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Abstract – In today's world, it is essential to collect and 

identify the information of the same individuals from 

multiple databases in a secure manner for record 

matching, linkage and integration. Thus, the privacy-

preserving record linkage (PPRL) refers to identifying and 

comparing the same person's records across multiple 

databases in secure manner. In this paper, the various 
PPRL techniques are discussed. Among the different PPRL 

techniques, the Bloom filter encoding is suitable for secure 

and approximate record matching. However, most of the 

hardened Bloom filter encoding techniques provide privacy 

while compromising linkage accuracy.  Hence, the 

ensemble approach is suggested to provide improved 

linkage accuracy than existing basic, balanced, and 

cellular automata Bloom filter-based PPRL.        

 

Keywords — Data integration, matching, privacy,  

linkage, Bloom filter, similarity measures. 

I. INTRODUCTION  

Nowadays, the number of records belong to the same 

person are generated and stored in multiple data sets. With 

the tremendous demand for accurate data integration and 
analytics, there is the necessity of matching and linking 

records referring to the same entity called record linkage. 

This task of record linkage is difficult since real-world data 

may contain misspelled names, errors, missing values, 

duplicate entries, etc. Hence, there is a need for 

approximate matching of records rather than in an exact 

way. More prominently, since the databases contain 

confidential information, it is important to identify and 

match the records from various data sets in an encoded 

form termed as privacy-preserving record linkage (PPRL). 

Thus, the records across various databases are obfuscated 
and sent for secure record matching in PPRL.  It is useful 

in different applications, including census, banking, 

healthcare, e-commerce, fraud detection, and so on 

[1][2][3][4]. 

The PPRL techniques utilize similarity measures for 

approximate matching of the encoding records. The 

similarity measures or metrics adopted for the comparison 

of numerical and string values are referred to as privacy-

preserving numerical values (PPNVs) and privacy-

preserving string comparators (PPSCs), 

respectively[5][6][7]. Achieving a trade-off between 

privacy and accuracy can be difficult with the utilization of 
secure hardening approaches for PPRL. The hardened 

Bloom filter-based PPRL approaches are currently most 

relevant for approximate matching. More precisely, the 

similarity measures should be compatible with PPRL 

techniques in order to achieve the same level of accuracy 

as with traditional matches utilized in schema and data 

matching methods [2][3][4]. 

Therefore, accuracy is a prominent challenge for secure 
data linkage and integration. Hence, in this work, an 

ensemble approach for PPRL is suggested and analyzed in 

terms of linkage accuracy and compared with cellular 

automata, balanced and basic Bloom filter-based 

encryption techniques. 

II. RELATED WORK 

The PPRL techniques had gained significant importance 

for securely matching and linking records in multiple 

databases. The prominent PPRL techniques includes 

secure multi-party computation, secure hashing, phonetic 

encoding, embedded space, differential privacy, Bloom 

filter encryption and so on 

[8][9][10][11][12][13][14][15][16][17]. In cryptography-

based PPRL, the record matching is performed on 
encrypted records. Due to the cryptographic operations, 

there is an impact on the accuracy of the linkage. The 

distance-based PPRL utilize triangular inequality to 

determine the distance between attribute values 

represented as vectors. As a result of distance 

approximation, it can affect linkage accuracy for PPRL. 

The anonymization-based techniques satisfy k-anonymity 

to provide privacy for PPRL. The perturbation and 

generalization operations are used for PPRL, and hence 

the accuracy level depends on them. In PPRL techniques 

considering noise mechanisms, the obfuscation is carried 
out by adding random or extra information to the original 

databases. However, the trade-off between security and 

accuracy in noise-based PPRL generally depends on the 

number of perturbed data. The phonetic encoding methods 

consist of generating codes and then perform matching 

between them.  The phonetic-based PPRL methods may 

lead to false matches and can result in reduced accuracy. 

So, considering accuracy and privacy aspects, the Bloom 

filter-based PPRL utilizing cryptographic primitives is a 

useful technique. It involves encoding of records and then 

performing approximate matching for PPRL 

[12][18][19][20][21][22]. 

The use of hashing and hardened Bloom filter 

techniques have been suggested by researchers for exact or 
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approximate secure record matching respectively. The 

Bloom filter-based PPRL include standard/basic, balanced, 

salting, cellular automata-based techniques, and so 

on[23][24].  

The Bloom filter encoding and hardening methods for 
secure record matching and linkage are discussed as 

follows: 

 

A. Bloom Filter Encoding for PPRL 

The Bloom filter is considered a probabilistic storage 

data structure. It can be used to encode attribute values 

(strings/numerical) in PPRL[9][25]. The cryptographic 

properties compatible with Bloom filters were adopted for 

PPRL. Generally, the string/numerical values in various 

data sources are split into sub-sequences/tokens known as 

q-grams. The q-gram tokens can result in variants like 2-

grams, 3-grams, 4-grams, 5-grams, and so on. The q-
grams can be chosen depending on various application 

scenarios and areas of concern for data integration. Then, 

the number of hash functions (k) from cryptography fields 

like HMAC; SHA variants are applied on each q-gram of 

respective string or numerical values. It results in a hash 

code for each q-gram.  Further, the modulus using the 

length of Bloom filter (l) is computed for each hash, 

thereby resulting in a hash value. Lastly, the Bloom filter 

positions are set to 1 for the respective hash value; 

otherwise, marked as 0. This Bloom filter-based encoding 

technique considering 2-grams performs very well for 
PPRL [2][26]. The bloom filter encoding of string ‘john’ 

from one database is depicted as shown in figure 1.  

 

 
Fig. 1.  Bloom filter Encoding for PPRL 

Initially, as shown in figure 1, the string is divided into 

bi-grams. For each bigram, the hash function (say SHA-
256) is applied to obtain the hash code. The modulus of 10 

is computed for the hash code equivalent. For example, the 

2-gram ‘jo’ from string S1= ‘john’ yields the value 3 for 

the hash function. The bit on position 3 is set to 1 in 

Bloom filter of length 10 representing string S1. This 

process is repeated for all bigrams for each string, and the 

corresponding bits are set to 1 into the Bloom filter. 

Similarly, the string from another database is encoded 

and sent for PPRL. The  similarity between Bloom filter 

encodings for attributes values S1 and S2 are calculated 

with metrics such as Dice Coefficient, which is given by: 

sim(a, b)= 2* (a ∩ b)/(|a|+|b|)           (1) 

where a and b are the Bloom filter encodings for strings 

S1 and S2  strings, respectively. 

For instance, the matching between two Bloom filters 

a=0011010110 and b=0011001010 is performed using 

equation 1. The number of matching 1-bits in both 

encodings a, b (a ∩ b) is 3, the number of bits set in a(|a|) 

is 5, and b |b)| are 4, producing a similarity sim(a,b) as 
0.67. 

Thereafter, the similarity across the encoded data is 

generally calculated using metrics like Tanimoto 

coefficient, Jaccard coefficient, Dice coefficient, etc. The 

value obtained as a result of similarity calculation is 
compared to the user-defined threshold to consider the two 

strings as match or non-match. 

    The Bloom filter encoding for secure data linkage 

and integration achieves good accuracy and can be easily 

extended with less computation. Several variants of Bloom 

filter encoding were suggested for PPRL [22][23][24]. 

 

B. Bloom Filter Encoding Hardening Methods 

    The various Bloom filter based hardening methods 

were suggested for PPRL as discussed below: 

 

a) Balanced Bloom Filter 

Usually, the Hamming weights, i.e., the number of 1s in 

Bloom filter encodings, can be utilized to re-identify the 
encoded data. It may reduce the patterns required for the 

frequency-based attack. The Balanced Bloom filter can be 

constructed by combining encoding of Bloom filter length 

l with all its bits flipped. The resulting codes with constant 

Hamming weights of length 2l bits are called balanced 

codes. This method can be difficult to attack; however, the 

balanced codes leads to scalability issue and increased 

computational complexity[27][28][29]. 

 

b) Random Hashing  

The random hashing includes the generation of k 

random numbers for each possible bigram. Initially, for 

every attribute value, all the possible q-grams are 

produced. For each possible q-gram, the random numbers 

are drawn within the range 1 and length of the Bloom filter 

l. It also includes replacements by a password mechanism 

with a Bloom filter marked at k bit positions as one. The 
hash functions are no longer required, and a pattern-based 

attack is unlikely since the search requires much more 

computational effort [2][24]. 
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c) XOR-Folding 

The XOR-folding approach considers the Bloom filter 

encoding of length l  to be divided into two Bloom filter 

encodings of length l/2 each. Then, the bit-wise exclusive 

OR (XOR) is applied to combine the splitted parts of 
Bloom filters. It was found to be data independent 

hardening technique. This easy approach makes 

cryptanalysis attacks difficult due to the folding of Bloom 

filter encoded data a number of times. However, it resulted 

in a loss in precision and recall[24][30]. 

 

d) Salting 

The salting method utilizes an additional value (salting 

key) generated from a suitable identifier. This key is 

concatenated with original attribute values prior to hashing 

into the Bloom filter. Hence, the cryptanalysis attack will 

be difficult without knowing the salting key. The security 
measures during record linkage can be effectively built 

with a salting mechanism. However, the salting key 

containing short attribute values (e.g., date of birth) may 

contain errors. Also, the salting keys, if they are not 

equivalent, could create a problem for PPRL. Additionally, 

the attributes compatible for salting may not be available in 

the data [2][24].  

 

e) Random Noise 

Random noise is a data perturbation technique. It includes 

inserting extra or fake records into the data to be linked for 
overcoming the problem of cryptanalysis attacks during 

PPRL. However, the addition of random noise could 

considerably increase imbalanced privacy and linkage 

accuracy[2][23]. 

 

f) Bloom and Flip 

    The Bloom and flip (BLIP) method consider arbitrarily 

flipping the values of bit positions of Bloom filter 

encryption using permanent randomized response for 

PPRL. Each bit position in the Bloom filter is treated with 

a randomized response resulting in a new Bloom filter with 

the flipped bit value with some bias.  It includes the use of 
differential privacy. The bit flipping probability f and the 

privacy parameter epsilon are co-related. A sufficient level 

of privacy through differential privacy can be achieved 

with lower values of privacy parameter epsilon. The 

increased privacy level with differential privacy in the 

BLIP mechanism makes the deterministic attacks 

practically impossible [24][31]. 

 

g) Cellular Automata 

The PPRL approach based on cellular automata adopts the 

wolfram rule 90 to harden the Bloom filter encoding. It 

considers the replacement rules for transformating the bits 

in the Bloom filter encoded records [24][32]. The middle 

bit is transformed for every set of three inputs of Bloom 

filter encryption using following replacement rules: 

{'111': 0, '110': 1, '101': 0, '100': 1, '011': 1, '010': 0, '001': 

1, '000': 0} 

Thus, the Bloom filter encoding hardening techniques 

enforce increased privacy against cryptanalysis attacks 
while affecting the linkage accuracy.  

Thus, in this article, the various hardening techniques for 

PPRL are identified and discussed. The cellular automata-

based technique can provide better security in PPRL. 

However, it can result in reduced linkage accuracy. The 

following section introduces the ensemble approach for 
PPRL utilizing phonetic encoding and cellular automata to 

achieve acceptable accuracy in PPRL. 

III. ENSEMBLE APPROACH FOR PPRL 
The hardening of Bloom filters will impact the linkage 

accuracy in PPRL. In this paper, an ensemble approach for 

secure record matching and linkage is introduced to further 

increase linkage accuracy for hardened Bloom filters. It 

consists of two-factor encoding, which employs phonetic 

codes and hardened Bloom filter encoding for record 

matching in an approximate manner.   

   In this approach, the two parties choose the parameters 

for Bloom filter-based PPRL. These parameters consist of 

the q-grams value, the number of hash functions, length of 
Bloom filter, similarity measures, etc.  The common 

attribute values across the databases are identified for the 

encoding process in PPRL. Initially, the phonetic method 

(e.g., Soundex) is applied to person names resulting in 

phonetic codes, and these codes are converted into q-

grams. The hash functions such as SHA3-384, SHA-512 

are applied on the generated q-grams to obtain the hash 

code. The modulus of Bloom filter length is performed on 

the hash to obtain the hash value. The bit positions across 

the Bloom filters of respective attribute values are set to 1 

as per the obtained hash value. Later, the resultant Bloom 
filters are compared using similarity metrics like the Dice 

coefficient. The similarity values are then checked with the 

threshold decided by the user to know the matched and 

non-matched records.  

 The algorithm for the ensemble PPRL approach is 

discussed as follows: 

Input: Database Di containing identifiers Ii, 

i<{1,2,…..N} with records ri and database DSj consisting 

of identifiers Ij, j<{1,2,…..N} with records rj 

Output: Records matched between ri, rj 

Steps:  

Begin 

Step 1:Each party agree on similar identifiers IiεDi and 

IjεDj and number of records riεIi and rjεIj appropriately in 

PPRL. 

Step 2: Every party encodes records with hardened 

PPRL technique as: 

 For every identifier IiεDi and IjεDj, encode ri 

and rj to create phonetic codes PCi and PCj 

respectively with phonetic technique. 

 For every phonetic code PCi and PCj, create q-

grams qi and qj, where q=1, 2,..,n. 

 For every qiεPCi and qjεPCj, generate cellular 

automata(CA) Bloom filter encodings CABFEi 

and CABFEj as follows: 

CABFEi =  (hi(qi) +  i hj(qi) ) mod l  (2) 
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CABFEj =    (hi(qj)  +  j hj(qj) ) mod l  (3) 

 

Step 3:  The resultant hardened encodings CABFEiεri 

and CABFEjεrj are then sent for record matching to a 
trusted party. 

Step 4:Comparison of encodings CABFEiεri and 

CABFEjεrj by utilizing Dice coefficient to obtain 

similarity value sim(ri, rj)  as 
 

sim(ri,rj)=2*m/(|ri|+|rj|)                         (4) 
 

where |ri| and |rj| are the count of 1-bits in Bloom filter 

encodings CABFEi and CABFEj for records ri and rj 

respectively and m is the number of common 1-bits 

between CABFEi and CABFEj. 

When sim(ri, rj)> threshold θ,  

ri, rj=match, 

then 

ri, rj=non-match. 

Step 5:The status of approximately matched records ri, 

rj are communicated to parties participated in secure record 

linkage. 

End 

The ensemble approach adapts the hardened Bloom 

filters and inherent property of phonetic encoding to 

achieve increased linkage accuracy for PPRL. 

 

IV. RESULTS AND DISCUSSION 

The PPRL technique is essential to protect personal 

identifiers during record matching. The Bloom filter-based 

encryption techniques are essential to compare the encoded 

records in PPRL. In this work, the basic, balanced Bloom 

filter and cellular automata techniques are implemented for 

PPRL. To improve the accuracy, the ensemble approach is 

suggested and compared with existing Bloom filter 

encryption techniques for PPRL. 

The parameters considered for the Bloom based PPRL 

are: 

  Bloom filter length l=30 

  q-grams=2 

  Hash functions=2 (SHA 3-512, SHA 3-384) 

Padding=Yes 

Dice Coefficient threshold value=0.85 

     The voter registration data set (NCVR) containing 3 

identifiers, Lastname, first name, and middle name, are 
considered in secure record matching and linkage. The 

initial experimentation for PPRL contains 200 records 

among the two databases. The sample  outcome of 

encoding string ‘john’ and ‘jon’ using above mentioned 

parameters for basic Bloom filter based PPRL is shown  as 

follows: 

 Encoding of string ‘john’ in data set 1 

gram:_j 

hash code :5bb02e 

Mod Value :29 

Sha3-512 :000000000000000000000000000010 

gram:_j 

hash code :f3b538 

Mod Value :1 

Sha3-384 :100000000000000000000000000010 

gram:jo 

hash code :e1a45c 

Mod Value :17 

Sha3-512 :100000000000000010000000000010 

gram:jo 

hash code :db71c4 

Mod Value :19 

Sha3-384 :100000000000000010100000000010 

gram:oh 

hash code :6cee03 

Mod Value :20 

Sha3-512 :100000000000000010110000000010 

gram:oh 

hash code :345107 

Mod Value :6 

Sha3-384 :100001000000000010110000000010 

gram:hn 

hash code :79c42a 

Mod Value :15 

Sha3-512 :100001000000001010110000000010 

gram:hn 

hash code :0bbdd3 

Mod Value :22 

Sha3-384 :100001000000001010110100000010 

gram:n_ 

hash code :4135bc 

Mod Value :7 

Sha3-512 :100001100000001010110100000010 

gram:n_ 

hash code :d34266 

Mod Value :5 

Sha3-384 :100011100000001010110100000010 

 

 Encoding of string ‘jon’ in data set 2 

gram:_j 

hash code :5bb02e 

Mod Value :29 

Sha3-512 :000000000000000000000000000010 

gram:_j 

hash code :f3b538 

Mod Value :1 

Sha3-384 :100000000000000000000000000010 
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gram:jo 

hash code :e1a45c 

Mod Value :17 

Sha3-512 :100000000000000010000000000010 

gram:jo 

hash code :db71c4 

Mod Value :19 

Sha3-384 :100000000000000010100000000010 

gram:on 

hash code :028e3a 

Mod Value :23 

Sha3-512 :100000000000000010100010000010 

gram:on 

hash code :2f7139 

Mod Value :8 

Sha3-384 :100000010000000010100010000010 

gram:n_ 

hash code :4135bc 

Mod Value :7 

Sha3-512 :100000110000000010100010000010 

gram:n_ 

hash code :d34266 

Mod Value :5 

Sha3-384 :100010110000000010100010000010 

 

Thus, the final encoding of given two strings ‘john’ and 

jon are 100011100000001010110100000010 and  

100010110000000010100010000010. The similarity value 

between these encodings was found to be 0.67 as 

calculated through the Dice coefficient, which is greater 

than the user-defined threshold. Hence, the encodings 

representing the given two strings are considered to be a 

match.  

Importantly, the ensemble, cellular automata, basic and 

balanced Bloom filter secure record linkage techniques are 

examined with respect to f-measure, recall, and precision 

as depicted in table I. The f-measure (F), precision (P), and 

recall(R) are calculated using false positives (FP), false 

negatives (FN), and true positives (TP) as: 

 

P = TP/(TP + FP)                      (5) 

 

R = TP/(TP + FN)                      (6) 

 
F = 2 ∗ (P ∗ R)/(P + R)              (7) 

 

 

 

 

 

 

 
 

 

 

Table I. Analysis of secure record linkage techniques 

 

Table I indicates that the precision for basic, cellular 

automata (CA) based techniques is higher than balanced 
and ensemble PPRL for Dice coefficient (DC) threshold 

value of 0.85. There are no false positives observed for 

basic and CA-based, thereby leading to higher precision. 

The false positives are more likely for balanced-based 

PPRL. The ensemble approach provides matched records 

with a greater number of true positives and better recall 

than existing CA, balanced and basic Bloom PPRL 

techniques. 

 
Fig. 2. F-measure, Recall, and Precision for PPRL 

Techniques 

Figure 2 depicts that the basic and CA-based PPRL has 

better precision than balanced and ensemble techniques. 

This precision is achieved due to the fact that there are no 

false-positive outcomes for CA and basic techniques for 

PPRL. The highest recall is observed for ensemble PPRL, 

which indicates that there is a better percentage of matched 
records for it than existing balanced, basic, and CA-based 

PPRL techniques.  

Moreover, the percentage of true positives or exact 

matches is greater for ensemble-based PPRL, as shown in 

figure 3. 
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Fig.3.Percentage of true positives/exact matches for 

ensemble, CA, balanced, and Bloom filter based PPRL 
 

Figure 3 indicates that the ensemble technique results in an 

increased number of true positives as compared with CA, 

balanced and basic Bloom-based PPRL.  

The Dice coefficient value ranging from 0.85 to 1, as 

shown in figure 4, has an impact on the accuracy of PPRL 

techniques. 

 

Fig. 4. Variation of Dice coefficient for PPRL 

techniques 

 

It can be seen from figure 4 that the ensemble-based PPRL 

results in improved f-measure for higher thresholds of 0.95 

and 1. Therefore, the ensemble approach performs better 

than balanced, basic, and CA-based secure record linkage 

techniques. 

V. CONCLUSION 

There is a need for secure approximate matching due to the 

presence of erroneous and confidential information across 

different databases. Hence, the Bloom filter encoding 

hardening methods have gained significance for 

approximate matching and providing security during 

PPRL. But there is a significant impact on linkage 

accuracy due to the hardening of Bloom filter-based PPRL 

techniques. In this research, the ensemble technique is 
proposed to obtain the increased linkage accuracy for 

PPRL. Further, this technique can be combined with 

anonymization mechanisms for achieving better privacy 

and accuracy for data integration and publishing. 
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