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Abstract — This study discusses the solution to the optimal 

control problem of the COVID-19 model with preventive 

action through education and treatment of infected 

individuals. In this model, the population is divided into 

seven subpopulations: subpopulation of susceptible, 
exposed, symptomatic, asymptomatic, quarantine, isolated, 

and recovered. Optimal control is obtained using the 

Pontryagin minimum principle and solved numerically using 

the Forward-Backward Sweep method. Furthermore, given 

control measures can minimize the number of 

subpopulations: exposed, symptomatic, and asymptomatic, 

and significant costs associated with control. 
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I. INTRODUCTION 

COVID-19 first appeared and was identified in Wuhan-

Hubei Province, China, around December 2019 [1]. 

Furthermore, the virus spreads to various countries rapidly 

through individuals who have had a history of travel to 

Wuhan [2]–[5]. Before being reported and informed to the 

public, a doctor named Li Wenliang had provided 

information about the emergence of this virus because seven 

patients from the local seafood market were diagnosed with 

a SARS-like disease and were quarantined in a hospital [6].  

How to control every time there is an outbreak or the 

emergence of an infection in a region or country in the 

absence of vaccines or treatment, isolation, and individual 

quarantine are the most effective ways [7]. According to [8], 

quarantine is defined as restricting activities or segregating 

susceptible individuals as long as there is no essential need 
to leave the house. Then, individuals who have a history of 

contact with individuals infected with COVID-19 or have a 

history of traveling to an area where local transmission has 

occurred and separate themselves by staying at home during 

the incubation period (2 weeks) are also included in the 

quarantine group. Furthermore, isolation is defined as 

separating a sick or infected individual from other 

individuals directly in the hospital or at home (self-isolation) 

with medical personnel monitoring. WHO provides several 

appeals to control COVID-19, namely social distancing, 

masks in public places, tracing followed by quarantine of 

potentially affected individuals, and isolation of infected 

individuals in hospitals or independently. Furthermore, such 

control measures to be implemented by the wider 

community require education to be provided (such as social 

media, TV media, online media, billboards or banners, etc.). 
Efforts to treat infected individuals also need to be given 

because they can reduce the number of individuals infected 

with COVID-19. 

Several studies related to the spread of disease, for 

example, research on the Coronavirus which resulted in 

SARS [9] and MERS [7], [10]. Then the Coronavirus 
developed into a virus known as the COVID-19 virus and 

became a hot topic in 2020. 

Soewono [11] models the initial spread of COVID-19 by 

applying the SEIR model, which consists of four 

subpopulations: S (susceptible), E (exposed), I (infected with 

symptoms/ symptomatic), and R (recovered). Furthermore, 
Belgaid et al. [12] added subpopulation A (infected without 

symptoms/ asymptomatic). The population is divided into 

five subpopulations, namely S, E, I, A, and R, by showing 

symptoms and some who do not show symptoms. In another 

study, Zeb et al. [13] added subpopulation H (isolation). The 

population is divided into five subpopulations, namely S, E, 

I, H, and R. This is based on the latest information that 

infected individuals will spread to surrounding individuals 

because they are not given isolation measures. A study on 

COVID-19 was also carried out by Jia et al. [14] involving 

quarantine (Q) and isolation (H) subpopulations so that the 
model presented divides the population into seven 

subpopulations: S, E, I, A, Q, H, and R. The model made is 

also based on the latest information from WHO, that 

susceptible individual should be quarantined first to reduce 

further spread. 

Furthermore, several studies related to control, such as 

Olaniyi et al. [15], construct S, E, I, A, H, R, and D 

(mortality subpopulation) models. The model adds two 

control, namely prevention through education given to 

susceptible subpopulations and improving management of 

isolated individual care given to isolation subpopulations. 

Olaniyi et al. aim to minimize the number of subpopulations 

I, A, and H. Then, Deressa and Duressa [16] with S, E, I, A, 

H, and R models propose two control measures such as 

Olaniyi et al. and adding one more control, namely 

https://ijettjournal.org/archive/ijett-v69i6p223
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implementing what is intended to protect oneself (such as 

social distancing, tracing, using masks, etc.). The study from 

Deressa and Duressa has the same goal as Olaniyi et al. and 

goals to minimize E subpopulations. 

In this study, a COVID-19 model will be constructed by 

combining the research of Belgaid et al. [12], Zeb et al. [13], 

and Jia et al. [14]. In this study, the population was divided 

into subpopulations: S, E, I, A, Q, H, and R. Furthermore, 

two control measures were added to the constructed model, 

namely 1) preventive action through education (such as 

social distancing, using masks, clean life, etc.), and 2) there 
are efforts to treat infected individuals. Solves optimal 

control problems to minimize exposed, symptomatic and 

asymptomatic subpopulations and minimize associated 

costs. Furthermore, optimal control is solved by Pontryagin's 

minimum principle. The numerical simulation will be 

performed using the Forward-Backward Sweep method with 

the Matlab R2017a software in the final section.  

II. METHODS 

The method in this study can be seen in the flowchart 

below  

 

Fig 1: Flowchart for method in this study 

 

The problem of optimal control here is determining 

whether to maximize or minimize the objective function. In 

optimal control problems with systems of ordinary 

differential equations, the control variable is denoted ( ),u t   , 

and the state variable is denoted ( ).x t  The state of a 

continuous system is called the constraint function and is 

expressed in terms of  

    , , .
d x

g t u t x t
dt

  

The objective function is influenced by ( )u t  and ( )x t  

with the following general form 

      
0

, , ,
Nt

t

Z u h t u t x t dt   

With boundary conditions  0 0x t x  and  Nx t  free. 

The control variable that optimizes Z is denoted 
* ( )u t . 

Then 
* ( )u t  is substituted into the state ( )x t  equation to 

obtain the optimal state denoted 
* ( )x t  [17]. 

The Pontryagin principle is a necessary condition to 

obtain an optimal solution. This principle changes the 

optimal control problem that minimizes or maximizes the 

objective function to minimize or maximize the Hamilton 

function. L. S. Pontryagin developed this principle in 1950. 

This study uses the Pontryagin minimum principle. This 

principle states the conditions necessary for a control ( )u t  

to optimize the objective function. This condition is 

determined by constructing a function called the Hamilton 

function by introducing a new variable called the costate 

variable and denoted  t . Hamilton's function is as 

follows 

           
1

, , , , ,
n

i i

i

h t u t x t t g t u t x t


    

with h is integral in the objective function of the equation 

and g is the state equation of the right-hand side, 1, 2, ... .i n  

If  *u t  and  *x t  are the values that optimize the 

problem and, then the variable costate  t  will exist if 

      * *, , ,t t u t x t          *, , , .t t u t x t  

This condition states that the optimal control  *u t  must 

be determined, which minimizes the Hamiltonian function 

  at time t. Furthermore, if the Hamilton function can be 

derived for  u t , the condition if 

0.
u





 

The step to determine whether the control obtained is the 

minimum or maximum control can be done by examining the 

second derivative of Hamilton's function against  u t . If 

2

2
0.

u

 



 

Then, the control problem that is solved is the minimum 

control problem, and vice versa. 

In addition to the control  u t  variable, the Hamilton 

function contains the state variables  x t  and costate  t . 

Furthermore, the state equation 'x  is as follows 

    ' , , ,i

i

x g t u t x t



 


 

and the costate equation '  can be expressed as 

' .i

it x




 
  

 
 

Suppose the initial value  0x  and the final value  Nx t  

are given. In that case, we can immediately determine the 
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value of the derivative 'x  and ' .  However, if the final 

condition  Nx t  is not given. A condition called the 

transverse condition is used, namely   0,Nt   the final 

condition. 

Based on this description, Pontryagin's minimum 

principles include the following conditions. 

a.              * * *, , , , , , ,t t u t x t t t u t x t     

b. ,
dx

dt 





 

c. ,
d

dt x

 
 


 

d.   0.T   

The constraint is given a u b   on the control variable 

 u t . Then the condition 0
u





 changes to 

*

, jika 0,

, jika 0,

, jika 0.

u a
u

u a u b
u

u b
u


  




   



 


 

Method of Forward-Backward Sweep is a method of 

numeric to solve the optimal control problem [18]. The 

Forward-Backward Sweep method algorithm is as follows 

1. Specifies the initial guess u . 

2. Using the initial condition   00x x  and the value u  

to solve the state x  equation. 

3. Using the transverse condition  1 0,t   , the initial 

values u  and x  to solve the costate equation. 

4. Updates control value u  by entering the values x  

and   into the equation for the characteristics of the 

optimal control. 

Suppose the error value of each state, costate variable, 

and the control in the current iteration with the previous 

iteration is very small than the given error tolerance value. In 

that case, the value of each variable in the current iteration is 

a solution. However, if the error value is not very small, then 

go back to step two.  

III. RESULTS 

The results of the discussion are divided into several sub-

sections as follows: 

A. Optimal control problem formulation 

The control variables assigned to the COVID-19 model 

consisted of preventive action through education 
1 ,u  and the 

presence of treat for an infected individual 2 .u  Hence, the 

system of equations as follows: 

     

     

 

   

 

 

1 1 2 3 1

1 1 2 3 2

1

3

1 2 2 2

1 2 3 1

1 2

1 ,

1 ,

,

1 ,

,

,

.

dS
u S E I A S q

dt

dE
u S E I A E q

dt

dI
E A I d

dt

dA
E A

dt

dQ
q S q E Q r

dt

dH
I Q A H r

dt

dR
r H r Q R

dt

   

    

   

    

 

   



       

      

    

    

    

    

  

(1) 

The 
1u  control variable is targeted to prevent or reduce 

transmission of COVID-19. Then  11 u  causes the rate of 

the uneducated susceptible subpopulation. Furthermore, a 

control variable 
2u  was assigned to reduce the number of 

symptomatic and asymptomatic subpopulations. 

This study aims to minimize subpopulations: exposed, 

symptomatic, asymptomatic, and minimize control costs. 

The optimal control problem is expressed in terms of the 

objective function or objective function, minimized as 

follows: 

   2 2

1 2 1 1 2 2
0

1
, ,

2

Nt

Z u u E I A C u C u dt
 

     
 

  

A system of equations is a constraint. Then 
1C  is the weight 

of control costs in the form of preventive action through 

education, and 
2C  is the weight of control costs to treat 

infected individuals. Furthermore, the optimal control will 

be determined 
*

1u  and 
*

2u  which fulfill the objective 

function, namely 

    * *

1 2 1 2 1 2, min , | , ,Z u u J u u u u v   

with          1 2 1 2, : 0 1, 0 1 .v u t u t u t u t      

B. Optimal control solution 

Based on the objective function and system constraints of 

equations, the first step to solving the optimal control 

problem is to form the Hamilton function.  

   
7

2 2

1 1 2 2

1

1
, , .

2
i i

i

E I A C u C u g t u x


        

From the Pontryagin minimum principle, the Hamilton 

function will achieve the optimal solution if it satisfies the 

state equation, costate equation, and stationary conditions. 

The state equation is obtained by deriving the Hamilton 

function for each costate variable as follows: 
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The costate equation is the negative value of the 

derivative of the Hamilton function for each state variable as 

follows: 
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where  1 1 2 3Z E I A     ,  2 2Z q    , 

 3 1 2 ,Z u d      4 3 2 ,Z u      and  

   1 2 11 .K u     

Then, the transverse condition   0,j Nt   where 

1, 2,...7.j   

Thus, the optimal controls 
*

1u  and 
*

2u  can be expressed 

as 

   * * * *

1 2 3 2 1*

1

1

max 0, min ,1 ,
S E I A

u
C

            
    

 

and 

   * *

3 6 4 6*

2

2

max 0, min ,1 .
I A

u
C

        
    

   

 

Substitute the optimal control variables (
*

1u and 
*

2u ) into 

the state and costate equation to get the optimal system.  

C. Numerical simulation 

The parameter values are used in Table 1 for numerical 

simulations. 

Table 1: Parameters Value 

Parameter Parameter Value Source 

Λ   1.685 Assumed  

 𝜇  0.000039139  [19] 

 𝜎  0.0196 Assumed 

 𝜃  0.01  [19] 

 𝜔  0.4  [19] 

 𝑑  0.087  [20] 

 𝑞1  0.09  [21] 

 𝑞2  0.1  [21] 

 𝛽1  0.01  [21] 

 𝛽2  0.1  Assumed 

 𝛽3  0.1  Assumed 

 

  Furthermore, the weights for each strategy in the 

numerical simulation use 
1 0.025,C   and 

2 0.25C   

respectively, and the simulation interval  0,100 .t  

a) Strategy simulation I  

 
Fig 2: Control profile 

1u  

Fig 2 is a control profile for preventive action through 

education only and aims to reduce cases of COVID-19 as 

long as 100.t   This control is given at one or maximum at 

the start of the period up to 61.8,  and decreases slowly 

towards zero. Control is stopped at the end of the period, 

which means there is no more preventive action control 

through the education provided. Furthermore, the effects of a 

given control are presented in Fig 3. 

Fig 3(a) shows that the existence of strategy I add to the 

susceptible subpopulation. Then, this happens because 

susceptible individuals who have received education will 

always be careful, such as interacting outside the home. The 

impact of implementing strategy I make the subpopulation: 

exposed, symptomatic, and asymptomatic less. This can be 

seen in Fig. 3 (b), 3 (c), and 3 (d), respectively. 
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The strategy I implementation can increase the quarantine 

subpopulation, as shown in Fig 3(e). The existence of 

educational controls makes each choose to quarantine at 

home because they are aware of the dangers of the COVID-

19 virus so that the number of infections is reduced. The 
number of subpopulations: symptomatic and asymptomatic 

has decreased, resulting in a reduced number of isolated 

subpopulations, as shown in Fig 3(f). Furthermore, the 

subpopulation recovered increased, as shown in Fig 3(g). 

 
Fig 3: Optimal control simulation results with control 

1u  

b) Strategy simulation II 

 
Fig 4: Control profile 

2u  

Fig 4 shows a control profile for the treatment of infected 

individuals to reduce COVID-19 cases. This control is given 

at one or maximum from the start of the period to 29.8t   

and decreases slowly towards zero. Control is stopped at the 

end of the period, which means that no more control was 

given to the treatment of the infected individual. 

Furthermore, the effects of the given controls are presented 

in Fig 5. 

 

 
Fig 5: Optimal control simulation results with control 

2u  

Fig 5(a) shows that the existence of strategy II can 

increase the susceptible subpopulation, even if only slightly. 

Then, this happens because some individuals are afraid or 

aware of the COVID-19 virus, so they don't always travel 

outside the home. Implementing strategy II on reducing the 

exposed subpopulation is slightly shown in Fig 5(b). 

Implementation of strategy II was able to reduce the 

symptomatic and asymptomatic infected subpopulations as 

seen in Fig 5(c) and 5(d). Then the slight change of the 

susceptible and exposed subpopulations has an impact on 

changing the quarantine subpopulation, as seen in Fig 5(e). 

Furthermore, Fig 5(f) shows that the control efforts to treat 
infected individuals have an impact on the number of 

isolation subpopulations. In the end, the isolation 

subpopulation has decreased slightly. Then, this suggests 
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that implementing strategy II can reduce subpopulation 

numbers: exposed, symptomatic, and asymptomatic, but 

there is a burden as the isolation subpopulation increases. 

Furthermore, increasing subpopulations: quarantine and 

isolation made recovered subpopulations increase, as shown 
in Fig 5(g). 

 

c) Strategy simulation III  

 
Fig 6: Control profile 

1u  on combination strategy 
1u  

and 
2u  

 
Fig 7: Control profile 

2u  on combination strategy 
1u  

and 
2u  

Control combination between preventive action control 

through education and the presence of treatment for infected 

individuals can reduce cases of COVID-19 as long as 

100.t   Fig 6 shows a control profile for preventive action 

through education. Control should be given a maximum 

from the start to 59,t   and decreases slowly towards zero. 

Next, Fig 7 shows a control profile for the treatment effort of 

an infected individual. Control is given one or maximum 

from the start of the period up to 1.6,t   and decreases 

slowly towards zero at the end of the period. Control is 

stopped at the end of the period, meaning that there are no 

more preventive control measures through education and 
treatment efforts for infected individuals are given. 

Fig 8(a) shows that the presence of strategy III can 

increase the number of susceptible subpopulations. Then, 

this happens because susceptible individuals who have 

received education will always be careful, such as 

interacting outside the home. The impact of implementing 
strategy III makes the exposed subpopulation reduced, as 

shown in Fig 8(b). 

Strategy III implementation can reduce subpopulations 

(symptomatic and asymptomatic) more maximally than 

strategies I and II, as seen in Fig 8(c) and Fig 8(d). 

Combining preventive action control through education and 

treatment for infected individuals makes each individual 
choose home quarantine to increase the quarantine 

subpopulation, as shown in Fig 8(e). The subpopulation 

(symptomatic and asymptomatic) has decreased due to 

education, and continued treatment of the infected individual 

will reduce the subpopulation: symptomatic and 

asymptomatic. The reduction in the subpopulation 

(symptomatic and asymptomatic) results in a reduction in the 

isolation subpopulation, as shown in Fig 8 (f). Furthermore, 

the subpopulation recovered increased, as shown in Fig 8(g). 

 

 
Fig 8: Optimal control simulation results with control 

1u  

and 
2u  

Furthermore, the most effective strategy is determined 

from the value of the objective function. Based on the 

simulation results, the objective function value of each 

strategy is as follows: 

Table 2: Optimal Control Numerical Simulation 
Strategy I Strategy II Strategy III 

98.5659 2,843.7 90.1691 
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Based on comparing the objective function values in the 

table, the minimum objective function value is obtained by 

strategy III. Therefore, the most effective strategy is strategy 

III. 

IV. CONCLUSIONS 

The optimal control problem is solved by determining the 

objective or cost function, forming the Hamilton function to 

get the optimal system with the Pontryagin minimum 

principle. Optimal control simulations of the two a given 

strategy show that a combination of strategies (preventive 

action control through education and treatment of infected 

individuals) is the most effective strategy in minimizing the 

number of subpopulations (exposed, symptomatic and 

asymptomatic), as well as costs associated with control.  
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