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Abstract - With the advent of technology, it is possible to 

design thin film optical bandpass filters for the desired 

wavelength and Full-Width Half Maximum (FWHM). A 

stack of high and low refractive index thin films of suitable 

thickness can result in the desired wavelength (as the 

amplitude of other wavelengths are attenuated and 

amplitude of the desired wavelength is amplified). The 

choice of the dielectric material, the thickness of the 

dielectric materials, and the stacking options of these 

dielectric materials affect the interference pattern. The 

proposed research work aims at developing optimization 

techniques for the selection of thin films and the number of 

layers to be deposited. In this paper, the design of the H 

alpha filter (656.3 nm), H beta (486.1 nm), and Carbon III 

(464.7nm) is discussed. The dielectric materials are 

Magnesium Fluoride and Zinc Sulphide. The impact of 

stacking and thickness on the attenuation of wavelengths is 

also studied. 

 

Keywords — Central Wavelength (CWL), H alpha, H 

Beta, Full Wave Half Maximum (FWHM). 

I. INTRODUCTION 

In nuclear fusion reactors, it is necessary to retrain the 

plasma within the chamber for a fixed duration of time. 

Hence, the plasma should remain unchanged in its form to 

avoid problems in the generation of power. However, due 

to unpredictable reasons, disruption does occur in plasma. 

These disruptions result in Hα, Hβ, and c3 emissions. 

Hence, the filters are to identify which atom is emitted, the 

amount of emission [27] and to avoid disruption. The 

optical bandpass filters are used to identify the emitted 

atoms since they can be used in the visible range of light 

(400-700nm). From the color of emitted atoms, the 

identification of emission can be made. For example, if the 

green color is emitted, it indicates that the wavelength lies 

between 495nm-570nm in the same way each color 

denotes a particular range of wavelength. 

 The major change lies in designing the optical bandpass 

filter in the nanometer range is to identify the material 

which can be used for filter design, where the material 

should not change its properties in the reactor. The next 

lies in the thickness of the filter; when the thickness of the 

filter is varied, then the amount of emission also varies. 

Hence, the thickness of the filter should be carefully 

determined to avoid the unwanted wavelength passing 

through the filter. The other is to identify the number of 

layers of coating that need to be done to design the filter. 

The two materials needed to be used as the high and low 

refractive index in the coating to form the number of layers 

in the filter design over the substrate to propagate the 

wavelength of H α (656.3nm), H β (486.1nm), and c3 

(464.7nm) emission. 

II. LITERATURE SURVEY 

Pimenta et al. (2015) used Magnesium Oxide, Titanium 

Oxide, and Silicon Dioxide, Titanium Oxide combinations 

for the design of narrowband filters for biological systems. 

R. Kitsomboonloha et al. (2011) proposed a technique for 

varying the transmittance range by tuning the Plasmon 

characteristics. Gaillan H. Abdullah et al. (2020) used 

Titanium Oxide, and Silicon Dioxide for the design of 

filters for two sets of wavelengths. D. M. Beggs et al. 

(2009) proposed theoretical aspects for the design of a 

square-shaped transmission band. Saeed Al Rashid (2015) 

designed a narrow bandpass filter with Zinc Sulphide and 

Cryolite. He observed that the transmittance decreases as 

the number of layers in the stack increases. 

From the literature is understood that the transmittance 

and hence the reflectance co-efficient are strongly 

dependent on the choice of the dielectric, thickness of the 

dielectric material, and number of stacks on the dielectric 

III. PROPOSED METHODOLOGY 

In this paper, the number of layers used for the filter is 

reduced in number, nearly less than 10 layers are used for 

design, and the thickness of high and low refractive index 

materials are detected with more number of combinations 

out of which the best combination can be chosen for 

optical bandpass filter fabrication. The 

A. Selection of Dielectric Material 

In the above table, magnesium fluoride (MgF2) is used 

as a low refractive index material because of its above-

mentioned properties. It is highly pure and insoluble in a 

plasma reactor, which prevents the filter from impurity 

formation and also avoids the mixing of impurities in the 

reactor. Zinc sulfide (ZnS) is used as a lower refractive 

index material because of their insoluble nature in the 

reactor of plasma, and they are highly suitable for optical 

coatings. The BK7 glass is used as a Major task in 

designing an optical bandpass filter lies in selecting the 
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appropriate dielectric materials [1] for coating. The choice 

of these dielectric materials is based on the characteristics 

of these individual materials. The characteristics must be 

in such a way that they are not affected by temperature, 

moisture, the interaction between the layers, etc.; Table 1 

shows the characteristics of different kinds of dielectric 

materials.  

 

TABLE 1 THE CHARACTERISTICS OF DIFFERENT KINDS OF DIELECTRIC MATERIALS. 

 

Properties Magnesium fluoride Calcium fluoride Silicon dioxide Zinc sulfide Lithium 

fluoride 

Chemical 

formula 

MgF2 CaF2 SiO2 ZnS LiF 

Molar mass 62.3018 g/mol 78.07 g·mol−1 60.08 g/mol 97.474 g/mol 25.939(2) g/mol 

Solubility 

product (Ksp) 

5.16·10−11 3.9 × 10−11 [1]    

Refractive 

index (nD) 

1.37397 1.4338 1.544 (o), 1.553 

(e)[1](p4.143) 

 1.3915 

Structure Structure Structure Structure   

Crystal structure Rutile (tetragonal), tP6 cubic crystal 

system, cF12[2] 

Coordination 

geometry: 

Tetrahedral 

(Zn2+) 

Tetrahedral 

(S2−) 

 Cubic 

Space group P42/mnm, No. 136 Fm3m, #225   Molecular shape: 

linear 

Thermochemistry Thermochemistry Coordination geometry; 

Ca, 8, cubic 

F, 4, tetrahedral 

Thermochemistry Thermochemistry Thermochemistry 

Hazards Hazards Hazards Hazards Hazards Hazards 

R-phrases R20, R22 R20, R22, R36, R37, R38    

NFPA 704 

 
0 

3 

0 

 
0 

0 

0 

 
0 

0 

0 

 
0 

1 

0 

 
0 

2 

0 

 

B. Determining the Stack Order and Thickness of Thin 

Film Coating in Filters 

 The order of the stack and thickness of each layer can 

be determined from mathematical models through an 

iterative procedure. The following is the algorithm to find 

the transmittance and reflection coefficient of the required 

wavelength. From that, the absolute value of co-efficient 

used as a Major task in designing an optical bandpass 

filter lies in selecting the appropriate dielectric materials 

[1] for coating. The choice of these dielectric materials is 

based on the characteristics of these individual materials. 

The characteristics must be in such a way that they are not 

affected by temperature, moisture, the interaction between 

the layers, etc.; Table 1 shows the characteristics of 

different kinds of dielectric materials. 

 The refractive indices for each required wavelength of 

the dielectric material along with the substrate are 

constant values that are already available in existence. 

 The refractive indices for each required wavelength of 

the dielectric material along with the substrate are 

constant values that are already available in existence. 

 

Algorithm: 

 

Step 1: Choose the dielectric materials 

Step 2: Initially begin with high refractive index material 

Step 3: Keep the thickness of the material constant 
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Step 4: Iteratively change the thickness of the other 

material and determine the transmittance and reflective 

co-efficient 

Step 5: If the transmittance is within the acceptable range 

for the desired wavelength, stop the process. Else continue 

with step 4. 

IV. RESULTS AND DISCUSSION 

 The obtained outputs for each required wavelength of 

H alpha, H beta, and C III emission are given in table 

2,3,4. Here, a different combination of thickness values is 

obtained for each wavelength. The same combination of 

layers of low and high refractive index is used for the 

coating of the optical bandpass filter. Nearly 1000 output 

waveforms were obtained for each wavelength. 

 

TABLE 2. OUTPUT CHARACTERISTIC OF H 

ALPHA EMISSION 

 

H APLHA WABVELENGTH (656.3nm) 

s.no Tl Th Output obtained wavelength 

1. 201 561 

 

2. 399 561 

 

3. 397 561 

 

H APLHA WABVELENGTH (656.3nm) 

s.no Tl Th Output obtained wavelength 

4. 283 561 

 

5. 279 561 

 

6. 274 561 

 

7. 277 561 
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H APLHA WABVELENGTH (656.3nm) 

s.no Tl Th Output obtained wavelength 

8. 269 561 

 

9. 262 561 

 

10. 245 561 

 

11. 235 561 

 

H APLHA WABVELENGTH (656.3nm) 

s.no Tl Th Output obtained wavelength 

12. 569 571 

 

13. 546 561 

 

14. 553 571 

 

15. 569 561 
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H APLHA WABVELENGTH (656.3nm) 

s.no Tl Th Output obtained wavelength 

16. 505 561 

 

17. 473 561 

 

18. 406 561 

 

19. 762 561 

 

20. 1000 561 

 

 

 

TABLE 3. OUTPUT CHARACTER ISTIC OF H 

BETA EMISSION 

 

H beta emission (486.1nm) 

S.no Tl          Th Output wavelength for h beta 

1. 104 100 

 

2. 138 100 

 

3. 200 100 

 

4. 289 100 
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H beta emission (486.1nm) 

S.no Tl          Th Output wavelength for h beta 

5. 304 100 

 

6. 355 100 

 

7. 397 100 

 

8. 422 100 

 

H beta emission (486.1nm) 

S.no Tl          Th Output wavelength for h beta 

9. 483 100 

 

10. 535 100 

 

11. 599 100 

 

12. 611 100 

 



Jegan Antony Marcilin et al. / IJETT, 70(1), 14-23, 2022 

 

20 

H beta emission (486.1nm) 

S.no Tl          Th Output wavelength for h beta 

13. 633 100 

 

14. 700 100 

 

15. 714 100 

 

16. 751 100 

 

H beta emission (486.1nm) 

S.no Tl          Th Output wavelength for h beta 

17. 796 100 

 

18. 835 100 

 

19. 975 100 

 

20. 1000 100 
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TABLE 4. OUTPUT CHARACTERISTIC OF C3 

EMISSION 
 

carbon emission (464.7nm) 

s.no tl th The output waveform of c3 emission 

1. 103 95 

 

2. 172 95 

 

3. 246 95 

 

4. 269 95 

 

carbon emission (464.7nm) 

s.no tl th The output waveform of c3 emission 

5. 341 95 

 

6. 379 95 

 

7. 399 95 

 

8. 411 95 

 

9. 433 95 

 

10. 483 95 
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carbon emission (464.7nm) 

s.no tl th The output waveform of c3 emission 

11. 512 95 

 

12. 545 95 

 

13. 591 95 

 

14. 625 95 

 

15. 658 95 

 

16. 765 95 

 

carbon emission (464.7nm) 

s.no tl th The output waveform of c3 emission 

17 802 95 

 

18. 899 95 

 

19. 947 95 

 

20. 1000 95 

      
 

V. CONCLUSIONS 

In this paper, Magnesium Fluoride and Zinc Sulphide 

are chosen as the dielectric materials for the design of H 

alpha, H beta, and Carbon III filters. The impact of the 

choice, thickness, and stack order of dielectric material on 

the transmittance and reflection coefficient is studied. The 

various combinations of thickness for each wavelength of 

emission are obtained with more than a thousand 

waveforms. Out of which, the best thickness value can be 

utilized for the fabrication of optical bandpass filters. The 

required wavelengths of H Alpha, H Beta, and C3 

emission are obtained through the simulation results and 

verified in the visible range of light (400-700nm). As the 

deposition of Magnesium Fluoride and Zinc Sulphide 

results in undesirable residues, other dielectric materials 

can also be explored.  
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