
International Journal of Engineering Trends and Technology Volume 69 Issue 6, 71-78, June 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I6P210 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

The SHA3-512 Cryptographic Hash Algorithm

Analysis And Implementation On The Leon3

Processor
Mouna Karmani, Noura Benhadjyoussef, Belgacem Hamdi, Mohsen Machhout

Electronics and Micro-Electronics Laboratory (E.μ.E.L),
Faculty of Sciences of Monastir, University of Monastir,

Tunisia

karmani.mouna@fsm.rnu.tn benhadjyoussef.noura@fsm.rnu.tn

Abstract — Embedded systems are computer-based systems

designed to execute specific functions. Such a system is, in

general, embedded as part or unit of a complete device in

order to control, monitor, and facilitate its operation. An

embedded system includes hardware and software parts with

fixed or programmable capabilities. Thus, with the ever-

increasing role that software is playing in embedded systems,

software performance is one of the embedded system

implementation goals. In this paper, we consider the

software cryptographic hash-functions implementation on

hardware platforms. In fact, Hash functions are used in
several information-security applications like message

authentication codes, digital signatures, and other forms of

authentication. In this work, we presented a detailed case

study, including the SHA3-512 algorithm analysis and

implementation on the LEON3 soft core processor. The

SHA3-512 is programmed using the C language, and

compiler optimization techniques are used to improve the

efficiency of the obtained executable programs in order to be

implemented on LEON3 using the ML507 Virtex-5 Xilinx

FPGA board.

Keywords — SHA3-512 algorithm; simulation; debugging;

LEON3 processor; FPGA implementation.

I. INTRODUCTION
Cryptographic hashing is different from cryptographic

encryption because encryption prevents passive attacks,
while a cryptographic hash algorithm is used to create a

unique digital fingerprint of data that can be used to prevent

active attacks or falsification. Thus, Secure Hashing

Algorithms (SHAs) are used to ensure information integrity

for embedded system security [1]. The hash functions family

are developed by the US National Security Agency (NSA)

and published as standards by the US National Institute of

Science and Technology (NIST). It was the appropriate

algorithm to secure applications used by the US government

agencies. An important feature of the SHA algorithms is that

a minor change in the input leads to a major change in the

output value [2-3]. SHAs are published by the NIST as a
U.S. federal information processing standard, including

SHA-0, SHA-1, SHA-2, and SHA-3. In fact, SHA-0 was the

original version of the 160-bit hash function published in

1993 under the name "SHA". It was withdrawn and replaced

by the SHA-1 revised version. The 160-bit SHA-1 hash

function resembles the earlier MD5 algorithm; it was

designed by NSA to be part of Digital Signature Algorithms

(DSA). Since cryptographic weaknesses were disclosed in

SHA-1, this standard was no longer used for most

cryptographic uses after 2010. Therefore, SHA-1 was

replaced by SHA-2, the family of two similar hash functions

known as SHA-256 and SHA-512 with different block sizes.
There are also truncated versions of each standard, known as

SHA-224, SHA-384, SHA-512/224, and SHA-512/256 [4-5-

6-7-8-9-10]. The SHA-2 hash functions are the most used

hash algorithms for previous years. Nevertheless, an

international competition was announced by the NIST in

order to elaborate a new SHA-3 hash function. The

competition was finalized in August 2015, and the KECCAK

is the new SHA-3 final version [11]. The table below

illustrated the SHA3 variants and specifications [12].

TABLE I. THE SHA3 VARIANTS AND SPECIFICATION

SHA3

Variant

Output size

(bits)

Block size

(the bitrate r)

(bits)

Capacity

c

(bits)

Security

SHA3-224 224 1152 448 112

SHA3-256 256 1088 512 128

SHA3-384 384 832 768 192

SHA3-512 512 576 1024 256

The table above includes the output size, the bitrate, the

capacity, and the security of each SHA3 variant. In this

work, we focused only on the SHA3-512 variant. The newly

developed algorithm can be used in many applications

requiring a high level of security and integrity, such as online

internet-based banking, shopping, and e-mail authentication.

Different KECCAK hash function implementations have

been elaborated using different hardware architectures

performed using FPGA [13-14-15-16-17] and ASIC libraries.

https://ijettjournal.org/archive/ijett-v69i6p210
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

72

In this paper, we consider the hardware/software codesign of

the SHA3-512 KECCAK algorithm on the LEON3

processor. In fact, the LEON3/GRLIB source code is used to

generate the bitstream code for the leon3 single-core

processor in order to be implemented on a Xilinx Virtex-5
FPGA. To debug the leon3 based system-on-chip, we used

the GRMON debug monitor. In this work, we used the

GRMON3 to download, execute and debug the considered

application on the leon3 soft processor. The paper is

organized as follows: Section 2 presents the SHA3-512

algorithm specification. In section3, we detailed the SHA3-

512 implementation on the LEON3 SPARC processor.

Finally, section 4 concludes this paper.

II. The SHA3-512 KECCAK AlGORITHM

The KECCACK algorithm is a sponge-based construction

to be applied to a fixed-length state S of b bits, where b

equals r + c (r and c are, respectively, the bit rate and the

capacity). A higher security and speed levels correspond,
respectively, to higher c and r values. Fig.1 presents the state

variables, which are the state, lane, slice, row, and column

variables [12].

Fig. 1 The data structures used in KECCAK

In fact, the state S is a three-dimensional array with x, y,

and z dimensions. All operations over x and y are taken

modulo 5 while the operations over z are taken modulo w =

b/25 (w= 64 for this case). The three dimensional state as a

one-dimensional array state denoted by a and defined as

a(x,y,z)=s[w(x+5y)+z] such that 0 ≤x≤ 4, 0 ≤y≤ 4, and 0

≤z≤(w-1) [12].
The state consists of 5×5 lanes, each lane containing 64

bits. The state consists of 64 slices, and each slice contains

5*5=25 bits. For the SHA3-512, w is equal to 64, and b is

equal to 1600. During the initialization and padding phases,

the hash function transforms an input message with arbitrary

length to a message with a fixed size. The sponge function

consists of two phases: the absorbing phase and the

squeezing one. The following algorithm [18] illustrates the

KECCAK Sponge Function.

The KECCAK sponge function algorithm

Inputs: Msg (the message to be hashed)

The Initialization and Padding phase

S[x, y] = 0 ∀ (x, y) in ([0, 4], [0, 4])

P= Msg||0x01||byte(d)||byte(r/8)||0x01||0x00|| · · · ||0x00

The Absorbing phase

For each block Pi in P

S[x, y]=S[x, y] ⊕ Pi[x + 5y] ∀ (x, y) / x + 5y < r/w

S= KECCAK−f[b](S)

The Squeezing phase

Z = empty string

while output is requested

Z = Z||S[x, y] ∀ (x, y) / x + 5y < r/ w

S= KECCAK−f[b](S)

Output: Z

During the initialization phase, all the state S bits are set to

zero. Then, during the padding phase, the data input is

padded and divided into blocks of r bits. For the absorbing

phase, the first r bits of the input message must be XORed

with the first r bit states. Then, the output results will be

interleaved using the permutation function. Lastly, all blocks

are processed; the sponge design alters to the third phase. For

the squeezing phase, the output blocks are the first r-bit of

the state. The KECCAK-f function is illustrated by the

following algorithm [18].

KECCAK−f function algorithm

Inputs: the state S and the constant values RC

for i = 0 to (nr – 1)

The Theta step

C[x] = S[x, 0]⊕S[x, 1]⊕S[x, 2]⊕S[x, 3]⊕S[x, 4] ∀x in [0, 4]

D[x] = C[x − 1]⊕ROT(C[x + 1], 1)) ∀x in [0, 4]

S[x, y]=S[x, y]⊕D[x] ∀(x, y) in ([0, 4], [0, 4])

The Rho and Pi step

B[y, 2x + 3y] = ROT(S[x, y], R[x, y]) ∀(x, y) in ([0, 4], [0, 4])

The Chi step

S[x, y] = B[x, y]⊕((NOTB[x + 1, y]) AND B[x + 2, y]) ∀(x, y) in ([0, 4], [0, 4])

The Iota step

S[0, 0] = S[0, 0] ⊕ RC[i]

end for

Output: S

The SHA3-512 KECCAK-f hash function consists of

nr=24 identical rounds. For each round, five internal steps

(Theta, Rho, Pi, Chi, and Iota) are executed. The

KECCACK-f function is described as illustrated by the

KECCAK−f function algorithm. For each round, the data

input is mixed with the current state. S[x,y] represents a

particular lane in the state. B[x,y], C[x], D[x] are

intermediate variables, while RC[i] presents the round

constant of the round i and R[x,y] is the offset constant

rotation corresponding to the x and y values. Rot (S[],j)

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

73

rotates one word S by j= R(x,y) bits positions [18]. The

RC(i) constant values are given in [12]. Table II presents the

padding steps and some sha3-512 C simulation results,

including the padding steps, the data to be absorbed, the

round 0 steps, and the final hash value.

TABLE II. THE PADDING STEPS, ROUND 0 STEPS, AND HASH VALUE FOR MESSAGE INPUT

=MOUNA_NOURA_ATSIP_2020

The Padding Phase Steps

Phase 1: Converting the string message input

to the hexadecimal form.

 Message input = Mouna_Noura_ATSIP

_2020

 The encoded hexadecimal message input

(MSG) = 4d6f756e615f4e6f7572615f415

45349505f32303230

 Length(4d6f756e615f4e6f7572615f4154

5349505f32303230) =176 bits

Phase 2: Calculating q the number of bytes that

must be appended to the original message in

order to obtain a number of bits multiple of r

(r=576 bits).

 The total number of padding bytes q

is defined as follows [12]:

q = (r/8) – (m mod (r/8))

where Length (Msg) = 8*m=176 bits

then m=176/8=22 and q=50>2

 The number of padding bytes q determines

the hexadecimal form of the bytes.

Phase 3: Determining the padded message

hexadecimal form

**

q The padded Message

1 Msg || 0x86

2 Msg || 0x0680

>2 Msg || 0x06 || 0x00... || 0x80

 The final padded Message=
4 d 6 f 7 5 6 e 6 1 5 f 4 e 6 f 7 5 7 2 6 1 5 f 4 1 5 4 5 3 4 9

 5 0 5 f 3 2 3 0 3 2 3 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 0
 0

 0000000000000080

The Round 0 and the final hash value

Message input =Mouna_Noura_ATSIP_2020

*******Data to be absorbed*******

 4 d 6 f7 5 6 e 6 1 5 f4 e 6 f7 5 7 26 1 5 f4 1 5 4 53 4 9

 505 f323032 300600 00000 000000 0000 0

 00000000000000000000000000000000

 00000000000000000000000000000000

 00000000000000800000000000000000

 00000000000000000000000000000000

 00000000000000000000000000000000

 00000000000000000000000000000000

 00000000000000000000000000000000

 00000000000000000000000000000000

 00000000000000000000000000000000

 00000000000000000000000000000000

 0000000000000000

------------------ROUND 0------------------

-----------------After THeta-----------------

 a78bb7d0e3f7e8fd98a37051446b1126

 242d536f73645549505f323032300600

 9a dee adc c2 be9c5 eea e4c 2 be8 2a8 a692

 edd1110e053f426f7472615f41545349

 505f3230323006809adeeadcc2be9c5e

 eae4c2 be82a 8a692 edd1110 e053 f426f

 7472615f41545349505f323032300600

 9a dee adc c2 be9c5 eea e4c 2 be8 2a8 a692

 edd1110e053f426f7 472615f41545349
 505f3230323006009adeeadcc2be9c5e

 eae4c2 be82a 8a692 edd1110 e053 f426f

 7472615f41545349505f323032300600

9adeeadcc2be9c5e

--------------------After Rho&Pi-------------------------

a 7 8 b b 7 d 0 e 3 f 7 e 8 f d e 1 5 0 f 0 2 3 f 4 d 6 1 e 1 d

 f b 0 a a 2 9 a 4 a a 2 9 3 0 b c 6 0 0 0 0 e a 4 b 0 6 4 6 0 6

 a 7 9 7 a 6 b 7 3 a b 7 b 0 2 f 0 3 6 3 0 0 0 0 f 5 2 5 0 3 2 3

 c b e 9 a 5 e 9 a d c e 2 d e c 5 4 2 7 1 7 f 6 1 5 4 4 3 5 9 5
 c 2 a 1 e 0 4 7 e 8 a d 3 d 3 a 4 e 2 e e c 2 b 8 8 6 a 2 a 8 9

 3 0 4 7 e 1 a 2 8 8 d 6 2 2 4 c 1 2 9 d 5 c d 8 5 7 1 0 d 5 5 4

 6 0 0 c 0 0 a 0 b e 6 4 6 0 6 4 5 e 9 a d e e a d c c 2 b e 9 c

 9 a 4 a a a 9 3 0 b f b 0 a a 2 f 6 e 5 f 4 d 2 f 4 5 6 e 7 1 6

 2 b 8 8 6 a 2 a a 9 4 e 2 e e c b d b 5 4 7 4 7 3 8 1 4 f c 0 8

 a 9 2 4 3 a b 9 b 0 a f 2 0 a a 5 f 3 2 3 0 3 2 3 0 0 6 0 0 5 0

 4 9 c b d 4 d b 1 c 5 9 5 5 1 2 2 f 1 9 1 8 1 9 1 8 0 3 4 0 a 8

 6 e 6 1 5 f 4 e 2 f 4 d 6 f 7 5 7 d 0 5 5 1 4 d 2 5 d 5 c 9 8 5

 b547473814fc08bd

----------------After CHI--------------------
 bd 8 1 b5 4 8 e 9 d 7 6 9 f fe 5 5 0 f0 4 3 f5 d 2 5 a 1 9

 d a 9d 0 48 f7 a1 3 23 22 c 60 81 1 a a8 a 46 0 ed 6

 e 7 c7 e 69 42 e b7 a6 2 f17 65 12 16 e 52 51 33 2

 496 945e 845672 5c65 8291 bd e150 6371 4

 c 3 e0 e0 47 9d a8 3 c18 86 a 64 9c 28 0a 00 64 5

 5 04 7e 18 22 0 b20 26 c0 c0 f8 292 17 92 4 bc c

 e 0 4 c 2 0 b1 bd 5 d 6 0 4 6 7 e 9 f9 fc a 5 c c 6 9 e d 0

 9 8 d 2 b6 c b5 c fbd fb2 6 2 d 0 f1 9 7 e 44 6 3 71 6

 2 b8 85 29 2 29 e5 2 e4 e e ba7 47 4 53 81 4 fc5 8

 0 9 e 1 fe 7 9 7 4 f fc 7 a c 5 6 3 a 3 a 1 a 3 9 0 e 0 8 b8

 09 a b93 9d3 b157 a473 e1d 1818 1893 c02 8
 e e 2 3 59 7 e 3 f6 56 f4 d 3 58 d c 18 e 2 dd 4 9 c8 7

 93574f3814fe0815

---------------After IOTA-------------------
 bc81 b548e9d76 9f fe 550f0 43f5d2 5a19

 da9d048f7a132322c60811aa8a460ed6

 e7c7e6942eb7a62f17651216e5251332

 496945e8456725c658291bde15063714

 c3e0e0479da83c1886a649c280a00645

 5047e18220b2026c0c0f829217924bcc

 e04c20 b1 bd5d60467e9 f9 fc a5cc6 9ed0

 98d2b6c b5cfbd fb262d0f197e4463716

 2b88529229e52e4eeba747453814fc58

 09 e1 fe79 74 f fc 7a c56 3a3 a1 a39 0e0 8 b8

 09ab939d3b157a473e1d18181893c028
 ee23597e3f656f4d358dc18e2dd49c87

 93574f3814fe0815

 hash=

e 7 9 2 8 9 6 8 7 6 6 4 e 3 d 0

d c f 5 b 1 c 1 d e b a 5 4 5 f

9 7 6 6 e 5 2 f b 0 f 1 a 8 a e

1 c 6 d c e 5 e 5 3 e 8 d f 7 4
7 e f 6 8 1 e b 4 1 1 c 8 8 b 5

7 0 c 0 2 8 0 9 c 4 d e b d b 1

7 0 0 b c 6 4 9 f d a f 9 0 a c

3 0 3 b 4 d d 6 b b a c 5 8 b 8

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

74

III. THE SHA3-512 IMPLEMENTATION ON LEON3

SPARC PROCESSOR

For IP cores and tools development, Gaisler is a world leader

for commercial and aerospace embedded processors based on

the SPARC architecture [11]. The LEON3 processor is a

SPARC-V8 synthesizable open-source VHDL core. This

Gaisler product includes a full development environment and

a GRLIB IP library. The LEON3 template design [19] is

extremely configurable and adequate for system-on-a-chip

(SOC) designs. The source code is available under the GNU

GPL license. In addition, LEON3 is available under a low-

cost commercial license, allowing it to be used in

commercial applications to a fraction of the comparable IP

core cost.

The considered processor is suitable for embedded

applications, combining low power consumption and low

complexity with high-performance capability. The LEON3

open source core is available for free from open-source

Gaisler Research communities [20]. In this work, we realized

a hardware/software SHA3-512 analysis and implementation

on the LEON3 soft core processor. The adapted codesign

flow is illustrated in Fig. 2 [21].

Fig. 2 The LEON3-based SHA3-512 Hardware-Software Codesign flow

The LEON3 processor hardware configuration is realized

using the GRLIB implementation tools. In fact, Gaisler

provides LEON3 template designs for many FPGA boards.

The model is extremely configurable and uses the AMBA

2.0 Advanced High-Speed Bus (AHB) interfacing with other

IP cores. The LEON3 implementation can be realized on

Windows using the Cygwin tool or on Linux operating

system. In this work, we used the Cygwin environment. In

fact, the LEON3 design configuration is defined through a

configuration file automatically generated using a Graphical

BCC-Code
compilation &

optimization

Download the

bitstream to FPGA

Bitstream generation

Leon3 model

configuration

Leon3 Processor

simulation

Executing the loaded

SHA3-512.exe on the

target hardware

FPGA-based
Leon3 processor

JTAG
Connection

The SHA3-512
Specification

The SHA3-512
C coding

Executable file

generation

Leon3-TSIM

Simulation

Performance
analysis

Grmon-monitor

Debugger

Leon3 Processor

synthesis

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

75

User Interface (GUI) based on tkconfig and using the

command ‘make xconfig’. Once the configuration step is

completed, the bitstream file is generated using the Xilinx

ISE design tool and loaded onto the xc5vf70t xilinx FPGA

using a JTAG cable. On the other hand, in order to compile

the SHA3-512 code, we use the Bare-C Cross Compiler

(BCC). It is based on the GNU compiler tools and Newlib

standalone C-library. This cross-compiler allows the

compilation of C and C++ applications and can also be used

to compile eCos kernels [21-22]. Once the executable file is

generated (the SHA3-512.exe), we analyze the application

performance using TSIM, which is a generic SPARC

architecture simulator for emulating LEON-based embedded

systems. The primary site for TSIM is the Cobham Gaisler

website where the latest version of TSIM can be ordered and

evaluation versions can be downloaded. In fact, the last

evaluation version is available online since 18 September

2020 and simulates a basic dual-core LEON3 system and can

be made to simulate a single core system using the ‘-

numcpus’ option [23].

In the following section, we will analyze our application

performance using the 3.2.0 TSIM version in order to

simulate the SHA3-512 in a single and dual-core LEON-

based computer system. Fig.3 and Fig.4 presented,

respectively, the considered SHA3-512 TSIM simulation

results using single and dual-core LEON3.

Fig. 3 The SHA3-512 TSIM 3.2 simulation using a single

core LEON3

Fig. 4: The SHA3-512 TSIM 3.2 simulation using a single

core LEON3

From Fig.3 and Fig.4, we can conclude that the SHA3-512

application is running successfully on a single and dual-core

LEON3 simulator. The two simulations are executed using

the same executable file on the same machine and without

using any optimization level. The considered SHA3-512

performance analysis without using any compiler

optimization is reported in Table III. Actually, compiler

optimization techniques can be used for resource-constrained

embedded systems in order to enhance the executable

programs efficiency [24]. Compiler optimizations have been

used to improve performance, and researchers have

investigated the effect of code optimizations on energy

consumption and system reliability. In fact, they found that

compiler optimizations decrease the energy consumption

since they decrease the machine instructions number needed

to execute a computation [25]. In addition, the reduction of

the executed instructions number reduces the probability of

program affection by transient hardware errors [26]. This

study proves that compiler optimizations had only a minor

impact on the error sensitivity of the investigated benchmark

programs. Thus, in the current work, we consider the

SHA3-512 algorithm implementation on the LEON3

softcore processor, and we rely on compiler optimization

techniques to enhance the efficiency of executable programs.

Hence, before generating the executable file, we used the

GCC compiler to compile the considered SHA3-512

application with different optimization levels. Once each

executable file is generated the

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

76

The considered application is ready to be loaded into the

LEON3 processor using a JTAG-based GRMON monitor

connection. To run and download the SHA3-512 software

on the LEON3, we have to use the GRMON Gaisler tools.

GRMON allows the communication with the processor for

non-intrusive monitoring and debugging and providing full
access to internal peripherals. Thus, in order to

communicate with GRMON via a serial cable (JTAG), we

include a debug support unit (DSU) when elaborating the

LEON3 model configuration. GRMON is also a general

debug monitor for RISC-V and SOC-designs based on the

GRLIB IP library [11]. It supports USB, JTAG, UART,

Ethernet, and SpaceWire debug links and includes different

functions such as downloading and execution of LEON

applications and Read/write access to all memories and

system registers [22]. On the target hardware, the debug

interface for the LEON3 can be of various types, such as

JTAG, Ethernet, and SpaceWire debug interfaces. Fig.5

presents the GRMON Debug Monitor interfaced with the

implemented LEON3 processor via JTAG connection.

Fig. 5 The SHA3-512 GRMON Debugging on the implemented LEON3-processor

As indicated in Fig.5, the communication with the

LEON3 processor implemented on the xc5vf70t Xilinx

FPGA is ensured via JTAG cable through the GRMON

debug monitor. The GRMON communication with the

LEON3 processor and the sha3-512 loading and execution

are, respectively, illustrated in Fig.6 and Fig.7.

Fig. 6 The GRMON communication with the LEON3

processor

Fig. 7 The sha3-512 loading and execution

As indicated in a previous section, the GCC compiler (a

BCC package) is used to elaborate on different levels of

optimization (-O, -O1, -O2, etc..) to optimize the code

performance and size. Table III. summarized all TSIM and

GRMON results obtained for each level of optimization.

AHB JTAG

Controller
 AMBA AHB Bus

Memory

Controller

Command Layer

GRMON

GRLIB Debug Drivers

JTAG

GRMON Terminal

Standard Input User Shell

IP Debug Driver Layer

Debug Interface Layer

JTAG Debug Link

FPGA Board

LEON3 CPU

SHA3-512

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

77

Table III. The SHA3-512 Implementation Performance Analysis

SHA3-512 Performance Analysis on a single core LEON3 using TSIM 3.2.0

Optimization Level Without optimization -O/-O1 -O2 -Os

Cycles 429440 315478 304087 306006

Instructions 236171 169742 163389 165334

Overall CPI 1.82 1.86 1.86 1.85

CPU performance (@ 50.0 MHz) 27.50 MOPS 26.90 MOPS 26.87 MOPS 27.01 MOPS

Cache hit rate (%) 97.3 97.0 96.8 96.9

SHA3-512 Performance Analysis on a dual-core LEON3 using TSIM 3.2.0

Optimization Level Without optimization -O/-O1 -O2 -Os

Cycles 430083 316117 304744 306660

Instructions 236516 170087 163734 165679

SHA3-512 GRMON Debugging Analysis

Optimization Level Without optimization -O/-O1 -O2 -Os

Text Address 0x40000000 0x40000000 0x40000000 0x40000000

Data Address 0x4000F350 0x4000DB70 0x4000C2F0 0x4000C2B0

Total size (kB) 63,55 57,58 51.45 51,39

Throughput (Mbit/s) 1.40 1,39 1,27 1,27

 Table III presented the SHA3-512 performance analysis

where the number of cycles and instructions, the overall CPI

(Cycles per instruction), the CPU performance in MOPS

(Millions of Operations Per Second), and the Cache hit rate

(%) are indicated for both single and dual-core LEON3

using the 3.2.0 TSIM version. The SHA3-512 GRMON

debugging analysis is also presented for different

optimization levels. By comparing the single and dual-core

TSIM simulation results, we remark that the presented

results show only a little enhancement, made by the dual-

processor architecture, for the number of cycles and
instructions. These results can be explained by the fact that

the SHA3-512 code was not written to exploit parallel

architectures, and this is also due to the compiler non-

optimization for multicore architectures. As seen in Table

III, the unoptimized compilation (-O0 optimization level)

takes more time and memory than any optimized one. The -

O0 generates un-optimized code but has the fastest

compilation time. Using the -O or -O1 optimizer, the

compiler attempt to reduce the code size and the execution

time. The -O2 optimizes even more. The compiler performs

all the -O supported optimizations and uses more aggressive
automatic sub-programs inlining and loops vectorization.

This option increases both compilation time and

performance of the generated code compared to the –O

optimization level. The -Os optimizes for size (the total

size) and enables all -O2 optimizations except those that

often increase code size

IV. CONCLUSIONS

Hash functions are used for many cryptographic

applications, such as digital signatures and message

authentication codes. This paper presents a detailed analysis

of the SHA3-512 cryptographic hash algorithm and its

implementation on the LEON3 soft core processor. Single

and dual-core performance analyses based on TSIM

simulation and GRMON debugging tools are presented. In

addition, compiler optimization techniques are used to

improve the efficiency of executable programs. The

simulation results demonstrate the performance benefits of

using compiler optimizations for computer-based embedded

systems. However, we observe that the performance gain

for multicore architecture is not so considerable since the

used SHA3-512 code was not designed to exploit a

multicore architecture. Hence, this work can be extended by

multi-threading the SHA3-512 code in order to be simulated

and debugged on multicore and multiprocessor-based

architectures.

REFERENCES

[1] D. R. Stinson and M. B. Paterson, “Cryptography: theory and

practice. Boca Raton: CRC Press, (2017).

[2] M.harran, W.Farrelly, K.Curran, A method for verifying integrity &

authenticating digital media, Applied Computing and Informatics,

14(2) (2018) 145-158.

[3] V. Pachghare, Cryptography, and information security. PHI

Learning Pvt. Ltd., (2019).

[4] Xiaoyun Wang, Yiqun Lisa Yin, et Yu Hongbo, Finding collisions

in the full SHA-1, in Annual International Cryptology Conference,

Springer, Berlin, Heidelberg, (2005) 17–36.

[5] T. Grembowski, R. Lien, K. Gaj, N. Nguyen, P. Bellows, J. Flidr, T.

Lehman, and B. Schott, Comparative analysis of the hardware

implementations of hash functions SHA-1 and SHA-512., in ISC

(A. H. Chan and V. D. Gligor, eds.), 2433 of Lecture Notes in

Computer Science, Springer, (2002) 75–89.

[6] Xiaoyun Wang, et Yu Hongbo, How to break MD5 and other hash

functions, in Annual International Conference on the Theory and

Applications of Cryptographic Techniques, Springer, Berlin,

Heidelberg, (2005) 19–35.

Mouna Karmani et al. / IJETT, 69(6), 71-78, 2021

78

[7] R. Martino and A. Cilardo, SHA-2 Acceleration Meeting the Needs

of Emerging Applications: A Comparative Survey, in IEEE Access,

8, (2020) 28415-28436.

[8] Kazumaro Aoki, Jian Guo, Krystian Matusiewicz, et al., Preimages

for step-reduced SHA-2, in International Conference on the Theory

and Application of Cryptology and Information Security, Springer,

Berlin, Heidelberg, (2009) 578–597.

[9] Richard F. Kayser, Announcing request for candidate algorithm

nominations for a new cryptographic hash algorithm (SHA-3)

family, Fed. Regist. 72 (212) (2007).

[10] Turan, Meltem So€nmez, Ray Perlner, Lawrence E. Bassham, et al.,

Status report on the second round of the SHA-3 cryptographic hash

algorithm competition, NIST Interagency Report (2011) 7764.

[11] Martin Åberg; Development of an RV64GC IP core for the GRLIB

IP Library,2nd-RISC-V-Meeting-2019-10-01Paris

[12] Dworkin, M, SHA-3 Standard: Permutation-Based Hash and

Extendable-Output Functions, Federal Inf. Process. Stds. (NIST

FIPS), National Institute of Standards and Technology,

Gaithersburg, MD, (2015) https://doi.org/10.6028/NIST.FIPS.202.

[13] K. Latif, M. Muzaffar Rao, A. Aziz and A. Mahboob, Efficient

hardware implementations and hardware performance evaluation of

SHA-3 finalists, NIST Third SHA-3 Candidate Conf., Washington,

DC, March, (2012) 22–23.

[14] S. Bayat-Sarmadi, M. Mozaffari-Kermani, and A. Reyhani-

Masoleh, Efficient and Concurrent Reliable Realization of the

Secure Cryptographic SHA-3 Algorithm, in IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 33(7),

(2014) 1105-1109.

[15] F. Kahri, H. Mestiri, B. Bouallegue, M. Machhout High-Speed

FPGA Implementation of Cryptographic KECCAK Hash Function

CryptoProcessor, Journal of Circuits, Systems, and Computers , 25

(4) (2016).

[16] E. Homsirikamol, M. Rogawski, and K. Gaj Comparing hardware

performance of fourteen round two SHA-3 candidates using FPGAs,

Cryptology ePrint Archive Report, George Mason University,

(2010).

[17] Deepthi Barbara Nickolas , Mr. A. Sivasanka."Design of FPGA

Based Encryption Algorithm using KECCAK Hashing Functions".

International Journal of Engineering Trends and Technology

(IJETT). 4(6) (2013) 2438-244.

[18] C.Paar, J. Pelzl SHA-3, and The Hash Function Keccak, Springer,

An extension chapter for Understanding Cryptography — A

Textbook for Students and Practitioners, (2010).

[19] J.Gaisler and M.Isomak. LEON3 GR-XC3S-1500 template design,

Copyright Gaisler Research, (2006) 1-153.

[20] Gaisler Research, GRLIB IP Core User’s Manual, Version 2019.4,

(2019).

[21] M. Karmani, N. Benhadjyoussef, B. Hamdi and M. Machhout.A

Hardware-Software Codesign Case Study: The SHA3-512

algorithm Implementation on the LEON3 Processor, 2020 5th

International Conference on Advanced Technologies for Signal and

Image Processing (ATSIP), Sousse, Tunisia, (2020).

[22] Gaisler Research, BCC User's Manual, Version 2.1.0, November

(2019).

[23] Gaisler Research, TSIM3 Simulator User's Manual, Version 3.0.2,

September (2020).

[24] B. Sangchoolie, F. Ayatolahi, R. Johansson and J. Karlsson, A

Study of the Impact of Bit-Flip Errors on Programs Compiled with

Different Optimization Levels, 2014 Tenth European Dependable

Computing Conference, Newcastle, UK, (2014) 146-157.

[25] G. Nazarian, C. Strydis and G. Gaydadjiev, Compatibility Study of

Compile-Time Optimizations for Power and Reliability, in 14th

Euromicro Conf. on Digital System Design (DSD), Oulu, Finland,

(2011).

[26] T. C. May, M. H. Woods, Alpha-Particle-Induced Soft Errors in

Dynamic Memories, IEEE Transactions on Electron Devices, vol.

ED-26, no. 1, (1979) 2-9.

	For IP cores and tools development, Gaisler is a world leader for commercial and aerospace embedded processors based on the SPARC architecture [11]. The LEON3 processor is a SPARC-V8 synthesizable open-source VHDL core. This Gaisler product includes a...
	The considered processor is suitable for embedded applications, combining low power consumption and low complexity with high-performance capability. The LEON3 open source core is available for free from open-source Gaisler Research communities [20]. I...
	Fig. 2 The LEON3-based SHA3-512 Hardware-Software Codesign flow
	The LEON3 processor hardware configuration is realized using the GRLIB implementation tools. In fact, Gaisler provides LEON3 template designs for many FPGA boards. The model is extremely configurable and uses the AMBA 2.0 Advanced High-Speed Bus (AHB)...
	In the following section, we will analyze our application performance using the 3.2.0 TSIM version in order to simulate the SHA3-512 in a single and dual-core LEON-based computer system. Fig.3 and Fig.4 presented, respectively, the considered SHA3-512...
	Fig. 3 The SHA3-512 TSIM 3.2 simulation using a single core LEON3
	Fig. 4: The SHA3-512 TSIM 3.2 simulation using a single core LEON3
	From Fig.3 and Fig.4, we can conclude that the SHA3-512 application is running successfully on a single and dual-core LEON3 simulator. The two simulations are executed using the same executable file on the same machine and without using any optimizat...
	The considered application is ready to be loaded into the LEON3 processor using a JTAG-based GRMON monitor connection. To run and download the SHA3-512 software on the LEON3, we have to use the GRMON Gaisler tools. GRMON allows the communication with ...
	LEON3 model configuration. GRMON is also a general debug monitor for RISC-V and SOC-designs based on the GRLIB IP library [11]. It supports USB, JTAG, UART, Ethernet, and SpaceWire debug links and includes different functions such as downloading and e...
	Fig. 6 The GRMON communication with the LEON3 processor
	Fig. 7 The sha3-512 loading and execution
	IV. CONCLUSIONS
	REFERENCES

