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Abstract — Hyperspectral image (HSI) contains high 

dimensionality of spectral information, which is not easy to 

classify every pixel. To confront the problem, we propose a 

novel RGB channel Assimilation for classification methods. 

This work discusses the classification of hyperspectral 

images based on Domain Transform Interpolated 
Convolution Filter (DTICF) and 3D-CNN with Bi-

directional-Long Short Term Memory (Bi-LSTM). Before 

using the DTICF, the RGB images of HSI and the patch of 

the input image from raw HSI are integrated. Those obtained 

spatial and spectral features are finally given into the 

designed 3D-CNN with the Bi-LSTM framework. The 

excerpted colour features are classified by 2D-CNN. The 

probabilistic classification map of 3D-CNN-Bi-LSTM and 

2D-CNN are fused. In the last step, additionally, Markov 

Random Field (MRF) is utilized for improving the fused 

probabilistic classification map. Based on the experimental 

results, two different hyperspectral images prove that novel 
RGB channel assimilation of DTICF-3D-CNN-Bi-LSTM 

provides good classification results. 
 

Keywords — Bi directional-Long Short Term Memory, Deep 

Learning, Domain Transform Interpolated Convolution 
Filter. 

I. INTRODUCTION 

Normal RGB image has bands of bands such as red, 

green, and blue, but HSI has several bands. For example, HSI 

contains three dimensions. The first two dimensions of the 

height and width are spatial (x, y-axis), while the third 

dimension of the spectral (z-axis) is the wavelength. 

Wavelength is acquired by electromagnetic spectrum [17]. 

The human eyes see colour over wavelength ranging roughly 

from 400 nm (violet) to 700nm (red) but wavelength range 
from 700nm-2500nm in HSI. HSI contains continuous 

spectral bands which are procured by hyperspectral sensors. 

There are many applications used in HSI, such as medical 

imaging, microscopy or endoscopy, precision agriculture, 

mineralogy, and food inspection. Many researchers 

commonly used machine learning and deep learning methods 

for hyperspectral images. However, HSI is more difficult 

compared to the normal RGB image. In the last few years, 
many HSI classification methods have been proposed [7], 

[9], such as spectral-based approaches and spectral-spatial-

based approaches [31]. Spectral features are first extracted by 

some feature extraction methods [4], such as Principal 

Component Analysis (PCA) [5], Independent Component 

Analysis (ICA) [18], and Linear Discriminant Analysis 

(LCA) [1]. Then, the obtained features are applied to learn 

the classifier [3]. In spectral-spatial-based methods, texture 

features [14] and structure features [6] are extracted and 

combined by utilizing composite kernels [11]. However, the 

obtained features are hand-crafted. 

 
Recently [3], [23-24], many researchers utilized a deep 

learning approach  for image processing such as image 

classification [33], image segmentation [21] and object 

detection [34]. Among deep approaches, CNN [12] has been 

utilized for capturing the features of spectral and spatial for 

HSI classification. Yushi Chen et al. [35] introduced the deep 

learning concept for HSI classification for the first time. 

Konstantinos Makantasis et al. [16] utilized deep learning 

methods for the HSI classification method, which exploits 

features using CNN and this work utilized a Multi-Layer 

Perceptron for a classification task. Shaohui Mei et al. [30] 
introduced new classification techniques, namely a novel 

five-layer CNN such as batch normalization, dropout, 

Parametric Rectified Linear Unit (PReLu) activation 

function. Spatial context and spectral information are 

elegantly integrated into the framework that is used to extract 

the features. Haokui Zhang et al. [8] proposed an end-to-end 
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3-D lightweight CNN which has a deeper network structure, 

fewer parameters, and lower computation cost, resulting in 

better classification performance. Qin Xu et al. [28] designed 

multiscale convolution from 3D-CNN, which is used to 

obtain the pair of spectral-spatial features and also reduce the 
spatial redundancy. Radhesyam Vaddi et al. [29] proposed 

new classification techniques based on data normalization 

and CNN. In this work, Probabilistic Principal Component 

Analysis (PPCA) and Gabor filtering are used for obtaining 

the features which are used to reduce the computational time. 

In Jia et al. [13], a 3-dimensional (3-D) Gabor-wavelet was 

developed for hyperspectral classification. It helps to predict 

the features via 3-D. Kang et al. [15] acquired the spectral 

features by Gabor filtering to form the fused features for 

Gabor filtering-based deep network (GFDN). In particular, 

CLSTM is used for obtaining the spectral features of HSIs, 

which improve the extraction of spatial features using 
convolutional operators [32].  

 

The main contributions are stated below: Compared with 

machine learning techniques, Deep learning methods obtain 

good performance for HSI classification.   

• We propose a novel RGB channel Assimilation for 

colour classification methods. The RGB colour space is 

the most efficient colour representation method on HSI 

classification. 

• Additionally, we have introduced a new HSI 

classification framework. This framework is analyzed 
how to integrate the Domain Transform Interpolated 

Convolution Filter (DTICF) and 3D-CNN with BiLSTM. 

•  The proposed method is divided into two processing: 

• In the First processing, HSI data is converted to RGB 

image. 

•  RGB image and patch-wise input image with spectral 

information are integrated. 

• Then, the excerpted features of spectral and spatial are 

obtained using DTICF by RGB image with spatial 

features and spectral bands from HSI data. 

•  The excerpted features are provided in the 3D-CNN 

framework. 
•  The extracted deep features are again fed in the Bi-

LSTM network. 

•  In the second step, the colour features are extracted 

using chromaticity computation, and extracted features 

are classified by 2D-CNN. 

• The probabilistic classification map of 3D-CNN-Bi-

LSTM and 2D-CNN is fused. 

• Finally, additionally, Markov Random Field (MRF) is 

utilized for improving the fused probabilistic 

classification map efficiently. The proposed novel 

RGB channel Assimilation of DTICF-3D-CNN-

BiLSTM-MRF shows good classification accuracy 
with low computational time.  

  
 

The paper is assembled in the following ways. Proposed 

methods are debated in section 2. The methodology is 

reported in section 3. The technical description is delineated 

in Section 4. The experimental results for the proposed 

method are elucidated in section 5. Section 6 is presented 
with the conclusion.  

 

II. PROPOSED METHOD 

 In this portion, the proposed novel RGB Channel 

Assimilation of DTICF-3D-CNN-Bi-LSTM HSI 

classification is discussed. First, the HSI data is converted to 

an RGB image with spatial features. RGB images with 

spatial features are converted to grey-level images. These 

spatial-based features are integrated with patch-wise input 

data from HSI images. Further, the patch-wise spectral-

spatial features are acquired using DTICF by a grey level 

image with spatial and spectral bands. The hyperspectral data 
with features is provided to newly developed 3D-CNN 

architecture for classification. In this section, 3D-CNN with 

Bi-LSTM based classification method is explained and 

discusses how to train the network with deep learned features 

from HSI. 3D-CNN configuration substantially consists of 

three blocks of Convolution (𝑐1, 𝑐2, 𝑐3) and ReLU 

(𝑅1, 𝑅2, 𝑅3) layers. The filters used in three sets are 𝑘1 = 20, 

𝑘2= 20 and 𝑘3 = 35 respectively.  

 

 The extracted features of the HSI ( 𝑥1, 𝑦1 ,1) are 

given as input to 3D_CNN. In 3D-CNN, the first 

convolutional layer 𝑐1 with 𝑘1filters data becomes (𝑥1, 𝑦1,𝑘1 ) 

and (𝑥2, 𝑦2,𝑘1).  In the second convolutional layer, 𝑐2   with 

𝑘2  filters, the data becomes ( 𝑥2, 𝑦2 , 𝑘2). and (𝑥3, 𝑦3 ,𝑘2).  
Finally, we obtain the data (𝑥3, 𝑦3,𝑘3) by using the third set 

of Convolution and ReLU layers. The ReLU features are 

given into the Bi-LSTM network to extract features. In the 
last stage of the Bi-LSTM model, we take the input of the 

ReLU features obtained by 3D-CNN. The final data is 

categorized by applying a soft-max function. At the same 

proposed architecture, RGB images with spatial features are 

classified using 2D-CNN. The probability map of 3D-CNN 

with Bi-LSTM and 2D-CNN is fused. The fused probability 

map can also be improved by MRF efficiently. 

III. METHODOLOGY 

A. RGB Channel Assimilation   

The proposed RGB channel assimilation is the most 

efficient classification method. The RGB images are 

produced by a digital representation which is categorized by 

the intensity value of a pixel. The 3-dimensional vector is 

calculated by intensity value. RGB colour space is utilized 

for image display. All camera, printer, or other devices 
provides direct RGB signal as input and output. The 

transformation of RGB space is proposed for extracting 

efficient colour features. The RGB space is computed by 

RGB chromaticity value which yields higher classification 

accuracy than the direct use of R, G, and B value. 
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B. Computation of chromaticity 

In RGB space, the chromaticity value is calculated 

for chromaticity coordinates. The chromaticity 

coordinates are the average value of RGB colour space. 

Fig 1 shows the structure of RGB channel Assimilation 
and summarizes the RGB colour space in algorithm 1. 

 

r(R, G, B)= R, 
𝐺+𝑅

2
, 

𝐵+𝑅

2
   (1) 

 

g(G, R, B)= G, 
𝑅+𝐺

2
, 

𝐵+𝐺

2
   (2) 

 

b (B, G, R)= B, 
𝐺+𝐵

2
, 

𝑅+𝐵

2
                (3) 

 
Fig. 1 Structure of RGB channel Assimilation 

 
 

Algorithm 1: RGB Channel Assimilation for HSI 

Classification 
 

Input: HSI data H ∈ 𝑅h×w×d, Number of diagonal value 

K 

Output: RGB channel Patches 

 

1. Set rpatch to Red channels; 

2. Set gpatch to Green channels; 

3. Set bpatch to Blue channels; 

4. For diagonal value is 5  % Red channels 

5.  If k is equal to 1 

6.   Set fm to rpatch; 

7.   Set sm to rpatch; 

8.  Elseif k is equal to 2 

9.   Set fm to rpatch; 
10.   Set sm to gpatch; 

11.  Elseif k is equal to 3 

12.   Set fm to rpatch; 

13.   Set sm to bpatch; 

14.  Elseif k is equal to 4 

15.   Set fm to rpatch; 

16.   Set sm to rpatch; 

17.  Elseif k is equal to 5 

18.   Set fm to rpatch; 

19.   Set sm to gpatch; 

20.  End if 
21. End for 

22. Initialize j to one; 

23. For i=k-1:1 

24.  Rpatch(i,j)=(fm(i,j)+sm(i,j))/2.0; 

25.   j= j+1; 

26. End for 

27. Repeat step 4 to 26 for Green and Blue Channels  

C. Domain Transform Interpolated Convolution Filter 

(DTICF)  

DTICF was proposed by Oliveria [27] for image 

filtering, which utilizes for enhancing spatial features. It is a 

spatially invariant feature and is used to decrease the pixel 

distance. If any find the distance between the pixel, we have 

to use the spatially invariant performance. It is the edge-

preserving filter. It is calculated in the following ways: 

 

𝑍𝑖(𝑢) = ʃΩ𝑤
𝑃𝑤𝑄(ℎ(𝑢), 𝑥)𝑑𝑥 𝑖 = 1,2, … , 𝑛; 𝑢 ∈ Ω𝑤  (4)

  

In Equation (1) [27], Filtering 𝑃𝑤  is evaluated by the 

consecutive convolution, where Q is a normalized box 

kernel, and r is the filter radius.  
 

Q (h (u), x) = 
1

2𝑟
𝛿{|𝑔(𝑢) − 𝑥| ≤ 𝑟}   (5) 

 

(E)={0               𝑜𝑡ℎ𝑒𝑟
1            𝐸 𝑖𝑠 𝑡𝑟𝑢𝑒     (6) 

 

Substituting Equations (5), [27] and (6) into (4): 

 

𝐹𝑖(𝑢) =
1

2𝑟
∫ 𝑃𝑤(𝑥)𝑑𝑥

𝑔(𝑢)+𝑟

𝑔(𝑢)−𝑟
                  (7) 

 

G (u)=∫ 1 +
𝜎𝑠

𝜎𝑟
∑ |𝐼𝑘

′𝑐
𝑙=1 (𝑥)𝑑𝑥

𝑢

0
                (8) 

𝜎𝑟 = √3𝜎𝑗                    (9) 

𝜎𝑗𝑛 = 𝜎𝑠√3
2𝑀−𝑛

√4𝑀−1
                  (10)

  

D. CNN Operation 

Nowadays, many researchers utilize the deep learning 

method for image classification for excellent performance 

[5]. CNN is employed to capture the spatial and temporal 

dependencies in the input image. This algorithm is used for 

the image data set due to the reduction of dimensionality. 

CNN doesn't care about the large size of data, but it is 

manipulated to perceive the parameters of the image. 

 

E. 3D Convolution  

3D-CNN is employed to extract the features of spatial 

and spectral information simultaneously. In 3D data cube, 3D 

convolution is computed by the weighted sum of pixels as: 

 

𝐶𝑝𝑞𝑟=f (∑ 𝑤𝑖𝑗𝑘𝑖,𝑗,𝑘 𝑎(𝑝+𝑖)(𝑞+𝑗)(𝑟+𝑘)+b)             (11)

   

F. Bi-Long Short Term Memory (BILSTM) 

Bi-LSTM network LSTM was established by Hochreiter 

and Schmidedhuber [10]. This network structure overcomes 

the problems of RNN [25]. In Bi-LSTM, there are three 

memory gates such as input, forget and output. The high-

frequency Intrinsic Mode Function (IMF) is 𝐶𝑎𝑠ℎ  that is 

given as input, and ℎ𝑖−1 is the output. 𝐶𝑆𝑇−1  is the input of 

cell state determined by forgetting gate 𝑓𝑡  using a sigmoid 

function. It is written in Eq. 10 [10]:  
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𝑓𝑡 = (𝑤𝑓[ℎ𝑖−1, 𝐶𝑡𝑠ℎ] + 𝑏𝑓)      (12) 

 

Input gate 𝑖𝑡  is used to determine the values that are to be 

updated to 𝐶𝑆𝑡 as in Eq. 12 [10]: 

 

𝑖𝑡  = (𝑤𝑖[ℎ𝑖−1, 𝐶𝑡𝑠ℎ] + 𝑏𝑖)       (13) 

 

The output gate 𝑜𝑡 are equated in Eq. 13 [10]: 

 

𝐶𝑠𝑡 =𝑓𝑖ʘ 𝐶𝑆𝑡−1 ⊕ 𝑖𝑡ʘ 𝐶𝑆𝑡−1      (14) 

 
Consequently, the output of LSTM memory cell is 

written in Eq. 14[10]: 

 

ℎ𝑁=𝑜𝑡ʘ𝐶𝑠𝑡        (15) 

 

𝑦𝑑= softmax(𝑊𝑜·ℎ𝑁.  + 𝑏𝑜)      (16) 

 

IV. HSI CLASSIFICATION WITH DTICF-3D-CNN-

BILSTM-MRF 

In this portion, the proposed method DTICF-3D-CNN-
BiLSTM-MRFis was discussed. First, HSI data is converted 

to RGB image and RGB image with spatial features and 

spectral information with original HSI is integrated. DTICF 

is applied in integrated information.  

 

Those obtained spatial and spectral features are finally 

given into the designed 3D-CNN-BiLSTM framework. The 

proposed method is discussed in Fig. 2. 

 

A. Extracting Spatial Features by DTICF 

First, we convert the HSI image into an RGB image. 
Then, DTICF is applied to RGB images with spatial and 

spectral bands from original HSI Data. For dataset  

D = {𝑑1, 𝑑2, . . 𝑑𝑠  }, we utilized the DTICF to capture the 

features.  

 

[𝑔1, 𝑔2, . . , 𝑔𝑠]= RGB (D)            (17) 

B. Classifying HSI by 3D-CNN-Bi-LSTM 

We obtain the image U = {𝑢1, 𝑢2, … , 𝑢𝑠  } by DTICF 

filter. In the proposed method, a 3D-CNN network is utilized 
to obtain the pair features of spectral-spatial using 

convolution, pooling and ReLU layers. Using Equation (8), 

the extracted features of the HSI (𝑥1, 𝑦1, 1) is given as input 

to 3D_CNN. In 3D-CNN, first convolutional layer 𝑐1 with 

𝑘1 filters data becomes (𝑥1, 𝑦1 ,𝑘1 ) and (𝑥2, 𝑦2 ,𝑘1).  In the 

second convolutional layer, 𝑐2   with 𝑘2  filters, the data 

becomes (𝑥2, 𝑦2,𝑘2). and (𝑥3, 𝑦3,𝑘2).  Finally, we obtain the 

data (𝑥3, 𝑦3 ,𝑘3) by using the third set of Convolution and 

ReLU layers. Finally, we obtain the spectral-spatial features 

by ReLU. BiLSTM is applied to extract the sequence features 

from 3D-CNN. Next, a dropout layer is used to avoid over-

fitting. Then, we adopt a soft-max function for classifying the 

entire feature vector. Eventually, the 3D-CNN network 

provides the probabilistic classification map C. 

 

C. Fused DTICF-3D-CNN-BiLSTM and RGB Channel 

Assimilation 2D-CNN 

In the beginning, the probability classification map c = 

{𝑝1, 𝑝2, … , 𝑝𝑛 } is defined and the number of categories is 

defined by n for classifying. Then we applied 2D-CNN using 

Equation (8) to RGB images with spatial features. The 

probability map of 3D-CNN-BiLSTM and RGB channel 

assimilation 2D-CNN are fused. Finally, MRF is utilized for 

enhancing the fused probabilistic classification map.  

 

The proposed method analyzes the output by using log-

likelihood log P((𝑦𝑖|�̃�𝑖) can be given by [11] 

 

�̂� = arg max
𝑦∈𝐾𝑛

{∑  ∑ 1{𝑦𝑖 = 𝑘} 𝑙𝑜𝑔�̃�𝑖𝑘
𝐾
𝑘=1 +𝑛

𝑖=1

𝜇 ∑ ∑ 𝛿(𝑦𝑖 − 𝑦𝑗)𝑗∈𝑁(𝑖)
𝑛
𝑖=1 }                              (18) 
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Fig. 2 HSI Classification procedure 

 

 

 
 

Fig. 3 Network Structure of DTICF-3D-CNN-Bi-LSTM 
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Algorithm 2: RGB Channel Assimilation of Hyperspectral 

Image Classification 

 

Input: HSI data H ∈ 𝑅h×w×d , D for Training Data,  

patches y = {𝑦1, 𝑦2 , . . . , 𝑦𝑛}, K for number of labels. 

 

Output: Labels �̂�. 

 

1. For Each patches 𝑥𝑖, ∈ 𝑅k×k×d in H, do 

2. Obtain spectral-spatial feature through DTICF using 

Eq. (4); 

3. X = {𝑥1, 𝑥2, . . . , 𝑥𝑛}; 

4. While D: 1 → X 
5. Compute the patch for training data;  

6. Compute another patch for testing; 

7. 𝐷
𝑙(𝑘)
(𝑘)

= {(𝑥1, 𝑦1), … . , (𝑥𝑙(𝑘) , 𝑦𝑙(𝑘))}; 

8. Generate feature maps operation using         

 convolutionoperation Eq. (11) ; 

9. ƒ(x) = max (0,x);  % ReLU operation 

10. Sequence input by f(x) given Bi-LSTM  

 network  using Eq. (12); 

11. Perform forward and backward sequence  

 using Eq. (15)  to generate the feature; 

12. Compute a = 
exp (𝑜)

∑ exp (𝑜𝑘)𝑘
;   % Soft-max activation 

 function 

13. end while 

14. compute RGB channel assimilation patches; 

15. Obtain spectral-spatial feature through 2D-CNN; 

16. end for 

17. compute probabilistic classification map for 3D-

CNN-BiLSTM and 2D-CNN 

18.  Compute the classifiaction label  �̂�  using Eq. (18). 
 

V. EXPERIMENTS 

In this portion, the proposed RGB Channel Assimilation 

of DTICF-3D-CNN-BiLSTM-MRF is examined in two 

hyperspectral data set, such as Indian pines data and Pavia 

University data. The experimentations are carried out on 

Matlab R2019a on a PC with 64 GB RAM. There are three 

measurements used for validation such as [1]: Overall 

accuracy (OA), Average Accuracy (AA), and Statistically 

kappa measure (k).  

 
 Fig. 4 Original image and Ground Truth of Pavia 

University dataset 

 
Fig. 5 Original image and Ground Truth of Indian Pines 

dataset 

In this portion, the Indian pines data set was acquired by 

an Airborne Visible/Infrared Imaging Spectrometer 

(AVIRIS) sensor. It defines the spatial dimension size of 

height and width as 145×145. It contains 220 spectral 

reflectance bands, and it is measured by wavelength range 
0.4–2.5 µm.  

 

It contains 16 classes and is displayed in figure 4. Pavia 

University dataset was accumulated by the Reflective Optics 

System Imaging Spectrometer (ROSIS) over the urban area 

of the University of Pavia, northern Italy. It defines the 

spatial dimension size of height and width 610×340. It 

contains 103 spectral bands. There are 9 land cover classes in 

this dataset, and the number of each class is displayed in 
figure 5. 

 

A. The proposed RGB Channel Assimilation of DTICF-3D-

CNN-BiLSTM-MRF HSI Classification on Indian pines 

data and Pavia University data   

To examine the proposed RGB Channel Assimilation of 

DTICF-3D-CNN-MRF, we select 50% of samples for 

training data and then another 50% of samples for testing. In 

this experiment, 3D-CNN-BiLSTM architecture is structured 

as follows (also shown in Table I), and validation accuracy is 

also displayed in Table II. 

 

Table 1. The network structure of the proposed method 

in the Indian pines dataset 

Input 

Shape 

Function Output shape 

3D-CNN image3dInputLayer([5 5 200 

1],"Name","image3dinput") 

 

(5˟5˟3) convolution3dLayer([3 3 

3],20, 

"Name","conv1","Stride",[1 

1 1],"Padding",[0 0 1;0 0 1]) 

(3˟3˟20) 

(3˟3˟20) Activation = ReLU 

 

(3˟3˟20) 

(3˟3˟20) convolution3dLayer([1 1 

3],20, 

"Name","conv2","Stride",[1 

1 2],"Padding",[0 0 1;0 0 1]) 

(3˟3˟20) 

(3˟3˟20) Activation = ReLU 
 

(3˟3˟20) 
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(3˟3˟20) convolution3dLayer([3 3 

3],35, 

"Name","conv3","Stride",[1 

1 1],"Padding",[0 0 1;0 0 1]) 

(3˟3˟35) 

(3˟3˟35)  convolution3dLayer([1 1 

3],35, 

"Name","conv4","Stride",[1 
1 2],"Padding",[0 0 1;0 0 1]) 

(1˟1˟35) 

(1˟1˟35) Activation = ReLU 

 

(1˟1˟35) 
(1˟1˟35) Fully Connected Layer  1˟1˟910 

Weights 
540˟35 

Bias 540 ˟1 

1˟1˟540 Activation = ReLU 

1˟1˟540 

1˟1˟540 

BiLSTM   

540 Dense 1 540 (input 

layer) Activation=ReLU 

Sequence input with 540 

dimension 

540 

540 BiLSTM 1 with 512 hidden 

units 

1024  

Input Weights 

(4096) 

1024 Dropout 50% 1024 

1024 BiLSTM 2 with 256 hidden 

units 

512 

Input Weights 

(2048) 

512 Dropout 50% 512 

512 Fully Connected Layer 9 Weight 9˟512 

Bias 9˟1 

9 Activation =Softmax 9 
 

Table 2. Validation accuracy and validation loss f 3D-

CNN-Bi-LSTM 

E

po
ch   

Ite

rat
io

n 

Mini-

batch  
  

Accur

acy    

Validati

on 
   

Accurac

y    

Mini-

batch   
  Loss          

Validati

on 
|     Loss            

Base 

Learnin
g  

Rate  

1 1 4.63% 36.25% 2.771

8 

1.0000e

-04 

     

1.0000e

-04 

5 50 36.13

%. 

   ---- 1.913

4 

---      

1.0000e

-04 

10 10

0 

52.00

% 

52.36% 1.226

7 

1.3463      

1.0000e

-04 

14 15

0 

65.50

% 

---- 0.972

1 

----      

1.0000e

-04 

19 20
0 

71.75
% 

64.73% 0.769
7 

1.2663      
1.0000e

-04 

23 25

0 

81.88

% 

--- 0.512

8 

---      

1.0000e

-04 

28 30

0 

81.75

% 

66.01% 0.512

8 

1.2030      

1.0000e

-04 

32 35

0 

87.75

% 

--- 0.411

2 

---      

1.0000e
-04 

37 40

0 

89.00

% 

64.54% 0.321

3 

1.1812      

1.0000e

-04 

41 45

0 

91.00

% 

-- 0.321

3 

--      

1.0000e

-04 

46 50

0 

94.46

% 

66.99% 0.296

2 

1.1330      

1.0000e

-04 

50 55

0 

98.81

% 

71.12% 0.266

9 

1.1106      

1.0000e

-04 

  
 

In Table III, the proposed method is compared to other 

classification methods such as SVM, SVM-GC, MLRsub, 

SVM-3D, SVM-3DG, CNN, CNN-MRF, 3D-CNN and 3D-

CNN-MRF, respectively [22]. The original CNN is a plain 

network whose extraction layers consist of regular 

convolutional layers and max-pooling layers. If we use raw 

HSI data, DTICF is applied. These features are used for 

reducing the computational time. Classification results are 
validated in terms of OA. In Figure 6, our RGB channel 

assimilation of the DTICF-3D-CNN-BiLSTM-MRF 

approach provides the best result compared with other 

methods. 

 

 
 

Fig. 6 Classification accuracy of the proposed method 

and other classification methods on the Indian pines 

dataset 
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Table 3. Overall, Average And Individual Class Accuracies (%) And Kappa Statistics Of All Competing Methods On 

The Indian Pines Image Test Set. 

Clas

s 

SVM 

SVM-

GC 

MLR 

sub 

MLRsu

b 

MLL 

SVM-

3D 

SVM-

3DG CNN 

CNN_ 

MRF 

3DCN

N 

3DCN

N_M

RF 

IC_3

DCN

N_ 

BiLS

TM 

IC_3DC

NN_BiL

STM_M

RF 

1 

46.34

% 47.12% 

27.78

% 22.22% 

19.51

% 

20.11

% 

34.15

% 

31.71

% 

69.69

% 

78.32

% 

93.23

% 91.05% 

2 

69.03

% 86.23% 

45.36

% 56.22% 

82.96

% 

88.33

% 

89.57

% 

89.57

% 

89.11

% 

90.37

% 

91.20

% 96.81% 

3 

53.41

% 55.82% 

18.07

% 73.80% 

69.21

% 

67.47

% 

88.62

% 

90.36

% 

91.98

% 

91.88

% 

92.95

% 98.76% 

4 

15.96

% 13.15% 

25.93

% 51.85% 

61.50

% 

66.67

% 

95.12

% 

98.12

% 

97.92

% 

99.13

% 

98.68

% 98.85% 

5 

89.63

% 93.09% 

71.76

% 80.83% 

94.93

% 

94.01

% 

94.01

% 

94.93

% 

96.27

% 

95.29

% 

96.20

% 99.12% 

6 

97.72

% 99.70% 

95.55

% 99.49% 

98.02

% 

98.33

% 

95.59

% 

95.74

% 

94.09

% 

96.08

% 

96.18

% 98.18% 

7 

36.00

% 36.00% 

18.18

% 18.18% 

56.00

% 

56.50

% 

76.00

% 

76.00

% 

79.37

% 

77.04

% 

88.52

% 93.75% 

8 

98.60

% 

100.00

% 

98.95

% 

100.00

% 

100.0

0% 

100.0

0% 

98.84

% 

98.84

% 

98.59

% 

99.89

% 

99.18

% 98.63% 

9 0.00% 0.00% 0.00% 0.00% 

27.78

% 

28.12

% 

100.0

0% 

100.0

0% 

99.64

% 

100.0

0% 

98.38

% 99.92% 

10 

65.33

% 81.12% 

30.63

% 42.21% 

75.74

% 

81.01

% 

91.99

% 

94.15

% 

93.84

% 

95.90

% 

92.09

% 98.64% 

11 

84.16

% 95.02% 

85.03

% 97.05% 

90.18

% 

97.24

% 

95.07

% 

96.42

% 

89.97

% 

97.73

% 

98.39

% 97.72% 

12 

68.48

% 90.99% 

23.84

% 48.95% 

82.55

% 

92.68

% 

87.43

% 

89.49

% 

91.87

% 

94.21

% 

92.20

% 99.61% 

13 

94.57

% 98.37% 

93.90

% 

100.00

% 

94.57

% 

96.74

% 

98.37

% 

99.46

% 

98.65

% 

100.0

0% 

98.84

% 99.05% 

14 

98.51

% 99.47% 

99.01

% 

100.00

% 

96.49

% 

99.74

% 

97.98

% 

98.07

% 

98.06

% 

99.46

% 

98.31

% 98.74% 

15 

44.38

% 55.91% 7.47% 12.66% 

72.91

% 

84.73

% 

89.91

% 

92.22

% 

95.02

% 

96.30

% 

97.04

% 99.50% 

16 

93.98

% 97.59% 

68.92

% 74.32% 

84.34

% 

87.95

% 

98.80

% 

98.80

% 

99.25

% 

99.55

% 

99.12

% 99.86% 

OA 

77.29

% 85.93% 

63.03

% 70.88% 

85.88

% 

89.99

% 

93.50

% 

94.62

% 

95.24

% 

96.75

% 

97.36

% 98.82% 

AA 

66.01

% 66.70% 

50.65

% 55.82% 

75.42

% 

79.18

% 

89.65

% 

90.26

% 

92.71

% 

94.45

% 

96.16

% 98.05% 

KA 

73.79

% 83.72% 

56.46

% 65.50% 

83.77

% 

88.46

% 

92.28

% 

93.40

% 

94.67

% 

95.82

% 

96.97

% 98.61% 
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Table 4. Overall, average and individual class accuracies (%) and kappa statistics of all competing and 

proposed methods on the Pavia university image test set. 

clas

s SVM 

SVM-

GC 

MLRs

ub 

MLRs

ubML

L 

SVM-

3D 

SVM-

3DG CNN 

CNN_

MRF 

3DCN

N 

3DCN

N_M

RF 

IC_3DC

NN_Bi

LSTM 

IC_3DCN

N_BiLST

M_MRF 

1 

74.78

% 

96.89

% 

42.72

% 

87.07

% 

92.13

% 

97.03

% 

96.78

% 

97.92

% 97.8% 

98.15

% 98.54% 99.29% 

2 

69.75

% 

84.82

% 

69.31

% 

96.97

% 

92.70

% 

95.05

% 

96.92

% 

97.38

% 

95.83

% 

96.85

% 97.27% 98.30% 

3 

71.54

% 

86.69

% 

65.57

% 

77.27

% 

79.16

% 

81.98

% 

85.96

% 

87.66

% 

91.92

% 

92.09

% 94.22% 95.92% 

4 

92.79

% 

94.18

% 

86.34

% 

83.90

% 

61.50

% 

96.00

% 

98.78

% 

98.97

% 

97.31

% 

97.55

% 98.46% 98.71% 

5 

96.86

% 

97.47

% 

99.16

% 

99.54

% 

94.74

% 

99.62

% 

99.92

% 

99.92

% 

98.38

% 

99.07

% 99.04% 99.27% 

6 
67.27
% 

96.31
% 

56.66
% 

99.40
% 

82.20
% 

93.57
% 

90.10
% 

92.00
% 95.7% 

96.42
% 97.17% 98.13% 

7 

75.43

% 

91.40

% 

86.20

% 

94.50

% 

87.36

% 

90.62

% 

84.42

% 

85.27

% 

89.14

% 

89.72

% 91.36% 94.81% 

8 

67.68

% 

91.93

% 

65.98

% 

64.83

% 

86.05

% 

91.21

% 

89.84

% 

91.54

% 

96.31

% 

96.72

% 97.74% 99.07% 

9 

98.13

% 

99.34

% 

99.67

% 

99.78

% 

100.0

0% 

100.0

0% 

96.80

% 

97.13

% 

99.38

% 

99.43

% 99.49% 99.68% 

OA 

73.41

% 

90.36

% 

66.52

% 

91.13

% 

90.50

% 

92.35

% 

90.50

% 

95.68

% 

94.37

% 

97.33

% 97.93% 98.67% 

AA 

79.36

% 

93.24

% 

74.62

% 

89.25

% 

90.44

% 

93.90

% 

90.44

% 

94.20

% 

95.76

% 

96.22

% 97.03% 98.13% 

KA 

66.23

% 

87.52

% 

57.75

% 

88.19

% 

87.46

% 

92.60

% 

87.46

% 

94.26

% 

93.26

% 

96.69

% 97.33% 98.01% 
            

 
 

Fig. 7 Classification results obtained by DTICF-3D-CNN-BiLSTM-MRF on the Indian Pines dataset 

 

 
Fig. 8 Classification Result by DTICF-3D-CNN-BiLSTM-MRF on the Pavia University dataset 
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In our proposed work, the Indian Pines dataset is used. 

This dataset has high dimensionality that is difficult to 

classify. Figure 7 shows the classification results compared 

with other different methods with the help of OA scores. 

Compared to another classification accuracy, the proposed 
method DTICF-3D-CNN-BiLSTM with MRF has shown 

good classification performance. In Figure 4 of Indian pines, 

the classification accuracy of SVM-3D and SVM-3DG is 

85.88% and 89.99%. The classification accuracy of CNN and 

CNN-MRF is 93.50% and 94.62%. The classification 

accuracy of 3D-CNN and 3D-CNN-MRF is 95.24% and 

96.75% larger than that of CNN and CNN-MRF. Finally, the 

classification accuracy of DTICF-3D-CNN-BiLSTM obtains 

a second higher performance in the accuracy. Compared to 

other methods, the proposed method (98.82%) achieves the 

highest accuracy for HSI Classification. To examine the 

proposed method, Pavia university data is used. Table IV 
discuss the classification results compared to the other 11 

classification methods. The proposed approach of DTICF-

3D-CNN-BiLSTM-MRF achieved the elegant result, with a 

98.67% overall delicacy, 0.36% better than another method 

(97.93%) achieved by DTICF-3D-CNN-BiLSTM. Figure 8 

show that our proposed method provides good classification 

accuracy. 

 
 

Fig. 9 Classification Accuracy of Proposed method and 

other classification methods on Pavia University dataset 

 

The classification result of different methods is 

illustrated in Fig. 9. The above figure shows that the 
proposed methods achieve better classification performance 

compared approaches to other approaches. In Figure 6 of 

Pavia university's data, the classification accuracy of SVM-

3D and SVM-3DG is 90.50% and 92.35%. In addition, the 

classification accuracy of CNN and CNN-MRF is 90.50% 

and 95.68%, and the classification accuracy of 3D-CNN and 

3D-CNN-MRF is 94.37% and 97.33%. Finally, the 

classification accuracy of DTICF-3D-CNN-BiLSTM obtains 

a second higher performance in the accuracy. Compared to 

other methods, the proposed method (98.67%) achieves the 

highest accuracy for HSI Classification. 

VI. CONCLUSION 

To improve the HSI classification, the proposed RGB 

Channel Assimilation of 3D-CNN-BiLSTM framework has 

been proposed that is employed to extract the features of 

spectral-spatial information in this work. HSI data is 
converted to RGB images with spatial features. DTICF is 

applied to the combination of the RGB image with spatial 

features and raw HSI data. The excerpted features are 

provided to the 3D-CNN-BiLSTM. The colour features are 

given to 2D-CNN. The probabilistic classification map of 

3D-CNN-BiLSTM and 2D-CNN is fused. Finally, MRF is 

utilized to improve the features map for smoothing the 

classification result. The proposed RGB Channel 

Assimilation of DTICF-3D-CNN-BiLSTM-MRF approach 

compared with other HSI classification methods. The 

experimental result clearly viewed that RGB Channel 

Assimilation of DTICF-3D-CNN-BiLSTM-MRF based HSI 
classification attained the welfare classification accuracy. In 

future work, we will concentrate on how to reduce 

computational time across a variety of HSI datasets. 
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