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Abstract - The problem of weather prediction for the agricultural domain is of prime importance for the agriculture experts, 

farmers and research institutions across Ethiopia. This research proffered time series and machine learning modelling 

techniques for the design, development and implementation of lightweight, easy deploy models for the meteorology centers and 

researchers in the field of weather forecasting for Ethiopia. The team proposed Machine learning-based weather prediction 

models as an alternative way of doing this task. The proposed Machine learning models work on the principle of learning the 

patterns in the observed data from the recent past. Totally five important weather parameters named Temperature, 

Precipitation, Sunshine Hours, Relative Humidity and Rainfall were selected for this research in the Adama region. The 

comparative results and accuracy in the prediction of shortage of resources and simple script based execution of prediction 

tasks have encouraged meteorology personnel to learn and use techniques proposed in this research. The data was collected 

from 44 meteorology stations in the region. Past ten years, data for 33 variables were obtained from the Adama Meteorology 

centre and Addis Ababa meteorology centre. 
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1. Introduction  
This research is focused on the problem of weather 

prediction for Adama and nearby areas like Asella, Ethiopia. 

From the point of view of farmers and agriculture, this area is 

very important as a variety of crops, vegetables and fruits are 

produced in this belt. The quantity and the quality of 

agricultural products are highly dependent on the weather 

parameters like temperature, rainfall, wind, soil moisture and 

sunshine across the season. Farmers are always eager to 

know what kind of weather is expected in the next quarter so 

that they can select a crop that is better suited for the 

predicted weather. On a daily basis, farmers are interested to 

know the variations in the sunshine, wind speed and 

direction, humidity, rainfall patterns and soil properties so 

that they can decide on irrigation requirements of the crops, a 

requirement of insecticides and monitoring of the crop 

health. Like other countries, this task of agricultural weather 

prediction is done by meteorology centers in Ethiopia. There 

are 1200 conventional meteorology centres in Ethiopia, 25 

automatic weather stations distributed among 25 directorates 

and 11 regions, with more than 800 professionals, 400 

contractual observations staff and 1200 employees, including 

one centre in Adama and a central Meteorology station in 

Addis Ababa [40]. The job of a meteorology centre is to 

observe, collect and process the data used to predict different 

weather parameters. This research identifies the time spans 

of interest, corresponding models for each time span, 

forecasting scripts that lead to the development of Agro-

advisories and the estimation of adverse events. 

 

2. Related Work 
Early weather-related research and transmission of 

important observation data started in 1843, and continued 

developments between 1870-1903 area are reported in [42]. 

Initially, weather information was transmitted in the form of 

weather maps using telegraphy and iconography. This phase 

involved sharing long term information across various 

weather monitoring and prediction centres. From 1870 to 

1900, the forecasts were based on empirical knowledge. 

Basic rules of physics started to influence the forecasts 

starting in 1903 when Vilhelm Bjerknes of Norway put 

forward the idea of physical models of atmosphere in 

weather forecasting [41][42]. His research paper introduced 

seven variables to completely determine the weather of a 

place, as well as formulated the problem as an initial value 

problem [41]. The seven basic variables included in his 

research were air temperature, pressure, air density, moisture 

content, and the three components of the wind. The seven 

equations were formulated from the basic physical laws for 

representing the prediction of the weather conditions, 

namely, the three hydrodynamic equations of motion, the 

continuity equation, the equation of state and the equations 

expressing the first and second laws of thermodynamics. 

The solution to these equations using the numerical method 

of finite differences was given by Lewis Fry Richardson in 

the year 1920 [42]. This method evaluates the equations on 

every point in the vertical plane as well as in the horizontal 

plane. Therefore, it requires a huge number of computational 
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steps. The predictions obtained based on only initial values 

and approximate models were found to be inaccurate for the 

local predictions; this limitation led to the development of 

numerical weather prediction (NWP) models with 

specialized workflow for global atmosphere simulation. 
 

Due to uncertainties, the complexity of computation and 

other issues like difficulty in integrating with the local 

information [43], NWP models have a limited area of 

application in the context of Ethiopia [14] [32]. The full-

functioning implementation of these models requires a 

supercomputer setup, and it is a costly operation [15]. Some 

of the Ethiopian meteorology centres have recently upgraded 

to the HPC (high-performance computing) platforms, and 

special interest groups are planned in various universities for 

HPC research. However, the need for lightweight, quickly 

trainable and scalable forecasting models is being felt like a 

priority. Alternative methods are being explored across the 

world for the prediction of weather parameters as well as for 

the post-processing of the results of NWP models. In recent 

times, Machine learning has evolved as a De-facto 

alternative for almost all kinds of prediction and forecast 

related problems [1]. Machine learning is a specialization of 

artificial intelligence in which predictive models are 

developed using past experience. In weather prediction 

cases, ML models employ past data in the form of time 

series of observations. ML models for the prediction of 

weather-related events have been used by many recent 

researchers like [21] [17] [18] [19]. It is found that the 

limitations of traditional NWP models can be handled using 

ML and time-series type models at various stages [2]. The 

superiority of the machine learning models over traditional 

models is established by the fact that they need very less 

time to train, they can be trained on ordinary computers, as 

well as they are easy to update and extend. Therefore many 

researchers have been attracted to apply ML in weather 

prediction. In the Ethiopian context, few research reports on 

using machine learning models for weather forecasting are 

found [30] [31]. 
 

However, it has been a topic of debate whether the new 

models based on machine learning and deep learning will be 

able to replace the numerical weather prediction models or 

not [35], but The team have obtained promising results with 

short term weather prediction tasks using Auto-Regressive 

model [17], Moving Average and ARIMA model [18] and 

Artificial Neural Network-based models like Deep Neural 

Networks such as Recurrent Neural Networks [19]. The [35] 

provide an excellent survey over different ANN and Deep 

learning-based alternatives to the Numerical Weather 

Prediction models. The main limitations of the NWP models 

are described, and motivations to employ deep learning 

solutions to NWP workflow are proposed. The main 

limitations of DL models are also described with citations to 

recent publications in the field. In summary, an NWP model 

requires the exact state of the atmosphere at every grid point 

in order to be able to optimize the loss function. The initial 

atmospheric conditions may not be correctly available due to 

missing data, corrupt sensors, far reach areas and loss of 

signals from various sensors. In this situation, the NWP 

model will provide incorrect results. In addition to data 

issues, the NWP model also needs huge computation power, 

which is not available in most of the country. The simulation 

of a physical system involves partial differential equations in 

terms of multiple variables. This can result in a huge 

computation. 
 

3. Research Methodology  
In this research, the team have used block sampling with a 

randomized sample selection technique. The block length of 

the sample is decided as per the requirement of the prediction 

interval. For a season-long prediction, the team should be 

able to sample a complete sample, i.e. 3 months of data from 

training. Missing a season in partial or complete may result 

in the under-fitting of the models. Similarly, for the short 

term prediction, the models are trained on 20 days to 1-

month block samples up to one year of data in the past. In 

ensemble settings, the team has used bootstrap block 

sampling, which involves random sampling by the 

replacement of individual blocks. The formation of blocks 

during training ensures that relevant sequences. 
 

3.1 Data Collection 

Data for this research was collected from the Adama 

meteorology centre, Addis Ababa Meteorology centre and 

some parts of the Asella region. There are a total of 33 

variables that are observed across 44 meteorology stations in 

this region. The team has obtained five-year data starting 

from the year 2010. The data was organized in separate excel 

sheets; each year, data was organized into months and days, 

tagged with the place of observation and the time of 

observation. The data was encoded and organized in a 

different way as required by our models. Model specific 

requirements of the data encoding, format, normalization and 

feature selection task are given in place while each model is 

defined. The details of each abbreviation, name of the 

variable, description and time of observation which are made 

available for us from the list of meteorology stations, are 

shown in Table 1. 
 

3.2 Feature Engineering 

The statistical and machine learning models learn the 

parameters from the important features [19]. Therefore, the 

team has performed the task of feature engineering, such as 

deletion of duplicate features, elimination of correlated 

features and selection of appropriate features for each model. 

Features were normalized as per the requirement of the 

forecasting model. The feature set was created for three types 

of models: 
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Table 1. List of all weather parameters under the observation

Abbreviation Name Description Time of Observations 

CLDCOV Cloud cover Cloud cover, total cloud cover 06:00,09:00,12:00,18:00 

CLDTPH Cloud type high Cloud type high 06:00,09:00,12:00,18:00 

CLDTPL Cloud type low Cloud type low 06:00,09:00,12:00,18:00 

CLDTPM Cloud type medium Cloud type medium 06:00,09:00,12:00,18:00 

DRYBUB Temp, dry bub Temperature. Dry Bulb 06:00,09:00,12:00,18:00 

EVAPND Evap, pan dly Evaporation pan, daily total 9:00 

EVAPNH Evap, pan hly Evaporation pan, hourly  06:00,09:00,12:00,18:00 

GNBELD Radiation, solar dly  Radiation, Solar daily 06:00,09:00,12:00,18:00 

GNBELH Radiation, solar hly Radiation, Solar hourly 06:00,09:00,12:00,18:00 

GRSMIN Temp, Grass min Temperature, Grass minimum 06:00,09:00,12:00,18:00 

PERMSL Pres, sea level Pressure, Mean Sea Level 06:00,09:00,12:00,18:00 

PERSTL Press, stn level Pressure, Corrected to Station level 06:00,09:00,12:00,18:00 

PITCHE Pitche, hly Pitche, evaporation hourly 9:00 

PRECIP Precipitation Precipitation 9:00 

RADDIF Radiation, diffused Diffused radiation 06:00,09:00,12:00,18:00 

RADDIR Radiation, direct Direct radiation 06:00,09:00,12:00,18:00 

RADGLO Radiation, global Glaobal radiation 06:00,09:00,12:00,18:00 

RANINT Rainfall int 1 hour SUM 06:00,09:00,12:00,18:00 

SUNHRS Sunhrs, dly  Sunshine, Daily total Amount 06:00,09:00,12:00,18:00 

SUNINT Sunshn, intensity Sunshine, Intensity 06:00,09:00,12:00,18:00 

TMPMAX Temp, dly max Temperature, Daily Maximum 18:00 

TMPMIN Temp, dly min Temperature, Daily Minimum 9:00 

TSL005 Soil temp, 5cm Soil temperature at 5cm 06:00,09:00,12:00,18:00 

TSL010 Soil temp, 10cm Soil temperature at 10cm 06:00,09:00,12:00,18:00 

TSL020 Soil temp, 20cm Soil temperature at 20cm 06:00,09:00,12:00,18:00 

TSL050 Soil temp, 50cm Soil temperature at 50cm 06:00,09:00,12:00,18:00 

TSL100 Soil temp, 100cm Soil temperature at 100cm 06:00,09:00,12:00,18:00 

3.3 Short Term Prediction Model (STPM) 

For the short term, model features were constructed with 

a time lag of 3:00 hours in observation data. For each 

member of the selected feature subset, the team has found a 

daily average of the various physical quantities which 

directly or indirectly affect the weather on a daily basis. The 

daily data set is used for learning and forecasting daily events 

using appropriate models.  

3.4 Medium-Term Prediction Models (MTPM) 

The Medium-term models try to predict the monthly 

averages of weather parameters; therefore, a feature set was 

constructed by taking point averages across the various 

realizations of the observed data to construct features for the 

cross-sectional properties of the modelled time series. This 

type of data is used to learn models for monthly average 

temperature, humidity, rainfall, and other quantities of 

interest.  

 

 

3.5 Long term prediction Model (LTPM) 

This type of model is developed for yearly prediction. 

Therefore the feature set for these models was constructed 

after selecting important features which cause the weather to 

behave differently in all the seasons across the whole year. 

3.6 Models and Algorithms 

The features developed in the form of raw series in the 

feature construction and feature selection step are 

subsequently used to develop various time series models like 

the AR model, Moving Average Model, Moving Average 

Model, Exponential Smoothing Model, ARIMA Model, 

VAR Model and Neural Network Model. For each model, 

the data set is divided into training, validation and test data in 

its required format. The team has selected target weather 

parameters based on expert advice and farmers' 

requirements. The target variables of interest are 

Temperature, Precipitation, Sunshine Hours, Relative 

Humidity and Rainfall, but because of similarity in 

modelling procedure, the team have included only selected 

models in this report. Ensemble models are developed for the 
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respective time span, and average values of the predicted 

results are reported. An algorithm to learn the ensemble of 

the models with block bootstrap sampling is proposed. 

3.7 Evolution Criteria 

Each class of models are tested under the short term, 

medium-term and long term settings using a holdout data set. 

The test data set was created for each model after the main 

data set was divided in the ratio of 60:20:20. The testing was 

performed on the different ratios of training and test data. 

The fivefold cross-validation was applied to select individual 

models. The training, validation and test errors were reported 

and analyzed along-with accuracy and mean absolute error 

and mean square error. 
 

4. Design and Development 
The team defined a particular sequence of observations 

of a weather predictor as a realization. There can be infinite 

possible realizations, each giving rise to a time series data for 

that variable. The observed values for the particular variable 

can be analyzed in two dimensions. The first dimension the 

team decided to analyze is at a particular instance of the time 

across different realizations. For example, the team take an 

average on a monthly basis across various realizations of 

TEMP, RH, PRECIP, RANT, SUNHRS, and WINSPD at a 

particular instance of time (i.e. 6:00 AM, 9:00 AM, 12:00 

PM, 3:00 PM and 6:00 PM) across many years to determine 

the general characteristics of the time series of each 

individual variable. Therefore, we have decided to model 

each selected weather predictor as a multivariate time series, 

which has been generated by a stochastic process under the 

influence of multiple random variables in the form of a joint 

probability distribution. The series of observations for each 

variable can be decomposed into its constituent components, 

which are defined as the trend component, stationary 

component (deterministic part), periodic component and a 

stochastic component. In both cases, the team has used a 

block of samples to retain complete season information, and 

the data was sampled using the bootstrap method, which 

performs sampling from the dataset by replacement. The next 

section describes the mathematical structure of different 

models used in this research. 

4.1 The Best-Predicted Model 

The best prediction model is that which computes 

conditional expectation of a variable on all the other cause 

variables observed at various time points. Let the variables 

be coded as follows: 
{ }

{ , , , }

Y PRECIP

X TEMP RH WINSPD SUNHRS

=

=

 

The expected value of Y, given that the X variables are 

observed at an instant of time, will be computed by following 

integral 

( | ) ( | )E Y X yF y x dy=   
The limitation of this approach is that the computation of the 

marginal distribution of Y i.e.  
( | )F Y X

 requires the 

knowledge of the joint probability density function 

( , )F Y X
 , which is not possible to know in advance at 

every point in time as well as across all the 33 variables in 

this research. Since the functional form of the weather 

equation fails to describe the cause-effect relationships 

among the observed variables in close form, therefore we 

have decided to approximate models which learn from the 

past sequence of observations (and at each significant point 

in time). As an enhancement to the existing models, an 

ensemble of base models is created in order to predict the 

value of a particular variable. 
 

4.2 Proposed classes of models 

The problem of learning to predict weather parameters 

as a function of observed predictor variables is an 

approximation problem. There are many ways to model the 

prediction of future values of TEMP, RH, WINSPD, 

SUNHRS, PRECIP, taking into account other predictor 

variables like univariate time series models and multivariate 

time series models and the models based on Artificial Neural 

Networks. In this research, the team have proposed two types 

of ensemble models: Ensemble of univariate time series 

models, and the second type is pure machine learning-based 

multivariate ensemble models. 

 

4.3 Auto-Regressive Model 

Each variable to be predicted is modeled as a univariate 

time series under a realization. A realization is a year-long 

set of observations; the team has multiple temporal 

resolutions for which models are fitted. The daily, monthly 

and yearly univariate time series models in each year are 

considered as an individual realization of the stochastic data 

generating process for that variable. 

 

In very basic form, an Autoregressive model of each 

realization is learned in order to estimate the statistical 

properties and the parameters of the model. The stochastic 

process which generated the observations for TEMP, RH, 

WINSPD, SUNHRS, and PRECIP in the form of a sequence 

of observed random variables at different time instances is 

defined as follows: 

 

1 1 1 1............ ( ....... ) ( : ,..... )t tn n t tn nFz Fz x x P z x z x=  
 

 

 

 

Where ..............ti tnFz Fz  represent an n-dimensional joint 

probability distribution of n-indexed random variables, each 
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given by   
( , )F t

   where   belongs to the sample space. 

At a particular value of t , 
( , )F t

 reduces into a real value 

called the realization of the random variable, when computed 

at different time instances, gives rise to a time series for that 

variable. The model the team developed tries to 

approximately learn the above distribution function, which 

has generated this time series data so that the model can be 

used to predict the future values of the variable. 

 

5. Proposed Learning Algorithm 
The algorithm tries to combine individual models with a 

scaled stochastic sample taken from the original time series 

after decomposition. First, the team learned an individual 

time series object, i.e.(TSO), corresponding to each variable 

of interest for a given forecasting period. The team have used 

the block sampling method called bootstrap sampling, which 

is used to take a sample of a certain given number of days in 

proportion to the time span of the model under development. 

The block bootstrap sampling is done on the stochastic 

component of a weather variable, and its scaled version is 

convoluted before a forecast is generated. Model outputs are 

aggregated using the averaging method. In fact, bootstrap 

aggregation is a strong technique to average out the 

individual errors of the models. Therefore, the above 

algorithm, when used to train the model across various 

yearly series of observations, is expected to give better 

results as compared to individual models. 

 
Fig. 1 Architecture of the proposed System 

 

6. Proposed an Ensemble Model 
Same as the characteristic equation, each model has a forecast equation, which tells us how much time lags in the future 

can be forecasted by the certain learned model, with a certain number of parameters of fixed cardinality. Instead of defining 

each forecasting method, the team have implicitly used previously explained models with the selected hyper-parameters and 

designed individual fit with the required number of parameters, depending upon the number of variables and time lags taken 

into consideration. The proposed ensemble model has been developed on a sample of model space. The purpose of the 

proposed ensemble model is to average out the errors in the prediction of a single model. The architecture of the proposed 

framework under which models are learned is given in the following Fig. 2. 
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Fig. 2 Modeling and Prediction Framework 

 

The output of each model is combined using averaging 

to generate the result for a given time interval. The objective 

of making an ensemble of individually learned models is to 

control the unnecessary variance in the output and to average 

out the effect of bad predictions from one model. This kind 

of ensemble model is more suitable for univariate time series 

modelling of the weather variables because making 

ensembles of multivariate neural networks is difficult and 

computationally not scalable due to the large number of 

parameters involved. Bootstrap block sampling is a 

technique used to capture the full season and random 

components of the weather, such as sudden rain for two or 

three days in a season of winter. If the training sample size is 

less than the seasonal block, the important events can be 

missed and never predicted. 

 

 

7. Results and Discussions 
The following components of the time series are 

extracted by process of decomposition in our experiments: 

 

7.1 Trend 

A trend exists when there is a long-term increase or 

decrease in the data. It need not have to be linear. Sometimes 

the team will refer to a trend as "changing direction" when it 

goes from an increasing to decreasing direction and vice 

versa. 

 

7.2 Seasonal 

A seasonal pattern occurs when a time series is affected 

by seasonal factors such as the time of the year or the day of 

the week. Seasonality is always of a fixed and known 

frequency.  
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7.3 Cyclic 

A cycle occurs when the data exhibit rises and falls that 

are not of a fixed frequency but repeated.  

 

7.4 Random 

This component is used to depict the random or 

stochastic variations on the same dates across years in a time 

series data. The team used this component to add stochastic 

behaviour in the ensemble of the learned models with a 

certain scale factor while doing ensemble learning. 

 

7.5 Experimental Settings 

Each model requires a specific data preparation step in 

order to learn the parameters from training data. In addition 

to the general data processing steps as described in the 

methodology section of this research, the team has included 

additional data formatting steps along with the model. 

 

7.6 Dataset Preparation 

This data has been used to build the time series 

forecasting models with different lag values. This record was 

converted to monthly average data. A similar procedure has 

been followed for all the weather parameters. Regarding the 

daily forecasting, the team considered 12 months * 31 values 

totally: 372 data points have been used as a sequence of row 

data for training univariate time series models. The following 

tables summarize the monthly average data for relative 

humidity and max-temp, respectively. 

  
Table 3. Average monthly relative humidity

 
Table 4. Average Monthly Max-Temperature 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2011 27.3 29.4 29.4 31.7 30.8 30 27.4 26.2 26.7 27.9 26.9 25.8 

2012 27.4 29 31 30.3 31.7 30.7 25.8 25.9 27 27.9 28 27.2 

2013 27.3 29.41 31 31.19 31.14 30.4 26.08 26.31 27.99 28.08 27.5 26.34 

2014 28.11 29.5 29.8 30.7 31.1 31.6 28.3 26.7 27.3 26.9 27.5 26.2 

2015 27 30.5 31.3 31.5 30.7 30.5 29.5 27.9 28.9 29.9 28 26.9 

 

The team fitted EMA and ARIMA models on 

temperature time series objects using R-script written by our 

team for training and testing with our ensemble learning 

algorithm. Totally, five-year temperature data is taken for 

creating the  

 

Block ensemble of each model in a loop structure. The 

output of individual models was combined using the 

averaging method. Training time output distribution of 

maximum temperature for daily and yearly forecasting using 

the EMA algorithm is plotted in the following figures: 

 

 

 

 

 

 

 

 

 

 

Fig. 3  EMA model on Max Temp for Monthly data 

 

 

 

 

 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

2010 42 54 50.77 48.23 52 52 66 68 61 36.41 40.48 40.29 

2011 43.9 36.67 36.25 35 43 50 61.7 79.9 62.9 32.25 51.03 40.8 

2012 43.38 35.34 29.67 47 36.9 50.43 71.8 70.51 62 36 38 44.58 

2013 48.51 37.42 43 45.66 52.48 51.46 71.25 65.22 55.93 45.8 45.6 39.41 

2014 42.93 47.1 47.03 41 45.9 43.53 62 66 62 49 46 40 

2015 44 33.89 34.06 30 51.38 52.93 58 61 54 37 47 51 
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Fig. 4 EMA model on Max Temp for Yearly data 

 

 

 

From the above figures 3 and 4, the first figure shows 

yearly forecasting using the daily records, and the latter 

figure shows the daily output of the time series. Holt-Winters 

exponential smoothing estimates the level, slope and 

seasonal component at the current time point. Smoothing is 

controlled by three parameters: alpha, beta, and gamma, for 

the estimates of the level, slope b of the trend component, 

and the seasonal component, respectively (at the current time 

point of prediction). 

 

In this study, the team have 372 sequential time-series 

data points for the daily forecasting purpose. Based on the 

training data, we have the next 29 days of maximum 

temperature forecasting using the proposed model. The 

experimental results of the predicted output are depicted 

using the following data frame. 

 

Table 5. tempForecast.ts_hw_fcst # using EMA model 

Point Forecast Lo 80 Hi80 Lo 95 Hi 95 

373 25.66613 24.01400 27.31827 23.13941 28.19285 

374 25.65401 23.57995 27.72808 22.48201 28.82602 

375 25.64190 23.21053 28.07326 21.92345 29.36034 

376 25.62978 22.88035 28.37921 21.42488 29.83467 

377 25.61766 22.57698 28.65833 20.96734 30.26797 

378 25.60554 22.29329 28.91779 20.53989 30.67119 

379 25.59342 22.02471 29.16213 20.13555 31.05128 

380 25.58130 21.76814 29.39446 19.74958 31.41302 

381 25.56918 21.52135 29.61701 19.37856 31.75980 

382 25.55706 21.28267 29.83145 19.01995 32.09418 

383 25.54494 21.05083 30.03906 18.67179 32.41810 

384 25.53283 20.82482 30.24083 18.33255 32.73310 

385 25.52071 20.60383 30.43758 18.00100 33.04042 

386 25.50859 20.38721 30.62996 17.67612 33.34105 

387 25.49647 20.17442 30.81852 17.35710 33.63584 

388 25.48435 19.96499 31.00371 17.04321 33.92548 

389 25.47223 19.75853 31.18593 16.73389 34.21057 

390 25.46011 19.55473 31.36550 16.42861 34.49162 

391 25.44799 19.35328 31.54271 16.12693 34.76905 

392 25.43587 19.15394 31.71780 15.82849 35.04326 

 

Table 6. temp_model_forecast # using ARIMA model 

Point Forecast  Lo 80 Hi 80 Lo 95 Hi 95 

373 26.31909 24.72830 27.90989 23.88618 28.75200 

374 26.18163 24.21245 28.15081 23.17004 29.19323 

375 26.59271 24.41506 28.77036 23.26228 29.92314 

376 26.58004 24.21329 28.94680 22.96040 30.19968 

377 26.84465 24.35374 29.33555 23.03513 30.65416 

378 26.88573 24.28530 29.48617 22.90871 30.86276 

379 27.06523 24.38636 29.74411 22.96825 31.16222 

380 27.12537 24.37905 29.87169 22.92523 31.32550 

381 27.25315 24.45603 30.05027 22.97533 31.53097 
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382 27.31602 24.47600 30.15603 22.97259 31.65944 

383 27.41072 24.53739 30.28404 23.01635 31.80508 

384 27.46919 24.56807 30.37031 23.03231 31.90607 

385 27.54159 24.61847 30.46472 23.07106 32.01212 

386 27.59306 24.65171 30.53441 23.09466 32.09146 

387 27.64967 24.69372 30.60562 23.12894 32.17040 

388 27.69365 24.72567 30.66162 23.15451 32.23278 

389 27.73860 24.76091 30.71630 23.18462 32.29259 

390 27.77554 24.78987 30.76122 23.20935 32.34173 

391 27.81162 24.81948 30.80377 23.23553 32.38772 

392 27.84234 24.84488 30.83979 23.25812 32.42655 

       The above prediction results have been plotted 

in  the following figures:  

 

Fig. 5 EMA 20 days forecasting 

 

Fig. 6 ARIMA 20 days forecasting output 

 The same data, when modelled with the ARIMA model, 

shows a better fit for the training and test data. One of the 

potentials of the ARIMA model is to automatically obtain the 

PDQ values to enhance the prediction performance produced 

by the EMA model in individual and ensemble settings using 

averaging criteria and a block bootstrap aggregation of the 

stochastic components between 5 to 20 days block length. 

Therefore, the ARIMA model was selected for further 

enhancement and analysis for the temperature variable. The 

final script was prepared after model tuning, analysis of the 

residuals and the errors on the test set of 20 days.  

  

 After performing the model tuning by the selection of 

hyperparameters of the EMA model for the short-term 

prediction task, final results on the test data are obtained. But 

this kind of manual hyper-parameter selection during fitting 

indicates a possible overfit for the EMA model. Therefore, 

the ARIMA model was preferred over EMA under auto-fit 

configuration. The Autofit ARIMA model has the least MSE 

(mean square error) for the test data up to 20 days. 

 

Fig. 7 EMA model with Manual Parameter tuning 

  The above figure 7 shows the comparison between 

actual observation values in the test dataset of 20 days and 

the model predictions for the EMA model after forced 

model tuning, which is also possible in the case of the 

ARIMA model with the auto-fit mode of learning the 

model parameters. In the next section, the team present the 

comparison of two models based on the evaluation metric 

like a model. From 20 days ahead daily forecast, the team 

have realized that the test error produced by the ARIMA 

model is less than the test error. 
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Table. 7 Summary of model's performance on temperature forecasting

 

  Mean square error, mean average square error and 

mean of the error. The following table summarizes the 

results of the evaluation and prediction performance of the 

above two-time series forecasting models using the 

maximum temperature of the Adama region. 

 From the above table. 7, the team can see that based on 

accuracy measurement, the ARIMA model outperforms the 

prediction result obtained by the EMA model for the given 

datasets. This can be explained in terms of the capability of 

the ARIMA model to combine the effects of random 

components, error components and autoregressive 

components in one model as compared to the EMA model. 

Evaluating the statistical distribution of residuals on the 

training and test data helps us to manage if there are 

irregularity, skewness, and outliers in our output. From the 

histogram, it is possible to see that the distribution of 

residuals is Gaussian in nature, which indicates a proper fit 

for ARIMA at the training and the test time. 

 
Fig. 8 Distribution of Residual errors 

 From the experimental results over the proposed models 

in the short term and medium-term prediction settings, it is 

clear that the EMA model gives a comparable performance to 

ARIMA based model for short term prediction. From the 

results of short term prediction models, it is understood that 

the univariate ensemble models are capable of learning the 

past behaviour of the weather conditions individually in the 

form of a time series, given that they are fitted with proper 

values of hyperparameters, and the data provided to them 

follow the stationary of the first and second order. The 

exponential smoothing model is good for short term 

forecasting. ARIMA model is found to be superior to the 

EMA model in the short term as well as in Medium-term 

settings. This behaviour can be explained in terms of the 

parameters of the ARIMA model, which have been learned in 

autofit mode. In R, when this mode is instructed, the 

parameters P, D, and Q of the model are found using AIC 

criteria. While the EMA model is fitted with manually 

selected parameter values, the other hand, ARIMA model is 

based on the optimal parameters. However, the ARIMA 

models are also rigid for outlier data points as they lie outside 

the domain of the learned model. 
  

 The models proposed in this research are suitable for the 

Adama meteorology centre as they are basic models and easy 

to execute and give comparable results to the traditional 

models in the short term. In fact, it was the first research up 

to our knowledge that has used auto-regressive models for 

the prediction of TEMP, PRECIP, RH etc., in the Adama 

region. 
  

 This research addressed the question of whether the 

proposed models like EMA, ARIMA, VAR and AR-NN will 

be able to significantly improve the accuracy of prediction 

for short, medium and long term prediction tasks. In this 

case, we have seen that most of the models are able to prove 

their importance for the short term weather prediction task. 

8. Conclusion 
This research was conducted to address the problems of 

the meteorology centers in Ethiopia and to provide 

alternative models to the currently available traditional NWP 

models. The work done in this research has been able to 

identify the main problems of traditional models. The 

important weather parameters selected for the modelling are 

TEMP, PRECIP, RHUM, RAINFALL, and SUNHRS. The 

models and the algorithm developed are found to be efficient 

in learning the weather prediction task. The scripts of these 

models have been provided to the EMC centre, and 

integration of this workflow in their prediction task is 

expected for the purpose of internal assessment and 

development of Agro-advisories. 

 

The performance of the models proposed is comparable 

to the existing WRF model and other prediction tools used 

by EMC professionals. One of such tools regularly being 

used to predict days ahead temperature was the leap. 
 

The software is based on the moving average model, but 

since the team members have found this model weak for 

short term predictions, we have dropped it from the analysis. 

We have used better time series models like EMA and 

ARIMA. 

Temp 

Dataset 

 

TS model 

Accuracy measurement 

MAE MASE ME ACF1 

Max-

temperature 

EMA 0.97 0.99 0.09348 -0.0199 

ARIMA 0.937 0.958 

 

0.0139 

 

-4.283 
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