall after 

1000 rpm from 147 HV to 132 HV; this decrement of 

hardness is due to the rate of overheating.  

 
4.2 Traverse Speed Effect 

  The hardness value of fabricated composites was 

measured after various experiments. The hardness is 

simultaneously increased concerning the increment of 

traverse speed. The maximum microhardness value has 

reached the maximum of 100 mm/min at DPOD. The 

hardness improvement is 37.47% compared to SPSD at 60 

mm/min, as shown in Fig.5 (a-b). It is not always true that 

the hardness of a material is increased by increasing the 

traverse speed. The hardness may be decreased if the speed is 

too high; consider the stagnation point, which arrived after 

110mm/min on every combination. The gradual increment of 

traverse speed leads to particle size reduction, and age 

hardening increases Al alloy's hardness [28]. Therefore, the 

hardness of Al has been increased concerning the traverse 

speed.   
 

4.3 No of pass & Tool direction of rotation 

  After measuring the hardness of FSP Al composites, it 

was observed that increment of the no of the pass also 

improves the material hardness. Fig. 5 (a-b) shows the 

hardness comparison with the reference of single and double 

passes. The hardness value has been increased in the double 

pass, the same direction from 67 HV to 83 HV on 60 

mm/min (TS) and 500 rpm (SS). A 7.86 % improvement in 

hardness was observed compared with the single-pass 

opposite direction (SPOD) at 1000 rpm (SS). The tool double 

pass-FSP has been refining and spheroidized the particle size 

of Y2O3, also dispersed with base material; therefore, 

hardness has been increased. However, after 1000 rpm (SS), 

the hardness does not increase due to strain hardening and 

decrement of interfacial bonding [29]. 

 
Fig. 5 Effect of tool rotation speed on microhardness of FSPed composite on various traverse speeds with same and opposite direction of the tool on 

(a) single pass (b) Double pass 
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5. Machine Learning Approaches 
 A few different machine learning approaches can be 

implemented on MATLAB. One approach uses a pre-trained 

model, such as a deep neural network to predict a target 

variable. Another approach is to use a machine learning 

algorithm, such as a support vector machine or a neural 

network, to learn a model that can predict the target variable. 

This paper applied all prediction methodologies on 

MATLAB under a supervised machine learning approach.  

 
  Regression analysis is a widely used predictive 

modelling technique. However, as present data becomes 

more complex, it is hard to analyze relationships between the 

variables and come up with a concrete prediction [30]. Here 

one dependent variable is hardness, and four independent 

variables are spindle speed, traverse speed, no of pass & 

spindle direction of rotation.  

   

  The Support Vector Machine (SVM) algorithm is a 

supervised learning algorithm used for classification and 

regression. The algorithm is a type of kernel machine 

learning algorithm, and it is a popular technique used in data 

mining and machine learning. The SVM algorithm works by 

finding a hypersurface in the feature space that separates the 

data into two or more classes. The SVM algorithm can be 

used for both classification and regression. In regression, the 

input features are used to predict the value of a given 

variable [31].  

For the present study, six-regression machine learning 

algorithms were considered to predict the hardness as a 

dependent variable. All types of machine learning 

approaches were conducted @ MATLAB R2021a. Some 

steps are following: 

 

5.1 Step 1: Load the data into MATLAB 

  Machine learning needs the training data set in matrix 

form to generate the prediction models. The table shows all 

input and output data as per machine language.  

Equation for normal & logical linear regression analysis is: 

 

y = p1*x + p2   ----------------------(1) 

 

y= Prediction or target (Dependent variable)  

p1= independent (explanatory) variable 

p2= intercept 

x= coefficient or residual 

 

for prediction of the hardness of the multiple variable linear 

equations: 

hardness (y)=m1*Rotational speed +m2*Traverse 

speed+m3*No of Pass+m4* Direction Of rotation +b ----(2) 

 

Dependent variable= “Hardness”  

Independent variable (Features)= “Rotational speed, 

Traverse speed, no of the pass, Direction of rotation."  

 

Table 3 shows the various models and their 

dependent/independent variables and coefficients for perfect 

fitting; all values were developed with the help of the 

Machine learning application toolbox @MATLAB R2021a. 

As per MATLAB linguistic machine language, all 

independent data sets have been converted into various 

matrix levels.   

 

5.2 Step 2: Convert the Data to a Matrix & Run the 

Regression Analysis on Various Models 

   In this step, all variables were applied through the MS-

excel sheet by the command window on the MATLAB 

toolbox. Here 48 rows and 5 columns of data (48*5) were 

considered a matrix, predicting the dependent variables. 

Afterload the entire data, run the regression analysis with the 

help of a machine learning application built with MATLAB 

toolbox in terms of 75:25 training and testing data. A cross-

validation method is a technique used to estimate the 

accuracy of a predictive model by dividing the data into 

training and validation sets, learning the model on the 

training set, and then testing the model on the validation set. 

Here 4 folds of cross-validation & fine Tree with 4 leaves 

were assumed on MATLAB for better results. All selection 

was due to optimized linear regression, available on the 

machine learning toolbox. Table 4 shows the summary of all 

models concerning linear regression.  

 
Table 3. Input/output data variables for machine learning algorithms 

variable Level/Range  Matrix 

Independent 

(Features)  

Rotational 

speed (rpm) 

500 1 

670 2 

1000 3 

1600 4 

Traverse speed 

(mm/min) 

60 1 

100 2 

135 3 

No of Pass 
Single 1 

Double 2 

Direction of 

Rotation   

Same 1 

Opposite 2 

Dependent  
Hardness 

(HVA) 
67-147  67-147 
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Table 4. Summary of regression models 

Model Regression 

Equation 

p1 p2 Norms 

of 

residual 

Fine Tree  

 

 

 

 

y = p1*x + 

p2 

0.84339 18.9053 44.354 

Linear 0.96865 3.6971 20.9325 

Interactions 

Linear 

0.98419 1.3774 26.1713 

Robust 

Linear 

1.0066 -0.8427 14.789 

Stepwise 

Linear 

0.96819 3.7523 20.6969 

Linear 

SVM 

0.93415 8.0265 22.8205 

 

5.3 Step 3: Result plotting  

After all algorithm iterations, the prediction data set was 

exported through the model export tab. A 3D surf graph was 

drawn between traverse speed and rotation speed and their 

effect on hardness. The red-coloured area of the 3-D surface 

plot Fig. 6 exhibits the plot's maximum height and represents 

the maximum value of microhardness. This surface area 

demonstrates the prediction value of microhardness which 

was optimized through machine learning algorithm - 

regression analysis models.  
 

 
Fig. 6  3-D Surfacer Plot shows the effect of traverse speed and rotation 

speed on microhardness response 

 

All experimental and prediction values are shown in Fig. 

7. The blue-coloured points represent the true experimental 

values of microhardness, and the yellow-coloured dots 

represent the prediction values of microhardness on a 2D 

scatter plot. All prediction dots are obtained by various 

regression models on training data sets. Fig. 8 represents the 

scatter diagram of the independent variable. The actual or 

experimental value of the micro-hardness acts on the 

horizontal axis, whereas the predicted value of hardness 

flows on the vertical axis. The experimental vales were 

measured by a Vickers hardness tester (LM-247 AT). 

In contrast, the predictive values of microhardness were 

analyzed through ML regression models, mainly FT, LR, 

ILR, RLR, SLR and SVM. All scatter plots are drawn 

through the plotting toolbox on MATLAB. The yellow-

coloured inclined line is the perfect prediction line; on that 

line, all experimental points are equal to prediction points. 

Another black line represents the best statistical prediction 

curve with linear regression equation on the scatter diagrams 

for all six ML models.  

 

5.4 Step 4: Models comparison based on error Index 

The values of the machine learning model, evaluation 

performance metrics, and various types of errors have been 

shown in Table 5 to compare the models' errors and forecast 

the microhardness. The entire dataset containing 48 data 

rules was used for the models, where 36 data rules (75%) 

were selected as training data, and the remaining 12 data 

rules (25%) were used as testing samples for output 

prediction evaluation. After validation, identified the perfect 

model with the help of RSME, R2, MSE & MAE. All types 

of errors, as shown in Table 5 

 

5.5 RMSE (Root Mean Squared Error) 

  The model with the lowest MSE is the one that most 

accurately predicts the data. The minimum value of RMSE 

means a better connection between experimental and 

prediction values during training and testing. The bar graph 

Fig. 9(a) shows the RMSE value of various models. 

Fig. 9(a) shows the RMSE value of various models. 

The ideal value for R-square is 1, which would indicate that 

the model perfectly explains the variation in the data. 

However, real-world datasets typically have r-squares that 

are much lower than 1.  

 

5.5.1 The Mean Square Error (MSE)  

  The Mean Square Error (MSE) is a statistic used in 

regression analysis to measure the amount of error in a 

predicted value. The MSE is calculated by taking the sum of 

the squared differences between the predicted and actual 

values, divided by the number of data points. The ideal value 

for MSE in regression analysis is zero.  

 

5.5.2 The Mean Absolute Error (MAE)  

  The Mean Absolute Error (MAE) is a statistic used to 

measure the accuracy of predictions made by a model. The 

MAE is calculated by taking the average absolute values of 

the differences between the actual and predicted values. The 

ideal value of MAE is zero. 
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Fig. 7 True and predicted curve for microhardness for training data of (a) FT, (b) LR, (c) ILR, (d) RLR, (e) SLR, (f) SVM models 
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Fig. 8 Actual vs predicted curve for microhardness for Testing of (a) FT, (b) LR, (c) ILR, (d) RLR, (e) SLR, (f) SVM models 

 

 

  For the present study, the Robust linear regression model has a minimum RSME of 3.0035, 0.97 vales of R2, 0<R2<1, 

minimum value MSE (3.234) and MAE (1.3125), as shown in Table: 5 
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Table 5 

Model/ Algorithm  
 Fine Tree 

(FT) 

Linear 

Regression 

(LR) 

Interactions 

Linear (ILR) 

Robust Linear 

(RLR) 

Stepwise 

Linear (SLR) 

Linear 

SVM 

(SVM) 

RMSE  
Training  6.967 3.0704 3.8201 3.004 3.0384 3.495 

Test 4.257 2.8098 2.4178 2.125 2.6613 2.967 

R-Squared  
Training  0.85 0.97 0.95 0.97 0.97 0.96 

Test 0.94 0.97 0.98 0.99 0.98 0.97 

MSE  
Training  48.54 9.4274 14.593 3.234 9.2321 12.21 

Test 81.12 7.8948 5.8456 2.747 7.0825 8.8 

MAE  
Training  5.287 1.9939 2.585 1.313 2 2.538 

Test 3.241 1.7499 1.6272 1.113 4.3938 1.96 
 

  A glimpse of all error types concerning machine learning models is shown in Fig. 9 (a-d). A bar graph fig. 9 (a) 

demonstrates the RSME values of six models by the performance of the training and test data set. The lower vale of RSME is 

better for prediction than other ML models. Now observe fig 9 (b); the FT model has the least value of R2, 0.85 (Training) and 

0.94 (test), which is more suitable for the best prediction. However, observe the value of MSE and MAE from fig 9 (c-d), all 

values recommended for FT, LR, ILR, RLR, SLR and SVM models. Again, the bar distribution plot gives the least errors of 

the RLR model (3.234, 2.747), (1.3125, 1.1125) on training and test data sets. 

 
 

 
 

Fig. 9 Errors for six Machine learning models (a) RMSE, (b) R2, (c) MSE, (d) MAE 
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5.6 Hardness prediction based on the Robust Linear regression (RLR) model 

In this study, six regression algorithms were applied to the machine learning toolbox on MATLAB to predict the 

hardness. Various types of errors, including RSME, R2, MSE and MAE, are shown in fig. 9. Based on the comparison of 

minimum error here, selection of RLR algorithm for prediction the hardness as a dependent variable. The RLR algorithm 

is designed to minimize the influence of outliers on the estimated relationship [32]. The prediction and actual results 

through the ML algorithm are shown in fig 9(a), While the other fig. 9(b) represents the error of the RLR model. 

According to this graph, the maximum error is +24 %/-10.5 %, placed at 120 HV. Although, its value at other points is less 

than 2 %, which represents the reconciliation between prediction and experiment value. 

 
Fig. 10 a) comparison between experimental and prediction values of microhardness, b) Percentage of error for RLR model. 

 

6. Conclusion 
In the present paper, some machine learning models 

have been developed to predict the hardness of Al-Y2O3 

composite produced through the FSP route. Six prediction 

models were based on a supervised ML approach 

(regression) and validated to the experimental dataset. Four 

input FSP parameters (spindle speed, traverse speed, no of 

passes and rotation direction) have been taken to optimize 

microhardness as a dependent variable. The major conclusion 

that can be drawn from this research is as follow:  

• The value of microhardness prominently depends on all 

considered input variables, thoroughly verified by 

experiments and ML algorithms 

• The microhardness value increased 34.47% from BM. 

The maximum microhardness value is 147 HV on 

1000rpm (SS), 100 mm/min (TS), and DPOD.  

• The improvement of the microhardness due to fine 

particles, heat input and cooling condition 
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• All experiment values were applied on ML to predict 

the microhardness under 75% training & 25 % training 

dataset. 

• Robust Linear (RLR) model given the minimum errors 

between RSME, R2, MSE and MAE. 

• Through the Robust linear regression prediction model, 

the maximum errors are ± 15%. 

• The application of ML to predict and verify 

experimental data is very helpful for reducing the 

expense of testing for each specimen. 
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