
International Journal of Engineering Trends and Technology                                                   Volume 70 Issue 4, 164-173, April 2022 

ISSN: 2231 – 5381 / https://doi.org/10.14445/22315381/IJETT-V70I4P214                                        © 2022 Seventh Sense Research Group®   

           

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Original Article 

A Neuro-Fuzzy based Automated System for Estimating 

Software Quality 
Ritu1, O. P. Sangwan2 

1,2Department of Computer Science & Engineering, Guru Jambheshwar University of Science and Technology,  

Hisar, Haryana, India 
 

1rituchopra84@gmail.com 

Received: 23 February 2022           Revised: 02 April 2022            Accepted: 04 April 2022     Published: 26 April 2022 
   

Abstract - In this increasing digital software era, various software becomes of daily use in human life, ranging from shopping 

to meeting, working from home, etc. It is a necessity for good software that is easy to operate, highly secure, and highly 

accurate. These properties constitute the quality of software. Generally, the quality of the software is estimated based on the 

expert's opinion or from any other user of that software, which can be time-consuming and may not be highly accurate as it 

depends upon user-to-user experience. It is a demand for an automated system that the quality of software can be estimated by 

providing some inputs or features. Due to recent development in machine learning, the neural network has been largely 

employed in academia as well as industry. Thus, this paper presents a neuro-fuzzy-based automated system to estimate the 

quality of given software. The user needs to feed only five parameters, namely Reliability, Usability, Functionality, Efficiency, 

Portability, and Maintainability, and the proposed model automatically calculates the quality of software. The proposed model 

is based on the data collected from the 128 software, where 100 data-set are used for training the proposed neuro-fuzzy model 

and 28 data-set for testing purposes. The obtained results with the proposed approach closely match the actual software 

quality. Moreover, two fuzzy rule generation techniques, i.e. 'grid partition' and 'sub-clustering', have been designed and 

compared the obtained results with both approaches. It is found that the proposed approach with sub-clustering has lesser 

error measures like MSE, MRE, and MARE in terms of performance indexes, among other methods. 

Keywords - ANFIS, Fuzzy logic, Neuro-fuzzy, Neural Networks, MATLAB Simulation, Software Quality. 

1. Introduction 
Software quality analysis is one of the most important 

criteria for determining the software life cycle and reliability 

[1], [2]. Due to the increasing development of computer-

related hardware, the performance of software becomes very 

critical, and high-performance software is always required. 

Meanwhile, software development and maintenance costs, as 

well as development time, are predicted to a reduction in 

these. Despite a large number of resources and a substantial 

chunk of an organization’s capital expenditures spent, most 

software purchased by clients or organizations does not 

match their needs. Poor-quality products and software 

failures have caused more than an annoyance, especially in 

this era of ubiquitous computing, where users can assess the 

system from anywhere at any time. Now that the majority of 

systems used at home, in hospitals, and in industries are 

embedded systems. Software faults have resulted in human 

mortality. Poorly designed user interfaces, specification 

misinterpretation, and outright programming faults have all 

been blamed because it is more cost-effective to uncover 

potential software quality concerns sooner or later in 

software development due to the cost of maintaining broken 

or unreliable systems. 

 

It is always good if one is able to estimate the quality of 

software at the early stage of the design, which can simplify 

the design of a good final product. By knowing it at an early 

stage, the designer can take appropriate action on the design 

part to meet the expectations accordingly. As a result, it 

reduces the design time, development cost, and development 

cycle. However, no clearer dependency parameters of 

software quality and the unavailability of sufficient data at 

the early stage make it challenging to access the software 

quality. The very first step of developing a prediction model 

is needed to evaluate the factors that can affect the quality of 

software. Further, it is very difficult to precisely identify 

these parameters. In addition, the degree of influence is 

inherently ambiguous. The quality of the software is 

measured using a variety of metrics. There are no definite 

metrics that affect the software quality. However, according 

to the ISO/IEC 9126 international standard, six parameters, 

namely Reliability, Usability, Functionality, Efficiency, 

Portability, and Maintainability, can access the software 

quality. Based on the study in [9], it is argued that five 

attributes are sufficient enough to predict the quality of 

software. It is evident; that there is a certain relationship 

between these metrics and the software quality. So, the 

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

165 

objective of the proposed automated system of software 

quality is to determine an effective relationship between 

these metrics and the software quality. 
 

The rest of the paper is structured as related works are 

described in section 2, section 3 explains software quality 

factors, the proposed methodology is given in section 3, 

section 5 discusses the simulation results, and finally, the 

conclusion is discussed in section 6. 

2. Related Work 
There have been numerous studies on soft computing 

techniques, e.g. neural networks [3] and fuzzy logic [4]. 

These schemes can be employed for black-box modelling, 

system identification, classification, prediction, etc. Even in 

the software field also, these approaches are widely used, 

whether it is software fault prediction [5], fault classification 

[6], software quality assessment [7], etc. Various fuzzy logic-

based techniques have been introduced to access the quality 

of software. In [8], a fuzzy rule-based software quality model 

is developed based on 110 software by employing three 

inputs, e.g. GUI interface, user manual (UM), meaning error 

message (MEM). The obtained results are compared with the 

local regression method. A prediction approach is employed 

in [9] using a fuzzy technique where 243 rules are used based 

on the expert’s opinion. The estimated quality using the 

fuzzy model is proved to be a match with the actual software 

quality. 

 

Another software quality model is developed in [10] 

based on the inspection along with the defect data collected, 

estimated the error-prone modules, and the effectiveness of 

the inspection. The data set used can be influenced during an 

inspection by the method or type of inspection, and hence, 

this parameter is included in the prediction model. An object-

oriented Petri-net-based quality prediction is proposed in 

[11] based on the defects at the various stages, starting from 

the requirement phase to the testing phase. Another fuzzy-

based quality prediction model is proposed in [12] based on 

the software metrics related to the coding structure, design, 

and requirement. A fuzzy logic approach is employed to 

estimate the defect metrics of that software based on the 

three aforementioned parameters, and it is estimated the 

degree of defects in a particular phase. A priority-based 

prediction model is discussed in [13] using the Takagi-

Sugeno fuzzy model, where the authors predict the priority of 

software based on the stakeholder’s importance, time, cost, 

and risk factor. The fuzzy-based approach has also been used 

to access other software metrics, for example, software 

reliability analysis in [14], [15], software defect prediction in 

[16], software failure detection in [17], etc. Fuzzy logic-

based approaches take into account the linguistic rules, 

which are based on the expert advice or data collected, and 

quantitative data is not used. Neural-network has excellent 

learning capability and adaptability based on the input data. 

So, on account of the data-based modelling, neural-network-

based approaches, e.g. Radial basis function network 

(RBFN), Multi-layered neural network, and recurrent neural 

network, can be used. Some studies already have been 

considered the neuro-fuzzy scheme in software analysis. 

These are limited to risk analysis, design defects, reliability 

prediction, etc. Neuro-fuzzy-based reliability and efficiency 

prediction schemes are developed in [18] based on three 

attributes, namely DIT, RFC, and WMC. This approach 

applies to incomplete or missing information of any input 

parameter and the different data formats. Neural network-

based fault-prone prediction of software is proposed in [19] 

for a particular software by analyzing the code routine 

structure. A fault is there if there is any change in the code 

structure upon any reported problem. The output obtained 

from the NN in the form of fault-prone software is again 

used to extract more comprehensive rules by using the 

genetic algorithm to enhance the accuracy of the NN model. 

 

An improved NN-based approach is presented in [20] 

using an optimization algorithm named Hybrid Cuckoo 

search (HCS). The weights are learned by using the HCS 

algorithm for better accuracy and to speed up the process of 

learning. However, it lacks a detailed analysis of the 

presented framework on software quality. An ANFIS model 

is proposed in [21], where the software quality model has 

been discussed using a three-level approach. At each level, 

sub-characteristics are estimated using given inputs, and 

finally, quality is estimated based on usability and efficiency. 

However, there is no correlation between the three levels. 

Another ANFIS architecture is provided in [22] to predict 

software quality in terms of software viability. The viability 

is divided into three categories, namely full viable, partial 

viable, and not viable. An FLNN (Fuzzy logic Neural 

Network) approach is discussed in [23] where instead of 

software quality prediction, different metrics of quality, e.g. 

functionality, usability, maintainability, efficiency, are 

predicted based on six applied inputs. The FLNN employs a 

neural network architecture with four fuzzy rules and three 

layers of NN. An adaptive neuro-fuzzy approach is presented 

in [22] for a web-based software quality prediction scheme 

by taking six software metrics as input. A total of 682 data 

was generated for a particular software in the AKTC 

warehouse. A testing error of 0.047 in terms of MSE is 

obtained using a back-propagation algorithm for 171 data 

pairs. By combining the fuzzy logic and neural network, an 

automated system is designed [24] to estimate the software 

quality using only three inputs, e.g. complexity, DIT, and 

reuse. However, these parameters may not be sufficient 

enough, and other parameters should be considered as well. 

In [28], an extension of the DRM model is proposed, which 

is called DRM. This technique is useful to predict the 

software development efforts and cost. The proposed 

technique proved that reusability plays a vital role in 

software cost estimation. In [29], the authors developed a 

model named Adaptive Neuro-Fuzzy Inference System to 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

166 

predict the software defects using linear discriminant 

analysis. First, the data set was balanced by the linear 

discriminant technique. Then it was trained by the ANFIS 

model. The proposed model gives faster convergence and 

satisfactory results. 

Due to the lack of knowledge, perhaps from the domain 

expert, the quality attribute of software products is 

sometimes overlooked throughout the development stage. 

However, various studies have been considered for the 

software quality prediction using soft computing approaches 

and neuro-fuzzy approach also, they lack the comprehensive 

analysis and also don’t use software metrics directly, for 

example, Reliability, Usability, Efficiency, Portability, 

Maintainability, etc. 

 

So, A combination of using linguistic rules as well as 

input data can be a good idea to increase the accuracy and 

robustness of the prediction model. Hence, the aim of this 

paper is to propose a neuro-fuzzy scheme to build an 

automated system for software quality prediction.  

3. Factors Affecting Software Quality 

A thorough analysis has been accomplished in [9] on the 

parameters that can affect the software quality. It is found 

that the software quality is greatly influenced by five 

parameters, namely Reliability, Usability, Efficiency, 

Portability, and Maintainability. Thus, the following five 

parameters have been considered as input for the proposed 

neuro-fuzzy model [25]. 

3.1 Reliability 

Failures to provide an appropriate level of service are the 

subject of reliability requirements. They also set the software 

system’s maximum allowed failure rate, which might pertain 

to the entire system or one or more of its operations. System 

reliability, hardware failure recovery, application reliability, 

and computational failure recovery are the four subfactors of 

reliability. 

 

3.2 Usability 

Usability can be explained as follows: the scope of staff 

resources required for training a new employee as well as 

operating the software system is addressed by usability 

requirements. Operability and training are two subfactors of 

usability. 

 

3.3 Efficiency 

Efficiency is concerned with the hardware resources 

needed to carry out all of the software’s operations while 

meeting all other requirements also. 

 

3.4 Portability 

The adaptation of software in question to other settings 

constituted of different operating systems, different 

hardware, etc., are referred to as portability requirements. 

Modularity, self-description, and software independence are 

three subfactors of portability. 

 

3.5 Maintainability 

Maintainability requirements are concerned with 

determining the effort necessary by all potential users and 

maintenance personnel to discover the causes of software 

failures. Modularity, simplicity, compliance (consistency), 

document accessibility, code and documentation rules, and 

self-descriptiveness are six sub-factors of maintainability. 

4. Proposed Methodology 
First, it is discussed the neuro-fuzzy model employed, its 

layout, and functioning. Here, an adaptive neuro-fuzzy 

inference engine (ANFIS) has been employed for the purpose 

of building the automated system. Although the ANFIS 

model was first proposed in 1993, as discussed in [26], it has 

not been fully explored as an automated system for software 

quality prediction. Takagi-Sugeno fuzzy inference engine is 

introduced to access the linguistic information, whereas a 

feed-forward neural network is introduced to embed NN 

information. Two approaches, grid partition and sub 

clustering are introduced in this paper to generate the fuzzy 

rules. These rules are embedded by a bell-shaped fuzzy 

membership function by which each of the inputs is 

associated. To train the ANFIS model, the MATLAB tool 

[27] has been utilized. Five inputs, namely Reliability, 

Usability, Efficiency, Portability, Maintainability, and one 

output as software quality, have been used for the prediction 

of the software quality. To derive an effective relationship 

between these metrics and software quality, first, a data set of 

128 pieces of software was collected from various studies, 

which were later verified by experts. Out of 128 software 

data, 100 data-set have been used to train the proposed 

neuro-fuzzy model and 28 pieces of software for testing the 

ANFIS model. The fuzzy rules are needed to train the ANFIS 

model, so, in this paper, two approaches, namely grid 

partition and sub-clustering (Subtractive clustering), have 

been proposed. Both approaches are used to generate the 

fuzzy rules. The results obtained by both introduced 

approaches are compared in terms of performance measures 

for further analysis of the ANFIS architecture. The error 

measures MARE and MRE have been used to evaluate the 

performance of each of the methods. It is found that the 

proposed approach with sub-clustering has lesser error 

measures, i.e. it more accurately predicts the software 

quality. The proposed approach with sub-clustering has the 

potential of estimating software quality in a real-time 

scenario. 

 

 

 

 

 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

167 

4.1 ANFIS architecture 

 

 
 

Fig. 1 A general ANFIS architecture 

The architecture of the ANFIS model is shown in Fig. 1, 

which consists of a five-layer architecture. Five input 

parameters are denoted as 𝐼𝐴, 𝐼𝐵 , 𝐼𝐶 , 𝐼𝐷 , 𝐼𝐸 . The first layer 

consists of premise parameters which depend upon no. of 

input parameters (𝑛). No. of nodes in the first layer can be 

calculated as 𝑛 × 𝑚 where 𝑚 denotes the no. of fuzzy sets 

equipped with membership function for each input. Layer 2 

contains all the nodes which are originated from the output of 

each membership function in Layer 1, and thus there are 𝑚𝑛 

no. of nodes in Layer 2. Moreover, subsequent layers, i.e. 

Layers 3 and 4, have the same no. of nodes as layer 2. 

Whereas the fifth layer has one node, which infers the output 

of the ANFIS model, i.e. software quality. For example, two 

fuzzy sets are associated with each input, as shown in Fig. 1. 

It is seen that the no. of nodes in layers 2, 3, and 4 are 25 =
32 𝑛𝑜𝑑𝑒𝑠 whereas Layer 1 has 2 × 5 = 10 𝑛𝑜𝑑𝑒𝑠. The total 

no. of nodes in this ANFIS architecture can be calculated as 

follows:  

𝑁𝑜.  𝑜𝑓 𝑛𝑜𝑑𝑒𝑠 = 

𝑛 + 𝑛 × 𝑚 + 𝑚𝑛 + 𝑚𝑛 + 𝑚𝑛 + 1
= 5 + 5 × 2 + 3 × 25 + 15 + 10 + 96 + 1
= 5 + 10 + 96 + 1 = 112

 

 

4.2 Functioning of ANFIS model 

Here is the detailed discussion of the functioning of the 

ANFIS model given in Fig. 1 at each layer. 

4.2.1 Layer 1 

First Layer is the fuzzification layer which consists of 

input nodes associated with the appropriate fuzzy 

membership function. Let 𝜇𝐴1
(𝐼𝐴) is the membership output 

for input 𝐼𝐴 and it expresses the extent to which a given 𝐼𝐴 

meets its quantifier 𝐴1. Here, it is employed a bell-shaped 

membership function expressed in Eq. (1). 

𝜇𝐴1
(𝐼𝐴) =

1

1+(
𝐼𝐴−𝑐

𝑎
)2𝑏                            (1) 

Where value of 𝜇𝐴1
(𝐼𝐴) lies between 0 and 1. 𝑎, 𝑏, 𝑐 decides 

the shape of the membership function and is refereed as 

premise parameters and needs to be learned here. 

4.2.2 Layer 2 

Layer 2 denotes the fuzzy rule layer, which outputs the 

product of membership value originating from each of the 

input sets. The output of layer 2 can be described in Eq. (2). 

𝑤𝑜 = 𝜇𝐴𝑖
(𝐼𝐴) × 𝜇𝐵𝑗

(𝐼𝐵) × 𝜇𝐶𝑘
(𝐼𝐶) × 𝜇𝐷𝑙

(𝐼𝐷) × 𝜇𝐸𝑝
(𝐼𝐸)   (2) 

Where, 𝑜 = 1, 2, . . . 32 and 𝑖, 𝑗, 𝑘, 𝑙, 𝑝 = 1,2 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

168 

4.2.3 Layer 3 

Layer 3 is the firing strength layer which outputs the 

normalized value of the strength of each fired rule. Thus, the 

output of layer 3 can be described in Eq. (3). 

�̅�𝑜 =
𝑤𝑜

∑ 𝑤𝑜
32
𝑖=1

                                                                      (3) 

4.2.4 Layer 4 

The structure of a fuzzy rule for the proposed ANFIS 

model is in the following Eq. (4) 

Rule 1: if 𝐼𝐴 is 𝐴1 and 𝐼𝐵 is 𝐵1 and 𝐼𝐶  is 𝐶1 and 𝐼𝐷 is 𝐷1 and 

𝐼𝐸  is 𝐸1 then 

𝑓1(Output) = 𝑝1𝐼𝐴 + 𝑝2𝐼𝐵 + 𝑝3𝐼𝐶 + 𝑝4𝐼𝐷 + 𝑝5𝐼𝐸 + 𝑝6   (4) 

Where𝑝𝑖 , {𝑖 = 1, 2, 3, 4, 5, 6} are referred as the consequent 

parameters. Thus, Layer 4 is the implication layer, and its 

output is estimated using Eq. (5) 

 

𝑂4𝑜 (𝑜𝑢𝑡𝑝𝑢𝑡) = �̅�𝑜 𝑓𝑜                                        (5) 

Where, 𝑓𝑜 Is the output of 𝑂′𝑠 rules. 

4.2.5  Layer 5 

Finally, Layer 5 decides the output of the ANFIS model 

and is calculated using Eq. (6). 

F (Final Output) = ∑ �̅�𝑜 𝑓𝑜
32
𝑖=1                                            (6) 

The objective of the ANFIS is to learn the premise and 

consequent parameters. The working of ANFIS can be 

described as follows: for some initial value of premise 

parameters in the forward pass, the consequent parameters 

can be identified using least-square whereas, in the backward 

pass, premise parameters can be updated using the gradient-

descent algorithm. Thus after training the ANFIS model, the 

optimal value of premise and consequent parameters has 

been got. The output for a new input data pair can then be 

calculated by using these optimal parameters. 

4.3 ANFIS training 

The training of the ANFIS model is done in MATLAB 

2016a on a PC with a Core i7 processor running windows 8. 

The parameters used for training are shown in Table 1. 

 
Table 1. Various parameters for ANFIS training using grid partition 

Parameter Value 

No. of an Input signal 5 

No. of Output 1 

No. of fuzzy sets in each input 3 

Learning method Gradient descent 

Least-square algorithm 

No. of iterations 300 

Membership function type Bell-shaped 

Size of training data 100 

Size of testing data 28 

ANFIS setup in MATLAB is shown in Fig. 2, where first, 

training and testing data were uploaded. A fuzzy inference 

system (FIS) has been generated using grid partition, by 

which 243 fuzzy rules are obtained. After that, error 

tolerance is set accordingly, which has been set at 0.0 and 

epochs no. as 300. Then by clicking on ’train now’, the 

proposed ANFIS model is trained. This trained model can be 

verified by clicking on ’test now’ for both training data and 

testing data. The structure of the above ANFIS model in 

MATLAB is shown below in Fig. 3 for better understanding. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 ANFIS MATLAB setup 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

169 

A bell-shaped membership function is used for each of the five inputs, where the structure of the membership function is 

shown in Fig. 4. 

 
Fig. 3 ANFIS MATLAB architecture 

 
Fig. 4 Bell-shaped membership function for each input 

5. Simulation Results and Discussion 
After training the ANFIS model, the tests were 

conducted for the remaining 28 data pairs that were not used 

for training. Software quality was predicted using the five 

data pairs and compared with the actual quality. First, the 

accuracy of the trained model was tested in the case of 

training data so that it can be shown ‘how effective the 

training was’? Both the approaches, grid partition and sub-

clustering, are used to generate the fuzzy rules and compare 

the obtained results. 

 

 

 

5.1 Sub-clustering based ANFIS 

In the case of sub-clustering, the three rules for three 

membership functions associated with input data were got. 

Then training is performed as shown in the previous section, 

and obtained results are shown here.  

 

Fig. 5 shows the target by the data set and actual software 

quality by the ANFIS model. It is seen that the quality 

predicted by the ANFIS model closely matches the 

actual/target software quality, which shows a good training 

model. 

 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

170 

 
Fig. 5 ANFIS training using sub-clustering FIS 

 
Fig. 6 ANFIS testing using sub-clustering FIS 

For better visualization, the combined results of training 

and testing of the ANFIS model are also shown in Fig. 7. 

 
Fig. 7 ANFIS all data using sub-clustering FIS 

5.2 Grid partition-based ANFIS 

Using grid partition, a total of 𝑚𝑛 = 35 = 243 fuzzy 

rules are generated and used in the ANFIS training. The 

obtained results are shown below. The training results are 

shown in Fig. 8, which shows the close matching of 

predicted quality with the target software quality. The 

prediction results for 28 unknown data pairs are shown in 

Fig. 9, where it can be noticed that the ANFIS model 

correctly predicts the software quality at a good level. 

 

 
Fig. 8 ANFIS training using Grid partition FIS 

 
Fig. 9 ANFIS training using Grid partition FIS 

All data, i.e. training and testing data, are shown in Fig. 

10, along with the predicted software quality. 

 
Fig. 10 ANFIS training using Grid partition FIS 

5.3 Comparative Analysis 

Both of the discussed training methods of ANFIS were 

compared in terms of error measures. The performance index 

in terms of error is taken as a parameter to show the accuracy 

of the proposed automated system. These performance 

indexes are MSE (mean square error), Mean Absolute 

Relative Error (MARE), and Mean Relative Error (MRE) 

given in Eq. (7), Eq. (8), and Eq. (9), respectively. 

 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑁

𝑖=1 𝐹𝑑(𝑖) − 𝐹(𝑖))2               (7) 

𝑀𝐴𝑅𝐸 =
1

𝑁
∑ |

𝐹𝑑(𝑖)−𝐹(𝑖)

𝐹(𝑖)
|𝑁

𝑖=1                      (8) 

𝑀𝑅𝐸 =
1

𝑁
∑ (𝑁

𝑖=1
𝐹𝑑(𝑖)−𝐹(𝑖)

𝐹(𝑖)
)                       (9) 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

171 

where 𝐹𝑑 Is the target software quality and 𝐹 is the predicted 

software quality by the ANFIS model, and 𝑁 is the total no. 

of samples taken. 
 

The obtained value of these performance measures are 

shown in Table 2, Table 3 and Table 4 for MSE, MRE and 

MARE, respectively. It is noticed that sub-clustering 

achieves lower MSE than the grid-partition in both the 

training and testing phases. Furthermore, MARE and MRE 

scores are also achieved as lower by the sub-clustering 

approach than the grid partition approach.  

Table 2. Comparison of MSE between two methods 

S. ANFIS 

Method 

Mean Square Error 

(MSE) 

 

No.  Training Testing 

1 Grid-

partition 

0.0024 0.1766 

2 Sub-

clustering 

0.000065 0.0078 

 
Table 3. Comparison of MRE between two methods 

S. ANFIS 

Method 

Mean Relative Error 

(MRE) 

 

No.  Training Testing 

1 Grid-

partition 

-0.0091 0.0199 

2 Sub-

clustering 

-0.000075 0.0160 

 
Table 4. Comparison of MARE between two methods 

S. ANFIS 

Method 

Mean Absolute 

Relative Error 

(MARE) 

 

No.  Training Testing 

1 Grid-

partition 

0.0434 0.1576 

2 Sub-

clustering 

0.0053 0.0329 

Graphical analysis is also performed for both the 

approaches, and the results are shown in Fig. 11 and Fig. 12, 

where it has been noticed that sub-clustering has lesser 

performance measures while testing, as testing is a crucial 

part of the model development, sub-clustering achieves lower 

error measures. 

Overall, it can be stated that the sub-clustering 

approaches have good performance in both the training and 

testing phases and can be used in real-time analysis. 

An analysis of the time taken to train the ANFIS using 

both approaches was also performed to show a clearer 

picture of the computation complexity of both techniques. It 

is identified that sub-clustering takes around 52 seconds to 

train the ANFIS for three membership functions with input 

data. If it is used five membership functions, MATLAB 

crashes, and the PC hangs without any output. At the same 

time, sub-clustering takes around 77 seconds to train the 

ANFIS, larger than the grid partition for an influence radius 

of 0.03. It takes a long time if it is increased epochs or 

further lower the radius. Both the approaches are performed 

for 300 epochs. 

 

Fig. 11 ANFIS training using Grid partition FIS 

 
Fig. 12 ANFIS training using Grid partition FIS 

From the above discussion, it can be concluded that the 

proposed sub-clustering takes a comparatively longer time 

than the proposed grid-partition approach, but the accuracy is 

higher in the case of the proposed sub-clustering. It is 

because the addition of the linguistic rule increases the 

function approximation capability and accuracy of a neural 

network model. 

 

 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

172 

6. Conclusion and Future Scope 
This paper presents an automated system to predict 

software quality based on five inputs, namely Reliability, 

Usability, Efficiency, Portability, and Maintainability. A 

combination of neural network and fuzzy logic, namely the 

ANFIS model, is used to build the automated system. To 

generate the fuzzy rules, two approaches, namely sub-

clustering and grid partition, have been introduced. The 

ANFIS architecture is trained for 100 data pairs while 

updating premise parameters and consequent parameters with 

the help of a gradient descent algorithm and least-square 

approach. After training, the optimal value of the premise 

parameters and consequent parameters are obtained, which is 

further used to predict the software quality for an unknown 

data pair. The proposed approach was tested for 28 data pairs 

and found that the proposed approach correctly predicts the 

software quality for an unknown data set. 

 

Moreover, the results obtained with both the approaches, 

i.e. sub-clustering and grid partition, are compared in terms 

of the performance measures. It is found that the grid 

partition takes a longer time for training if the no. of 

membership function with the input data is increased or with 

an increment of the no. of epochs. On the other hand, the 

sub-clustering approach infers lesser fuzzy rules but can take 

more time for training if the influence radius is lower. 

Finally, it can be concluded that the sub-clustering method 

can be used to obtain better accuracy if the training time is 

not of great interest. 

In the future, the type 2 Neuro-fuzzy model can be 

incorporated with feedback-neural networks like recurrent 

neural networks, LSTM etc. 

References 

[1] B. W. Boehm, J. R. Brown, and M. Lipow, Quantitative evaluation of software quality, in Proc. of 2nd international conference on 

Software engineering, (1976) 592-605. 

[2] A. Monden, D. Nakae, T. Kamiya, S. I. Sato, and K. I. Matsumoto, Software quality analysis by code clones in industrial legacy 

software, in Proc. of 8th IEEE Symposium on Software Metrics, (2002) 87-94. 

[3] Z. H. Zhou, Neural networks, in Proc. of Machine Learning, Springer, Singapore. (2021) 103-128. 

[4] T. J., Ross, Fuzzy Logic With Engineering Applications, John Wiley & Sons. (2005). 

[5] C. Catal, Software Fault Prediction: A Literature Review and Current Trends, Expert Systems with Applications, 38(4) (2011) 4626-

4636. 

[6] J., Klomjit, and A., Ngaopitakkul, Comparison of Artificial Intelligence Methods for Fault Classification of the 115-kV Hybrid 

Transmission System, Applied Sciences, 10(11) (2020). 

[7] S. Yadav, and B. Kishan, Analysis and Assessment of Existing Software Quality Models to Predict the Reliability of Component-based 

Software, International Journal of Emerging Trends in Engineering Research, 8(6) (2020) 2824-2840. 

[8] J. Paul and V. Bhattacherjee, Software Quality Prediction using Fuzzy Rule-Based System, International Journal of Current Research, 

7(12) (2015) 24181-24185. 

[9] Ritu, and O. P. Sangwan, Software Quality Prediction Method using Fuzzy Logic, Turkish Journal of Computer and Mathematics 

Education, 12(11) (2021) 807-817. 

[10] S. S. So, S. D. Cha, and Y. R. Kwon, Empirical Evaluation of a Fuzzy Logic-based Software Quality Prediction Model, Fuzzy Sets and 

Systems, 127(2) (2002) 199-208. 

[11] F. He, A. Ren, and Z. Ding, Software Quality Prediction Model Research Based on Object-Oriented Petri Nets, International Journal of 

Electronics and Electrical Engineering, 3(3) (2015) 225-229. 

[12] A. Rai, T. Choudhury, S. Sharma, and K. C. Ting, An efficient method to predict software quality using soft computing techniques, in 

Proc. of 3rd International Conference on Applied and Theoretical Computing and Communication Technology, (2017) 347-353. 

[13] A. Sandanasamy and R. T. Selvi, A Quality-Based Software Requirement Prioritization Using TakagiSugeno Neuro-Fuzzy Inference, 

International Journal of Computer Sciences and Engineering, 7(5) (2019). 

[14] K. Sahu and R. K. Srivastava, Soft Computing Approach for Prediction of Software Reliability, ICIC Express Letters, 12(12) (2018) 

1213-1222. 

[15] C. Diwaker, P. Tomar, R. C. Poonia, and V. Singh, Prediction of Software Reliability using Bio-inspired Soft Computing Techniques, 

Journal of Medical Systems, 42(5) (2018) 1-16. 

[16] N. Li, M. Shepperd, and Y. Guo, A Systematic Review of Unsupervised Learning Techniques for Software Defect Prediction, 

Information and Software Technology, 122 (2020). 

[17] S. K. S. Durai, B. Duraisamy, and J. T. Thirukrishna, Fuzzy Interference System based Link Failure Prediction in MANET, in Proc. of 

Journal of Physics: Conference Series, 1964(7) (2021). 

[18] W. Peng, L. Yao, and Q. Miao, An approach of software quality prediction based on relationship analysis and prediction model, in Proc. 

of 8th International Conference on Reliability, Maintainability and Safety, (2009) 713-717. 

[19] Q. Wang, B. Yu, and J. Zhu Extract rule from software quality prediction model based on neural network, in Proc. of 16th IEEE 

International Conference on Tools with Artificial Intelligence, (2004) 191-195. 

[20] K. Sheoran, P. Tomar, and R. Mishra, Software Quality Prediction Model with The Aid of Advanced Neural Network with HCS, 

Procedia Computer Science, 92 (2016) 418-424. 

[21] A. Barzegar, and Y. Barzegar, Adaptive Neuro-Fuzzy Inference System for Measuring Software Quality Product, 2021. 

[22] Sharma, Pragati, Software Quality Prediction using Hybrid Approach, International Journal of Computer Applications, 180(4) (2017) 

0975–8887. 



Ritu & O. P. Sangwan / IJETT, 70(4), 164-173, 2022 

 

173 

[23] S. Pattnaik, B. K. Pattanayak, and S. Patnaik, Prediction of Software Quality using Neuro-fuzzy Model, International Journal of 

Intelligent Enterprise, 5(3) (2018) 292-307. 

[24] S. Sahar, and U. Qamar, and S. Ayaz, Multilayer Neural Network and Fuzzy Logic Based Software Quality Prediction, International 

Journal of Computer and Systems Engineering, 11(9) (2017) 1024-1028. 

[25] B. S. Dhillon, Applied Reliability and Quality: Fundamentals, Methods and Procedures, Springer Science & Business Media, 2007. 

[26] J. S. Jang, ANFIS: Adaptive-network-based Fuzzy Inference System, IEEE Transactions on Systems, Man, and Cybernetics, 23(3) 

(1993) 665-685. 

[27] Y. Gershteyn, and L. Perman, Matlab: ANFIS Toolbox, The MathWorks, 2003. 

[28] P. Mangayarkarasi, and R. Selvarani, A Novel Software Cost Estimation Technique: Inclusion of Reusability, International Journal of 

Engineering Trends and Technology, 44(1) (2017) 42-47. 

[29] A. Thakur, and A. Goel, A Hybrid Neuro-Fuzzy Approach for Bug Prediction using Software Metrics, International Journal of 

Engineering Trends and Technology, 38(2) (2016) 85-92. 

 
 


