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Abstract - Patient’s experience within the hospital 

environment is of paramount importance for the health 

care sector. Online reviews are recognized as the 

significant yardstick to scale the hospital's performance. 

This research proposes a novel machine learning-based 

ensemble classifier model to interpret the reviews in terms 

of patient’s experience and for the hospital 

recommendation system. The outcomes were compared 

with various machine learning classifications using a 

cross-validation approach to predict the most accurate 
model. The predicted result brings out an interesting 

viewpoint that avails the healthcare sector an opportunity 

to look into their service offerings in improving patient’s 

experience and hospital recommendation systems. 
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I. INTRODUCTION 

A rapid growth in technology necessitated a pool of smart 

devices usage. In the present scenario, the active 
smartphone user amounting to nearly 3 billion across the 

globe [1]. Nowadays, the majority of the customers are 

accustomed to express their opinions, reviews, tweets, and 

feedback on the social platform. Since it has various 

hidden components of fruitful information, it is worth 

looking into the opinions that carry meaningful patterns of 

sentiments that relate to customer's experience in different 

sectors [2-3]. The emotions of the patients are imitated 

based on many factors, and it can be the approach of the 

doctor, nurse, administrative staff, moral support, room 

facility, billing services, etc. These factors echo the 

opinion of the hospital as positive, negative, neutral. In this 
research work, we are going to analyze the social media 

reviews of various multi-specialty hospitals situated in and 

around Coimbatore, India, and aimed at proposing the best 

machine learning approach model for analyzing the data 

using classification models[39-47] to organize the 

sentiments of the patient as positive, negative and neutral.  

 

 

 

 

A. Problem Statement 

Patient satisfaction is the key factor that impacts the 

healthcare business globally. In a study, it was seen that a 

US-based chain of hospitals faced a problem related to 

patient satisfaction, which impacts the growth of hospitals 

towards down. To solve this problem, the machine 

learning technique is used in analyzing the patient’s 

opinions related to the services offered. The main 

challenges in handling these issues lie with a) mining the 

varied unstructured data from social media networks, b) 
removing duplication of reviews, and c) identifying forged 

reviews. 

 

B. Proposed Methodology 
This section discusses data collection, data description, 

along pre-processing. It also describes the feature 

extraction methods used for the pre-processed data like 

tokenization, Bag-of words, constructing N-grams. Again, 

it talks about the proposed SCSP approaches and model 

implementation techniques. Let us discuss each division as 

mentioned below. 
 

 

II. SENTIMENT ANALYSIS 
The sentiment analysis research work on hospital reviews 

will use the sequence of steps like data pre-processing, 

selecting relevant features using feature extraction, 

classifying the models based on test and train data set, 

checking the polarity of those reviews, and finally 

predicting the result based on accuracy and selecting the 

best model for this research along with recommendation 

percentage for recommending the hospitals based on the 

polarity of the reviews on the particular hospital. The 

objective of this paper is to evaluate the strength of the 

dependencies between the user rating of a review and the 
different text representations of the review given by the 

user.  

 

A. Data collection and pre-processing 

The online reviews of various multi-specialty hospitals 

located in and around Coimbatore, India, have been 

considered for this study. The data retrieval has been 

accomplished with the help of an online API developed 

from the python script.  

https://ijettjournal.org/archive/ijett-v69i9p220
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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The criteria for this study are outlined in Table 1 and Table 

2. 

Table 1. Inclusion condition 

ID Condition 

IN1 Healthcare-related reviews were taken as 

input text  

IN2 The input text captured from feelings and 

emotions of the affected individual (e.g., 

patient or carer)  

IN3 Natural language processing is used to 

analyze sentiment 

 

Table 2. Omission condition 

ID Condition 

OX1 Sentiment analysis is executed in a language 

excluding English 

OX2 Reviews published before January 1, 2020 

 

Initially, reviews were collected in the form of excel 

format, and later it was converted as .csv format. Reviews 
collected have original reviews and repeated ones. We 

excluded the unrelated and named each review as positive, 

negative, and neutral classes manually that include original 

tweets and retweets. The reviews are collected from six 

multi-specialty hospitals in and around Coimbatore. The 

total number of reviews amounts to 1350 were collected 

and pre-processed as stated above, and it is represented in 

Table 3 and Figure 1. After pre-processing and removing 

duplications, 1250 reviews were forwarded to further 

processing by taking the reviews of classes positive, 

negative and neutral. 
 

Table 3 Class distribution 

Class Positive Negative Neutral Unrelated 

Reviews 1012 227 11 100 

 

Table 3: Class Distribution 

 
Fig 1: Class Distribution on Reviews 

 

To train the model and classification, the distribution of 

the class should be balanced, and it is good to check the 

prior possibilities of unbiased that lead to an imbalanced 

distribution of class. We randomly resampled the reviews 

with the same number of reviews for each class. We got 
1012, 227, and 11 reviews for each sentiment and 1250 

reviews in total. Later we removed the unwanted 

information like url, punctuation, special characters from 

the reviews as these features do not provide any valid 

information in sentiment classification. 

 

III. PROPOSED MODEL 
Step1: Data set is taken by exporting review from API 

using Python 

Step 2: Apply parsing to tokenize the input data 

Step 3: Apply N-gram algorithm to transfer the input data 

to feature vector 
Step 4: Create Bag of words and sampling 

Step 5: Split dataset into train and test dataset in the ratio 

of 80:20 

Step 6: Apply Machine Learning Classification Model 

Step 7: Generate the classification report on Precision, 

Recall, F1-score 

Step 8: Check for accuracy on models using Cross-

Validation 

 

A. Feature Extraction 

Feature extraction is implemented in sentiment analysis 
after pre-processing the data. In social reviews, the texts 

are not written by following proper writing skills like 

correct spelling, grammar, etc., and many symbols, 

abbreviations may appear in the reviews. To address this 

issue, a technique called stemming has been implemented 

in this work where the various replications of words are 

stemmed together. For example, “likes” and “liked” can be 

stemmed to an identical stem word ”like”. It also helps in 

reducing the feature sparsity. 

In-text sentiment classifier, the features can be unigrams, 

bigrams, and many more. The idea of considering the N-

gram is its ability to give more indication on various 
information on sentiment than unigrams. Here we have 

used N-gram and Corpus Approach using stop words and 

lemmatization for representing as weighted featured 

vectors. N-gram is a valuable approach in review analysis 

as it provides a sequence of words within a fixed window 

size ‘n’. The below Figure-2 shows the posted reviews of 

various healthcare organizations. 
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Fig 2: Proposed Architecture  

 

 
Fig 3: Reviews based on Hospital 

 
Diagram Figure-4 depicts before and after the procedure of 

lemmatization and bag words using stop words. 

 

 
 

 

 

 
Figure-4: Top 20 words in-hospital review before and a

fter removing stop words 

Below Figure 5 show the usage of bigrams before and after

 stop words. Where two words are joined together to form 

bigrams 

 
Figure-6: Top 20 bigrams in-hospital review before and

 after removing stop words 

 

B. Ensemble classification. 

The research is conducted with 7 classification models. 10-

fold validation in cross-validation is used to evaluate the m

achine learning classification approaches, including SVM, 

LR, NB, RF, Decision Tree (DT), and KNN classifier. Test

 results for the 5 class and 3 class classification experiment

 are shown in Table 4 and Table 5. Since the decision tree 

gave the lowest accuracy compared to others and the baggi
ng classifier gave the same accuracy as RF, both have been

 removed from comparison. The ensemble classifier model

 is working with the six sentiment classifiers to predict the 
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accuracy of the overall training dataset. It has been divided

 into many subsets and trained separately, as illustrated in t

he below Figure 8.  

        

Table 4: Accuracy in 5 class and 3 class data set 
 

The ensemble classifier model adopts the method of majori

ty voting for Bootstrap sampling for classifying each revie

w. The six classifiers of the same weights have been consi

dered in this process. While the classification of the sentim

ent of each review is classified separately by six classifiers,

 the final result predicts the outcome corresponds to each c

lass which gets the maximum vote from six classifier outp

ut.  

 

IV. RESULTS AND DISCUSSION 
First, the reviews are converted into pre-processed data usi

ng N-gram and stop words, as shown in Figures 4 and 5. T

he data set performance is subjected to sentiment analysis t

hat is categorized into the positive, negative, and neutral ca

tegories. In general, over-fitting happens when we train a s

mall data set. To overcome this hurdle, cross-validation is 

employed in our study. It is a model validation method wh

ere samples are divided into two data subsets, one for mod

el training and another for validating the model. As we use

d 10-fold validation, the data subsets are partitioned into 1

0 data subsets. To train the model, 9 data subsets were use

d, and the rest 1 is used for validating the model. The over
all result obtained from this validation method is the avera

ge of 10 models. Testing is performed on both the 5-class 

data set and the 3-class data set. The 5-class data set includ

es outstanding, positive, neutral, negative, poor, and the 3-

class data set consists only positive, neutral, and negative. 

The 3-class is formed from 5-class by merging outstanding

 with positive and poor with negative. Table 4 represents th

e accuracy scores of the 5-class and 3-class data sets. The 

model accuracy has been verified using various metrics, na

mely precision, recall, and F-measure. 

 
The best model performance has been selected by using cr

oss-validation of accuracy metrics of varied machine learni

ng models. It is observed from Table 4 that the accuracy o

btained from the present study is low when compared to th

e previous works in sentiment analysis [38]. The below Ta

ble 6 classification report of each sentiment classifier and 

Figure 7 shows the comparison of varied classifier models 

using cross-validation before ensemble and class binding 

methods. To improve the performance accuracy of reviews,

 we used the ensemble technique and class binding. In this 

case, the size of the data set is increased using the random 

sample method and found a relatively high accuracy score,
 which is shown in Table 7.  Figure 8 shows the compariso

n of varied classifier models using cross-validation after en

semble and class binding methods. 

 

 

 

Table 6: Model Classification before Ensemble 

 

SVM ACCURACY: 0.6370 

Sentiments Precision Recall F-

Score 

Positive 0.83 0.83 0.83 

Negative 0.45 

 

0.47 

 

0.46 

Neutral 0.60 0.57 0.59 

Logistic Reg ACCURACY: 0.6451 

 

Positive 0.83 0.85 0.84 

Negative 0.45 0.42 0.43 

Neutral 0.59 0.62 0.60 

Naïve Bayes ACCURACY: 0.8714 

 

Positive 0.91 0.95 0.93 

Negative 0.84 0.77 0.80 

Neutral 0.85 0.88 0.86 

KNN ACCURACY: 0.5967 

Positive 0.70 0.83 0.76 

Negative 0.47 0.53 0.50 

Neutral 0.57 0.40 0.47 

rainforest ACCURACY: 0.6048 

 

Positive 0.81 0.83 0.82 

Negative 0.36 0.25 0.30 

Neutral 0.54 0.67 0.60 

 

Table 7: Model Classification after Ensemble 

 

SVM ACCURACY: 0.9047 

 

Sentiments Precision Recall F-

Score 

Positive 0.99 0.96 0.97 

Negative 0.80 0.90 0.85 

Neutral 0.92 0.85 0.88 

Logistic Reg ACCURACY: 0.90 

 

Positive 0.99 0.96 0.97 

Negative 0.79 0.89 0.84 

Neutral 0.91 0.85 0.88 

Naïve Bayes ACCURACY: 0.8714 
 

Positive 0.91 0.95 0.93 

Negative 0.84 0.77 0.80 

Neutral 0.85 0.88 0.86 

KNN ACCURACY: 0.7619 

 

Positive 0.82 0.91 0.86 

Negative 0.64 0.77 0.70 

Neutral 0.83 0.60 0.69 

Table 4 Accuracy in 5 class data set 

Classifier SVM LR NB RF KNN DT 

Accuracy 63 64 65 60 59 60 

Table 5 Accuracy in 3 class data set 

Classifier SVM LR NB RF KNN DT 

Accuracy 90 90 87 96 93 65 
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rainforest ACCURACY: 0.9285 

 

Positive 1.00 0.97 0.99 

Negative 0.88 0.92 0.90 

Neutral 0.90 0.89 0.90 

 

 
Figure 7: Comparison of Model classification based on 

Accuracy before the ensemble 

 

 
Figure 8: Comparison of Model classification based on 

Accuracy after ensemble 

 

By comparing the results before and after ensemble, it obs

erved that the RF classifier yields 93 %      that outperform

s the accuracy of the previous study in sentiment analysis o

f reviews in healthcare            [38]. It assures our proposed 

method can be utilized to review health care sentiments wit

h the highest level of accuracy. 

 

A. Model Validation 

The performance metrics of the model have been validated

 as per the below-described formula. 

Accuracy=(TP+TN)/(TP+FP+TN+FN), 

Precision (P)=TP/(TP+FP), 

Recall (R) =TP/(TP+FN), 

F-measure (F) =2PR/(P+R) 

With reference to a confusion matrix, TP refers to True Po

sitive, TN refers to True Negative, FP refers to False positi

ve, FN refers to False Negative based on the reviews poste

d. Below table 8 shows the different classification perform

ances of models using various ML algorithms. We used th

e indicators of precision, recall, and F-measure to measure 

the performance of sentiment classification. Cross-validati

on on accuracy has been used for comparing various model

s. The results of the sentiment classifier model after the ens
emble technique are shown in above table 7.  

 

The results are validated using the ROC curve based on va

rious model prediction scores. The classifier that shows the

 closeness towards the top-left corner indicates a better per

formance of the model. As represented in Figure 9, the vari

ous sentiment classification models are given varied color 

codes. It is predicted that as per our calculation RF model 

demonstrates better performance compared to another mod

el, which is substantiated by showing the AUC­ROC accur

acy score of 95 % and the model accuracy of 93 %. 

 

B. ROC Curve 

The AUC-ROC accuracy is also engaged to measure the 

performance of classification models at different threshold 

settings. If AUC-ROC is higher, then the better the model 

prediction is. The various scores obtained from sentiment 

classifier model prediction metrics are depicted in Table 8 

and Figure 10.  

 

  Table 8: Class Distribution on Reviews 

 

It is evident that the RF sentiment classifier model 

outstands with the highest performance than SVM as it 

scores 95 % accuracy on AUC-ROC compared to the 

previous analysis of the social media review published 
under the health care sector.  

The results are analyzed by using the positive, negative, 

neutral ratings, and the recommendation percentage is 

calculated and shown in Table 9. The positive rating 

indicates it as excellent, while the negative represents a 

good hospital based on review polarity. The 

recommendation percentage is calculated by using below 

said formula 

No 

Hospital 

Name Positive Negative Neutral 

Recommend 

% 

 

Class 1 Hospitals with highest percentage 

1 

Hospital 

1 424 80 1 83.96 

5 

Hospital 

5 98 18 2 83.05 

3 

Hospital 

3 155 35 1 81.15 

4 

Hospital 

4 102 21 3 80.95 

 

Class 2 Hospitals with second highest percentage 

6 

Hospital 

6 23 3 3 79.31 

2 

Hospital 

2 219 70 1 75.51 
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Figure 9: ROC curve for validating the sentiment 

classifier model 

 
Figure 10: Prediction metric scores for sentiment 

classifier models 

Recommendation percentage = Total Positive 

reviews/Total no. of reviews * 100 

 

As mentioned earlier, 1250 reviews were collected from 

six multi-specialty hospitals in and around Coimbatore 

from google reviews using social sites. Considering all the 

reviews of six hospitals, we classified the reviews as 

shown in Table3. To suggest the recommendation among 

six hospitals, we categorize the hospital into two classes as 

mentioned below. 
 

Class 1: The recommendation percentage greater than 80 

is considered as first recommended class hospital 

Class 2: The recommendation percentage lesser than 80 

and greater than 75 is considered as the second 

recommended class hospital. The percentage below 75 is 

considered as the next third level recommendation; 

however, our study predicts only two classes based on the 

recommendation percentage. Using our model, we ranked 

the hospital and also provided a recommendation as stated. 

If we add more reviews to the dataset, the scope and 
reliability of the methodology can be tuned to higher 

accuracy. 

 

 

Table 9: Recommendation table for Hospital 

 

 

V. CONCLUSION 

In this proposed research, a machine learning-based 

ensemble classifier model to analyze patient health care 

reviews is studied extensively. The recommendation 

percentage is measured by analyzing the sentiment polarity 

from the reviews. From the results and observations, it is 

obvious that proper choice of ensemble technique will 

definitely lift up the performance of the classification 

model. The review polarity recommendation augments the 

hope of patients in finding the best hospital within the 
vicinity and also provides an opportunity to the hospital 

management team to improvise their services that meets 

the patient requirements.  
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