
International Journal of Engineering Trends and Technology Volume 70 Issue 4, 294-302, April 2022

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I4P226 © 2022 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

An Efficient Android Malware Detection

Framework with Stacking Ensemble Model

A. Lakshmanarao1,2, M. Shashi2

1Department of IT, Aditya Engineering College, Surampalem, India.
2Department of CS&SE, AU College of Engineering, Andhra University, Visakhapatnam, A.P, India.

laxman1216@gmail.com

Received: 13 March 2022 Revised: 21 April 2022 Accepted: 22 April 2022 Published: 26 April 2022

Abstract - Due to the increased frequency of cyber-attacks with various targeted objectives, cyber security has become a

major concern for society. Android phones being the most widely used devices, they are targeted in most of the attacks with

malware. So, it is vital to explore innovative ways of identifying Android Malware attacks. Machine learning and deep

learning have been employed to develop classifiers to determine if an app is malware or benign. Android apps are represented

by a set of attributes that can describe their behaviour. This paper proposes a stacking ensemble model for detecting Android

malware. The proposed framework is designed with two variants of stacking ensemble: blending and stacking. The dex files of

android apps are extracted and translated into images. Later, a stacking ensemble is applied to the image dataset.

Convolutional Neural Networks are used as base learners, and a Support Vector Machine is used as a meta learner. The

experimental results of modelling with blending and stacking showed 99% and 98.3% accuracy, which advocates support of

the proposed framework for Android malware detection.

Keywords - Android malware detection, CNN, Stacking Ensemble, SVM.

1. Introduction
The number of attacks on mobile devices appears to

increase unprecedentedly. More than 14.4 million attacks on

mobile phones were recorded worldwide in the second

quarter of 2021 only from a single antivirus (Kaspersky

reports) firm [1]. Android has a dominant position in the

smartphone market. However, this success has a downside as

more per cent of mobile malware targets Android phones for

stealing money or personal information. Attackers could use

various Android development platforms to create malicious

mobile apps. Infecting users' mobile devices with malicious

software might have severe implications. Despite Google

Play's numerous measures to keep dangerous apps out,

attackers continue to find their way onto the mobile devices

and penalize unsuspecting victims. Therefore, Android

malware is becoming a growing threat to businesses and

individuals. Machine Learning is a field of computer science

that deals with developing intelligent systems by integrating

prior examples and making forecasts of future occurrences.

Because of these properties are widely used in cybersecurity,

such as intrusion detection and malware detection. Anti-

malware solutions have focused on signature-based

recognition, which requires prior knowledge of the malware

in the form of a signature. Early identification of Android

Malware is essential to limit the negative effects.

Malware analysis techniques are classified into static

Analysis and dynamic Analysis. Static Analysis is the most

frequently used and preferred method by many researchers

due to its low computation complexity and ease of

implementation. This method analyses the application's

source code without running it on an emulator or a real

device. The APK archive is first unpacked to collect

methods, manifests, meta-data, and media assets to perform

this. The app's source code format at this point is dex

bytecode, which is difficult to work with. Therefore it can be

decompiled to java code/Smali code to make it more

readable and process-able. After the extraction of the mobile

app, several static features can be extracted. Static features

include android app permission features, opcode sequences

in the apk, strings, Method API features, Component

features, intent features, and system command features. The

extracted app does not contain all these features directly.

Various tools can be used to extract all these features. In

dynamic Analysis, the app is run in an isolated environment

where it is feasible to obtain as much data as possible on the

app's activity. In this method, additional features are

extracted from the app's network traffic, sequence of events

happening in the app execution, log behaviours, API

monitoring etc. The authors proposed a stacking ensemble

model with Convolutional Neural Networks and a Support

Vector Machine for malware detection.

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

295

1.1 Ensemble Learning

In machine learning, ensemble learning is a generalized

meta-approach that aims to improve prediction accuracy by

combining the predictions of several models. Ensemble in

machine learning can be done differently, but the three

important ensemble techniques are bagging, boosting, and

stacking. Although all three methods have their advantages

and limitations, the suitability of a specific approach

depends on model expansions and associated procedures.

1.1.1 Bagging

Bagging integrates the outcomes of numerous models of

the same type, for example, decision trees, to produce a

more generalized result. From the original dataset, many

sample subsets are produced by replacing observations. A

basic model (weak model) is generated on each of these

sample subsets. The models are independent of one another

and run in parallel. The final predictions are calculated by

combining all of the models' predictions. Random forest is a

commonly used bagging technique. In bagging, the resulting

model can have a lot of bias if the proper learning procedure

is not followed.

1.1.2 Boosting

Boosting is a sequential mechanism in which each

consecutive model seeks to rectify the prior model's

mistakes. The models that follow are reliant on the prior

model in the sequence. From the original dataset, sample

subsets are produced. At first, all training data points are

given equal importance for getting selected in the sample.

On this subset, a base model is built. This model is applied

to the dataset to predict the class labels of known

observations, and errors are determined. Accordingly, in the

next iteration, higher weights are assigned to the wrongly

predicted observations, and a new sample data is generated

to build the next base model. Based on this model's (wrong)

predictions, subsequent base models are built in the same

way, each one fixing the deficiencies of the earlier models.

1.1.3 Stacking

Stacking ensemble builds a separate learning model,

possibly with a different algorithm, on top of the base

learners to combine their predictions. In other words, a

stacking ensemble adapts a two-fold learning strategy that

involves multiple simpler models in the first fold whose

predictions would be further processed by a separate

learning model at the next fold to make more accurate

predictions. The stacking ensemble differs from the bagging

and boosting ensemble as it applies an adaptive approach

rather than a static approach for combining the predictions

made by the base classifiers. Learning algorithms used to

train the multiple base models in the first fold are often

different from those used in the second fold. On the test set,

this ensemble model is applied for making predictions. The

structure of the stacking model is shown in figure-1.

Fig. 1 Stacking Ensemble

The rest of the paper is organized in the following

sections: Section 2 describes previous work done on android

malware detection. Section 3 discusses the proposed

methodology, Section 4 presents experimentation and results,

and Section 5 concludes and provides an outlook for future

work

 2. Related Works

Various researchers use machine learning and deep

learning methods to detect malware in android apps. In [2], a

framework using static Analysis has been utilized. Each of

the used permissions, susceptible APIs, observed event logs,

and permission rate is used as features for the classifier. Sen

Chen[3] et al. discussed various issues where malware

detection techniques failed. The challenges associated with

the failure of conventional ML algorithms are also

discussed. Shabtai [4] et al. Information Gain was used to

select permission features and code features. Using a mix of

permissions and code features, an accuracy of 93% was

achieved. Li et al. [5] developed a permission-based

malware detection method to distinguish between malware

and legitimate apps. In [5], the authors used three stages of

filtering with rule-based associated mining to discover

important permissions. The machine learning model with

filtered permissions achieved 96% accuracy for detecting

malware apk. A. Lakshmanarao [6] et al. applied CNNs for

android malware classification. Android apps are converted

to images in two variants. The entire apk images and dex

part images of apks were created. Later, Deep Learning

CNN was applied and achieved good accuracy with dex

images. T Chakraborty [7] et al. utilized a method for

classifying malware samples into various malware families.

The model used static features and built an ensemble that

combines classification and clustering techniques. In [8], the

authors applied de complication to obtain all API calls in the

dataset with 516 non-malware apps and 528 malware apps,

then computed and prioritized the risk associated with these

APIs using a mutual information model. In [9], static

features are generated by extracting android manifest files,

and an ensemble XGBoost was then used to detect malware

apps with 95.25% accuracy. Ji Wang [10] proposed a

selective ensemble learning model for android malware

detection and achieved a recall of 98%.

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

296

Mahindru [11] et al. applied a Neural Network model

with Principal Component Analysis for malware detection

on a dataset of 1,20,000 mobile apps and achieved an

accuracy of 94%. Zhu et al. [12] used a stacking ensemble to

detect malware. The proposed system employs a two-way

architecture, with the ensemble of the base learner using

MLP and finally the output of base learners being merged

using SVM. In the initial stage, the twofold disruption of

features ensures the diverseness of the train subsets, & PCA

is performed separately. MLP is run on each set, retaining

principal components determined through PCA but changing

the entire train dataset into a completely new set to ensure

the base learner accuracy. The next step, called the fusion

step, involves learning implicit supplemental data from base

learner output to maximize classification performance. In

this paper, the authors also used the stacking ensemble

approach. Still, convolutional neural networks are used as

base learners, and SVM was used as a meta learner for final

predictions. Eslam Amer [13] et al. applied an ensemble-

based machine learning model for malware detection. As an

initial step, a random forest was used for feature selection.

Later, an ensemble learning algorithm, "Extra Tree

Classifier", was applied to selected features and achieved

better results. R. S. Arslan[14] et al. proposed an ensemble

ML model for malware classification. Four types of

malware, namely ransomware, adware, scareware, and

ransomware, are classified with an accuracy of 90.4% with

an ensemble approach. Altyeb

Taha [15] et al. proposed a novel technique that utilizes

permission features of android apps and aggregates the

classification results of multiple classifiers, including Light

GBM, Adaboost, XGBoost, Random Forest, Decision Trees,

by utilizing the Choquet fuzzy integral function. Choquet's

fuzzy integral is based on fuzzy measures computed using

the significance level of the base classification model or a

subset of classifiers. The fuzzy measure was fine-tuned with

two different factors, the confidence of each classifier's

classification results and the consistency of each classifier's

classification results. The classification outcome with a large

choquet integral was considered for final predictions. Potha

et al. [16] investigated the impact of using external instances

(benign or malware) of various sizes and types while using

an ensemble model. The output of numerous base models,

including Logistic Regression and MLP, is combined in this

innovative ensemble model called ERBE (Extrinsic

Random-based Ensemble). The findings showed that

ensemble models with a larger and perhaps more

homogeneous length of instances are far more successful

than those with smaller and more diverse instances sizes.

They also looked at the impact of employing either the

complete feature set or a random subspace comprising

instance features. They discovered that the latter helps an

extrinsic ensemble model perform better. Christianah[17] et

al. proposed an ensemble approach for android malware

detection. Permission features from 952 non-malware and

952 malware apks are extracted. Three base learners support

vector classifier-nearest neighbours, random forest is used as

base learners, and a majority voting mechanism is employed

for making final predictions. The final ensemble model

achieved an accuracy of 98% for malware detection.

Kouliaridis et al. [18] presented a simple ensemble malware

detection approach. The result of numerous base models

based on static or hybrid Analysis is averaged to form the

ensemble model. APIs, Permissions, java classes, network

traffic, and intents are used as features. The performance is

measured against three different datasets using various

classifiers, including Naive Bayes, Logistic Regression,

Random Forest, k-NN, AdaBoost, SGD, and SVM. The final

model achieved an AUC score of 97%. Rana[19] et.al

proposed an ensemble technique with SBFS(substring-based

feature selection)strategy.The string features of the apps are

extracted, and a subset of features was selected in the final

dataset. Later various classifiers, Random Forest, Decision

Trees, ERT, GB, and SVM, are applied as base learners for

ensemble, and an accuracy of 97.6% is achieved for malware

detection. A. A.Lakshmanarao[20] et al. extracted opcode

sequences from android apks, and an RNN is deep learning

model was proposed on opcode sequences. As a single

android app contains several opcode sequences, all the

sequences are labelled with the same class label (for

example, if an apk is malware, all opcode sequences from

that malware apk are labelled as malware).

3. Research Methodology

The Android app is an archived file with an apk

extension. Extraction of an android app produces other files,

including meta-inf, manifest file, and classes.dex file, assets,

res, and lib. Meta inf is a directory with app metadata. The

manifest file contains the app's name, apk version, and

permissions information. 'assets' is a directory of app assets.

Res contains app resource information. The compiled native

libraries are stored in the 'lib' directory. Classes.dex contains

application code index format. The Java compiler converts

Java source code into dot class files. The dx (dexter) tool,

part of the Android SDK, converts the dot class files into the.

Dex (dalvik executable) file. So, the code part of the android

app is stored in classes.dex file. The proposed architecture is

keen on the creation of images with minimal overhead. As

classes. dex files are enough for differentiating malware and

non-malware apps[6]; the authors extracted android apps

images from classes.dex files using the image generation

algorithm developed by the authors discussed in [6]. The

width of images varies in the range of 32 KB-1024 KB

depending on the size of apk.

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

297

Fig. 2 Proposed Methodology

The authors proposed a stacking ensemble architecture

with Convolutional Neural Networks (CNN) followed by a

Support Vector Machine to process the image dataset once

the Android apk dataset is converted into image form. The

proposed framework is shown in Fig.2.

3.1 Stacking Ensemble

In the stacking ensemble framework, the system takes

the outcomes of sub-models as inputs and tries to figure out

how to combine the input predictions in the best way

possible to get a better output prediction. Fig. 4 depicts the

stacking ensemble with 2 levels: level-0 has base models &

level-1 has the meta-model.

The steps involved in building the stacking ensemble

are:

• Divide the given data set into training data and testing

data.

• Initialize the appropriate hyperparameters to configure L

base learners at Level-0 and build the base models using

the training dataset. During training, observe the

accuracy of base learners and adjust the parameters to

get better accuracy.

• Train the Meta Model at the next level, Level-1, using

predictions made by the base learners on a separate set

of training observations.

Stacking ensembles can be trained in either blending mode or

stacking mode.

3.1.1 Blending

Blending is a specific way to train the stacking ensemble

that uses a holdout approach for dataset division. First, the

dataset is divided into training and testing sets. Later, the

training dataset is further divided into training_sub and

holdout sets. Level-0 models are trained using training_sub.

At Level-1, meta learner is trained using the holdout set.

Later, the test set is used to make final predictions and assess

the framework's generalization performance.

3.1.2 Stacking

In stacking also, train and test sets are created from the

dataset. The base learners are trained on the complete set of

training data. For training meta learners, a k-fold cross-

validation technique is used. The training data is divided into

k folds. All L base learners are applied on k-folds in the

training data separately, producing (n x L) number of

predictions where n is the number of samples in the training

set. Later, the meta learner is trained, taking these predicted

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

298

labels as input and the true label of the corresponding

training samples. Finally, the testing dataset makes final

predictions and assesses the framework's generalization

performance.

 The authors applied both stacking ensemble and

blending ensemble models for malware in this paper.

Convolutional neural networks are used as base learners in

level-0, and Support Vector Machine is used as meta learners

in level-1. In level-0, ten CNNs are trained with different

hyperparameter settings regarding #layers, optimizers,

number of epochs, etc.

3.2 Convolutional Neural Networks

Yann LeCun [21] introduced convolutional neural

networks (also known as ConvNets) in the 1980s. In CNN,

images are reduced to a form that can be processed more

easily, but important features are not lost during image

reduction. Convolutional layers are followed by an activation

function, a pooling layer, and a fully connected layer in the

CNN architecture. The model can contain any number of

convolutional layers depending on the dataset's

characteristics. The architecture of CNN is shown in fig. 3.

Fig. 3 Architecture of CNN

3.2.1 Convolutional Layer

This is also called as kernel layer. The Kernel/Filter is

the first component in a Convolutional Layer that performs

the convolution operation. The use of appropriate filters by a

CNN can effectively capture spatial & temporal

dependencies in an image. The output of this layer is called

convolved feature. An activation function is applied at the

end of the convolution layer.

3.2.2 Pooling Layer

The pooling layer takes care of reducing the size of the

Convolved Feature, thereby reducing the complexity of the

model. There are several variations in pooling, but max

pooling is the most widely used technique. It preserves

important features and reduces the size.

3.2.3 Fully Connected Layer

The output from the last pooling layer is flattened and fed

through the fully connected layer. This is similar to a feed-

forward network. From this stage, CNN works like an ANN

only.

3.3 Support Vector Machine

Both classification & Regression problems are solved

with SVM. The main goal of the algorithm is to find the best

decision boundary (optimum hyperplane) for dividing data

samples into different classes. Multiple separating planes

may exist between the training samples of different classes,

which are referred to as hyper-planes. The hyper-plane that

partitions the data samples of different classes more

efficiently is the one that has maximum margin between the

training data points identified as support vectors as it results

in minimal test error and hence is selected as the optimal

hyperplane. Learning such an optimal hyper-plane often

involves setting hyperparameters such as tolerance

thresholds, kernel function, etc., to handle non-linearly

separable data space.

4. Experimentation and Results

4.1 Details of Dataset

2511 malware apps are gathered from the site

"virusshare.com" and 2508 benign apps from the play store,

apkpure and CICAndMal2017[22]. Table-1 shows details of

the dataset collected.

Table 1. Details of Dataset

Number of malware apks

(virusshare.com)

2511

Number of Benign apks

(Play store, apkpure, CICMAL2017)

2508

Total

 5019

4.2 Applying the Stacking Ensemble Framework

All the collected android apps (both benign and

malware) are converted into images using the algorithm

developed by the authors in [6]. Later, blending and stacking

are applied to the image dataset.

4.2.1 Experiments with Blending

The architecture of the proposed blending framework is

shown in fig. 4. The steps in the blending model are:

• Dataset division: First, the dataset is divided into the

full-training set and the testing set. The division is done

with a 75%,25% ratio. The dataset contains 5019

images. So, the full-training set contains 3764 images,

and the testing set contains 1255 images. The next full-

training- set is further divided into the training set and

holdout set with a 75% (2823 images) and 25% (941

images) ratio.

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

299

Table 2. Base Learners architecture

Base

Learner

Number of

convolutional layers

Number of Neurons (layer-wise) Optimizer Number of epochs

CNN1 4 250,200,150,100 adam 50

CNN2 3 150,70,30 sgd 60

CNN3 4 500,360,240,160 adam 50

CNN4 3 450,350,200 adam 100

CNN5 4 250,150,120,100 RMSprop 70

CNN6 4 200,180,150,70 adam 100

CNN7 3 160,120,100 adam 100

CNN8 2 160,100 sgd 120

CNN9 4 220,170,140,65 adam 120

CNN10 4 280,150,110,85 adam 125

Fig. 4 Architecture of proposed blending model

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

300

Fig. 5 Architecture of proposed stacking model

• Training base learners (CNNs): Base learners are trained

on a training dataset (2823 images). Ten different CNNs

are trained with different hyperparameter settings,

shown in Table-2. RELU is used as an activation

function in hidden layers for all base learners, the

Sigmoid function is used as the output function, and

'binary_cross-entropy' is used as the cost function.

• Training meta-model (Training SVM): The meta learner

used in the proposed architecture is SVM. SVM is

trained on a holdout set. First, the base learner's

predictions are calculated on a holdout set. The

predictions and holdout set class labels to become a new

dataset for training SVM. The reason for selecting a

holdout set is to reduce overfitting. If both base learners

and meta-learners were trained on the same dataset,

there might be a possibility of overfitting.

• Testing performance of proposed model: The final

model is tested on the testing set. First, the base learners

apply, and predictions are stored. The predictions and

the class label are fed through the proposed model to

make final predictions. The proposed blending model

achieved an accuracy of 99% with the testing dataset.

4.2.2 Experiments with Stacking

The architecture of the proposed stacking framework is

shown in fig. 5.

The steps in the proposed staking model are:

• Dataset division: First, the dataset is divided into

two parts: the training and testing sets. The division

is done with a 75%,25% ratio. The dataset contains

5019 images in total. So, the full training set

contains 3764 images, and the testing set contains

1255 images. Next, the training set is further

divided into 5 folds.

• Training base learners (CNNs) and meta learners:

Base learners are trained on 5 folds with a testing

set of 753 images and a training set of 3011 images.

So each base learner trained 5 times. The

predictions of the training set (753 * 5 times =3765

predictions) are preserved for all base learners, and

models are discarded. The architectures of base

learners (ten CNNs) are shown in table-2. (Same ten

CNN architectures used for blending). So, ten

columns of predictions are preserved. These

predictions, along with actual class labels, form a

new dataset. A meta learner (SVM) has been trained

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

301

with this new data set. That means the meta learner

is trained with cross-validated predictions of base

models. Finally, all base learners are trained with

the entire training set (3764 images).

4.3 Comparison with previous work

 The performance of the proposed model was compared

with previous work (Table-3). In [22], the authors applied the

voting classifier and achieved 89.7% accuracy. In [8], the

authors proposed ensemble learning on sensitives api's and

achieved 94% accuracy. In [23], the authors proposed a

hybrid deep learning technique and achieved 96.8%

accuracy. The authors [12] applied a stacking ensemble with

ANNs as base models and SVM as a meta-model and

achieved 94.92% accuracy. This paper applied ensemble

learning techniques with CNNs as base models and SVM as

a meta-model. The stacking ensemble framework is applied

in two different ways, namely blending and stacking and

achieved an accuracy value of 99% and 98.3%,

respectively(figure-6). The base models and meta-models

were trained on different datasets in both techniques. So,

there is no overfitting. Since the model's accuracy is very

high on the new dataset (testing set), it is concluded that the

proposed model is capable of efficiently classifying new

samples of malware and benign.

Fig. 6 Accuracy Comparison

Table 3. Details of Dataset

5. Conclusion
In this paper, a stacking ensemble model was proposed

for Android malware detection and accordingly, a framework

was developed to investigate the efficiency of the proposed

model. Malware and benign Android apps are collected and

classes.dex files are extracted from apks and converted to

images. The image dataset is then processed in two different

ways of stacking ensemble framework: blending and

stacking. The meta-model was trained with a holdout dataset,

while the base models were trained with a training dataset.

The proposed blending model achieved an accuracy of 99%.

The meta-model was trained with a cross-validated training

set, while the base models were trained with a training set.

The proposed stacking model achieved an accuracy of

98.3%. CNNs are used as base models in blending and

stacking, and SVM is used as the meta-model. Experimental

results have shown that the proposed stacking ensemble

framework outperforms conventional machine learning/deep

learning models for Android malware detection.

References
[1] https://securelist.com/it-threat-evolution-q2-2021-mobile-statistics/103636/

[2] Hui-Juan Zhu, Zhu-Hong You, Ze-Xuan Zhu, Wei-Lei Shi, Xing Chen, Li Cheng., DroidDet: Effective and robust detection of android malware using

static analysis along with rotation forest model, Neurocomputing, 272 (2018) 638-646. ISSN 0925-2312,https://doi.org/10.1016/j.neucom.2017.07.030.
[3] Sen Chen, MinhuiXue, Lingling Fan, Shuang Hao, Lihua Xu, Haojin Zhu, Bo Li., Automated poisoning attacks and defences in malware detection

systems: An adversarial machine learning approach, Computers &Security, 73 (2018) 326-34. ISSN 0167-4048,

https://doi.org/10.1016/j.cose.2017.11.007.
[4] A. Shabtai, Y. Fledel and Y. Elovici., Automated static code analysis for classifying android applications using machine learning, Int. Conf.

Computational Intelligence and Security, (2010) 329–333.

[5] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-an and H. Ye., Significant Permission Identification for Machine-Learning-Based Android Malware Detection, in
IEEE Transactions on Industrial Informatics, 14(7) (2018) 3216-3225. doi: 10.1109/TII.2017.2789219.

[6] A. Lakshmanarao, M.Shashi., Android Malware Detection Using Convolutional Neural Networks, In Data Engineering and Intelligent Computing.

Advances in Intelligent Systems and Computing, 1 (2021) 151-162. https://doi.org/10.1007/978-981-16-0171-2_15.
[7] T.Chakraborty, F. Pierazzi and V. S. Subrahmanian., EC2: Ensemble Clustering and Classification for Predicting Android Malware Families, in IEEE

Transactions on Dependable and Secure Computing, 17(2) (2020) 262-277.doi: 10.1109/TDSC.2017.2739145.

Method Accuracy

Voting Classifier [22] 89.7%

Ensemble Learning on APIs [8] 94%

Hybrid Deep Learning [23] 96.8%

stacking ensemble with ANN&SVM [12] 94.92%

The proposed method(blending) 99%

The proposed method(stacking) 98.3%

A. Lakshmanarao & M. Shashi / IJETT, 70(4), 294-302, 2022

302

[8] Yu Junhui, ZhaoChunlei, ZhengWenbai, Yunlong Li, ZhangChunxiang, Chen Chao., Android Malware Detection Using Ensemble Learning on Sensitive

APIs, Springer International Professional, (2021). https://doi.org/10.1007/978-3-030-73429-9_8.

[9] D.Congyi, Guangshun S., Method for Detecting Android Malware Based on Ensemble Learning, In Proceedings of the 2020 5th International

Conference on Machine Learning Technologies, (2020) 28–31. Association for Computing Machinery.
[10] Ji Wang, QiJing, Jianbo Gao., SEdroid: A Robust Android Malware Detector using Selective Ensemble Learning, (2019). arXiv:1909.03837v1.

[11] A. Mahindru and A. L. Sangal,. DeepDroid: Feature Selection approach to detect Android malware using Deep Learning, 2019 IEEE 10th International

Conference on Software Engineering and Service Science (ICSESS), (2019) 16-19. doi: 10.1109/ICSESS47205.2019.9040821.
[12] H. Zhu, Y. Li, R. Li, J. Li, Z. You and H. Song., SEDMDroid: An Enhanced Stacking Ensemble Framework for Android Malware Detection, in IEEE

Transactions on Network Science and Engineering, 8(2) (2021) 984-994. doi: 10.1109/TNSE.2020.2996379.

[13] Eslam Amer, Ivan Zelinka (2019) An Ensemble-Based Malware Detection Model Using Minimum Feature Set, MENDEL. 25 (2019) 1-10.
10.13164/mendel.2.001.

[14] R. S. Arslan (2021) Identify Type of Android Malware with Machine Learning Based Ensemble Model, 2021 5th International Symposium on

Multidisciplinary Studies and Innovative Technologies (ISMSIT), (2021) 628-632, doi: 10.1109/ISMSIT52890.2021.9604661.
[15] A. Taha, O. Barukab, and S. Malebary., Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification, Mathematics, 9(22)

(2021) 2880.

[16] N.Potha, V. Kouliaridis& G. Kambourakis., An extrinsic random-based ensemble approach for android malware detection, Connection Science, 33(4)
(2021) 1077-1093, DOI: 10.1080/09540091.2020.1853056.

[17] Christianah, A. O., Gyunka, B. A., &Oluwatobi, A. N., Optimizing Android Malware Detection Via Ensemble Learning, International Journal of

Interactive Mobile Technologies (iJIM), 14(09) (2020) 61–78. https://doi.org/10.3991/ijim.v14i09.11548.

[18] V. Kouliaridis, G. Kambourakis, D. Geneiatakis, and N. Potha ., Two Anatomists Are Better than One—Dual-Level Android Malware Detection,

Symmetry, 12(7) (2020) 1128.

[19] Rana, Sung., Evaluation of advanced ensemble learning techniques for android malware detection, Vietnam Journal of Computer Science 7
(2)(2020)145–59.

[20] Lakshmanarao, A., & Shashi, M., Android Malware Detection with Deep Learning using RNN from Opcode Sequences. International Journal of

Interactive Mobile Technologies (iJIM), 16(01) (2022) 145–157. https://doi.org/10.3991/ijim.v16i01.26433.
[21] LeCun, Y., Haffner, P., Bottou, L., Bengio.Y., Object Recognition with Gradient-Based Learning, In. Shape, Contour and Grouping in Computer Vision.

Lecture Notes in Computer Science, 1681 (1999). Springer, Berlin, Heidelberg,https://doi.org/10.1007/3-540-46805-6_19.
[22] Martín Garcia, Alejandro & Lara-Cabrera, Raul & Camacho, David., Android malware detection through hybrid features fusion and ensemble classifiers:

The AndroPyTool framework and the OmniDroid dataset, Information Fusion. 52 (2019). 10.1016/j.inffus.2018.12.006.

[23] Lu, T., Du, Y., Ouyang, L., Chen, Q., Wang, X. (2020) Android malware detection based on a hybrid deep learning model In Secur. Commun. Netw., 8
(2020) 1–11.

