
International Journal of Engineering Trends and Technology Volume 69 Issue 4, 215-227, April 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I4P230 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

An Efficient APHT Technique for Requirement-

Based Test Case Prioritization

Omdev Dahiya#1, Kamna Solanki*2

Department of Computer Science and Engineering, University

Institute of Engineering and Technology, Maharshi Dayanand

University Rohtak, Haryana, India

1Omdahiya21792@gmail.com, 2Kamna.mdurohtak@gmail.com

Abstract - Software testing is carried out to ensure that the

developed software product is fault-free and is meeting the

expected requirement criteria. If there are defects in the

software, then testing will help in uncovering them so that
they can be timely fixed. This will improve the quality and

reliability of the software, thus providing customer

satisfaction as well as time and cost-saving by timely fixing

the identified faults. There are various techniques for testing

the software. With limited time and budget, exhaustive

testing is not possible. One of the efficient techniques is

regression testing, which helps in testing the modified part

of the software. One of the approaches for regression

testing is Test Case Prioritization (TCP) which executes test

cases in a priority order instead of executing the whole test

suite with a motive to enhance the rate of fault detection as

software is developed based on its requirements so it is
beneficial to test those requirements first which are complex

as they will be the ones where there is maximum possibility

of occurrence of faults. This study has worked towards

proposing a new Ant colony and Particle swarm

optimization Hybrid Technique (APHT) for requirements-

based test case prioritization. For this, an industrial case

study is taken, and faults are injected into it based on

various requirements factors. To show the effectiveness of

our proposed technique, a metric known as Average

Percentage of Faults Detected (APFD) and average

computation are taken, and their values are compared with
other existing approaches. The results obtained showed the

worthiness of the proposed requirement-based TCP

Technique.

Keywords - Requirement-based Test Case Prioritization,

Ant colony and Particle swarm optimization Hybrid

Technique (APHT), Ant Colony Optimization (ACO),

Particle Swarm Optimization (PSO), Software Testing.

I. INTRODUCTION
With the evolution of technology and increasing

dependence of humans on software-enabled devices, there is

the necessity to develop robust software. The human race is

continuously getting involved in smart devices, which is the

need of the hour to sustain in competing environments.

These devices run on software, and that’s why the

importance of developing quality and reliable software is

increasing at a fast pace. This can be achieved by testing the

software which aims to enhance its quality, as this will lead

to the satisfaction of the customers. Timely fault fixing is

necessary as early detected faults can be fixed in a cost-

effective and timely way as compared to the moment when

they are detected late in the product [1-3]. The faith of a

customer in an organization is also lowered if the delivered

software by that organization fails to deliver its specified

functionality. The image of a developing software

organization is also at stake. Companies test the software so

that faults can be identified and fixed before delivering them

to the customers. One of the techniques for testing the

software thoroughly is exhaustive testing, but it is not

practically possible due to limited time and budget [4-5],

[46]. Generally, 20 percent of the system is accountable for

80% of errors. Thus, there is a requirement to increase the

efficiency of testing resources that recognizes more severe

faults early.

Manual testing is also not possible due to continuously

increasing test code size and complexities involved. So,

automation testing is required in which effective test cases

are generated, which are then selected and can be prioritized

for execution by encompassing various metaheuristics

techniques. Over the years, soft computing has emerged for

finding an efficient solution to various optimization problems

using various nature-inspired metaheuristics algorithms [6].

This study has worked towards proposing a new Ant

colony and Particle swarm optimization Hybrid Technique

(APHT) for requirements-based test prioritization. The paper

is organized as follows- Section II provides a literature

review of the articles in which various requirement-based test

prioritization techniques have been addressed. Section III

discusses the proposed Ant colony and Particle swarm

optimization Hybrid Technique (APHT) and also provides a

research methodology flow chart and Pseudocode of the

proposed technique. Section IV performs the experimental

analysis of the proposed technique. Section V presents the

comparative performance analysis of the proposed technique

with other prevailing approaches. Section VI presents the

conclusion and future scope of the study.

https://ijettjournal.org/archive/ijett-v69i4p230
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

216

II. RELATED WORK

This section provides an overview of studies performed

for test case prioritization along with the studies where

metaheuristics algorithms are used for test case

prioritization in the software testing domain.

In the study conducted by Jarzabek et al. (2020), the

authors have proposed a technique for test case mapping

with the respective test cases. They have shown that due to

this, the defects can be addresses with manageable efforts

during the regression testing procedure [7].

In work performed by Nayak et al. (2020), the authors

have proposed an enhanced test case prioritization

technique. They have compared the results of their

technique with other prevailing approaches to show its

effectiveness [8].

In the study performed by Yaseen et al. (2019), the

authors proposed a technique for assigning the ranks to the
requirements and have demonstrated that how the timely

delivery of the efficient product is assured by this

technique [9].

In the study performed by Dhiman & Chopra (2019),

the authors have used the ACO algorithm for proposing an
automated technique for regression test case prioritization

and have shown increased fault detection in minimum time

by their approach [10].

In the study conducted by Alzaqebah et al. (2018), the

authors have used a nature-inspired algorithm to propose a

requirement-based test case prioritization technique. They
have shown the effectiveness of their approach by

comparing it with other approaches [11].

 In the study conducted by Masadeh et al. (2018), the

authors have proposed a requirements prioritization

technique using nature-inspired technique and compared

the results generated by their technique with other existing
approaches to show its effectiveness [12].

In work performed by Khatibsyarbini et al. (2017), the

authors have used Particle Swarm Optimization (PSO) for

prioritizing the test cases and have shown the supremacy of

their technique via higher APFD values [13].

In the study conducted by Ashraf et al. (2017), the

authors have proposed a test case prioritization technique

using the PSO algorithm. They have used requirement-

based factors in their proposed technique which

demonstrates the novelty of their research work. They have

shown the efficiency of their approach via higher APFD
values [14].

In work performed by Kumar & Ranjan (2017), the

authors have proposed a modified ACO approach to

prioritize the test cases. The experimental results showed

that the maximum number of faults are discovered by the

proposed technique in the minimum time, and the value of
APFD is also high [15].

In the study conducted by Ansari et al. (2016), the

authors proposed a test case prioritization technique using

the ACO algorithm. They have demonstrated how their

proposed approach has worked towards reducing execution

time, cost and discovers the maximum number of faults [16].

In the study conducted by Srikant et al. (2016), the

authors have taken different factors for proposing a

requirement-based test case prioritization approach and have

shown the effectiveness of their proposed technique [17].

In the study conducted by Gao & Zhao (2015), the

authors proposed an Ant Colony based test case

prioritization technique considering the severity of faults,

execution time, and the number of faults detected. They have

shown the effectiveness of their technique using the Average

Percentage of Faults Detected (APFD) metric [18].

In the work performed by Tyagi & Malhotra (2014), the

authors have proposed a test case prioritization technique

using the PSO algorithm. To show the effectiveness of their

approach via higher values of APFD in the least execution

time when compared to other existing approaches [19].

In the work performed by Muthusamy (2014), the author

proposed a test case prioritization technique based on

requirement factors and showed the worthiness of their

technique via increased fault detection rate [20].

In the work performed by Suri & Singhal (2011), the

authors have used ACO for analyzing test case selection and

prioritization techniques. They have demonstrated that how

effectively ACO has delivered efficient results by reducing

the number of test cases required for fault detection in a

timely manner [21].

In the study conducted by Krishnamoorthi et al. (2008),

the authors proposed a Requirements-based TCP method so

that rate of fault identification in novel and regression

experiments could be enhanced. Average Test Effort Index

(ATEI) was calculated, which showed that test cases carried

out to calculate injected faults were minimum. Then sign test

was run so that hypothesis can be evaluated, and it proved

that this method gave better results [22].

In the study conducted by Srikant et al. (2005), the

authors proposed as “PORT- prioritization of requirements

for test” technique to provide criteria for the importance of

the requirements [23].

Work of requirements-based test case prioritization is also

performed by various researchers owing to the research

trends in this field [24-36], [45].

 Analysis of requirement-based factors taken into

consideration for proposing Requirement based test case

prioritization technique.

In this research work, four factors are taken into

consideration which is (1) “Customer assigned priority of

requirements” (2) “Developer-perceived code

implementation complexity,” (3) “Changes in requirements”

(4) “Fault impact” [37], [26]. Subsequently, the impacts of

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

217

these factors on the requirements are calculated by assigning

values on a ten-point scale. The weight of each requirement

is computed with these factor values. In the second step, the

test cases are mapped towards corresponding requirements.

1) “Customer-assigned Priority” (CP): This is a

measure by which a customer assigns a value for a

requirement, based upon its importance to him.

Here, the value of a requirement is assigned from 1
to 10, where 1 denotes the lowest priority

requirement and 10 denotes the highest priority

requirement according to the customer.

 Reasoning: According to this, Customer satisfaction

and its perceived value is increased if the requirements

are developed focusing on the needs of the customer.

So, to improve the satisfaction rate of the customer, the

highest important requirement according to the

customer should be tested at the earliest and thoroughly.

2) “Implementation Complexity” (IC): This is a

measure by which it is computed how the

development team sees the particular requirement

implementation. After analyzing every requirement,

a value is assigned to them ranging from 1 to 10,

where 1 indicates the lowest complex requirement

to be implemented, and 10 indicates the highest

complex requirement for implementation.

 Reasoning: If a requirement is complex to be

implemented, then the chances are that number of faults

in it will be the highest.

3) “Requirement Changes” (RC): It is a measure to

show how many times a particular requirement has

been changed starting from its initial stage of
origin. Then, the developer assigns values to them

from 1 to 10. A 10-point scale is used for

quantifying the requirements if certain requirements

change more than 10 times. The change for the

requirement p (RCp) is calculated by dividing it

with the figure by which how many times a

particular requirement is changed to the highest

change in requirements number amongst the

requirements of the project. If the path requirement

is changed Q times and the highest number for

change in requirements amongst the project
requirements is R, then the requirement change of

p, RCp is calculated as

RCp = (Q / R) × 10

 Reasoning: Due to errors committed in the

requirements phase, on average, 50% of the faults are

introduced. So, the main contribution towards project

failure is due to the continuously changing rate of the

requirements.

4) “Fault Impact of requirements” (FI): It is a

measure by which those requirements are identified

by the development team in which failure has been

reported by the customers. As a product keeps on
evolving following its updating from an old version

to a new version, the data is collected and used by

the developers for identification of the requirements

that were most prone to the errors. FI is taken into

consideration for the requirements that were

already implemented in a product that has been

released.

 Reasoning: The efficiency of testing will be

improved by targeting those areas which are most

likely to contain faults in high number.

After assigning values of the corresponding factors for

each requirement, factor values are computed for each

factor which is computed as –

CPV (“Customer assigned Priority Value”) is computed

by taking 39% (weight) of the CP value. ICV

(“Implementation Complexity Value”) is computed by

taking 20% (weight) of the IC value. CRV (“Change in

Requirements Value”) is computed by taking 5%

(weight) of the CR value. FIV (“Fault Impact Value”) is

computed by taking 5% (weight) of the FI value.

After computing these values, the Requirement Factor

Value (RFV) for each requirement is computed as-

RFV = (CPV+ICV+CRV+FIV)/4;

 Based upon the RFV value, faults were seeded into the

system corresponding to the requirement. A higher RFV

value for a requirement states that it is a complex

requirement, and there are more chances of faults in that

requirement [37].

 Accordingly, processed form of data is provided in Table

3.1 by taking an industrial case study of “Cosmosoft

Technologies which involves the analysis of student self-
service portal written in JAVA language, that comprises

91,733 changed lines of code, built upon approximately

350,000 lines of the code base, 25 modified requirements;

and 100 system level test cases” which shows the values of

all the factors of the requirements and the test cases

according to the requirements.

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

218

Table 3.1 Processed Requirement based Dataset- Industrial case study of Cosmosoft Technologies

 (39% of

CP value)

 (20% of

IC value)

 (5%of

CR

value)

 (5% of

FI value)

(CPV+ICV+

CRV+FIV)/4

 CPV=CP

*Weight

(CP)

 ICV= IC

* Weight

(IC)

 CRV=CR

*Weight

(CR)

 FIV=FI*

Weight

(FI)

 CP CPV IC ICV CR CRV FI FIV RFV Test Cases No.

Of

Test

Cases

R1 9 3.51 8 1.6 5 0.25 2 0.1 1.37 T1, T2, T3, T4, T5, T6 6

R2 8 3.12 6 1.2 4 0.2 1 0.05 1.14 T5, T6 2

R3 9 3.51 7 1.4 3 0.15 2 0.1 1.29 T7, T8, T9, T10, T11, T12, T13,

T14, T15, T16, T17, T18

12

R4 6 2.34 7 1.4 3 0.15 1 0.05 0.99 T7, T8, T9, T10, T11, T12, T13,

T14, T15, T16, T17, T18

12

R5 9 3.51 7 1.4 5 0.25 2 0.1 1.32 T7, T8, T9, T10, T11, T12, T13,

T14, T15, T16, T17, T18

12

R6 5 1.95 4 0.8 5 0.25 1 0.05 0.76 T7, T8, T9, T10, T11, T12, T13,

T14, T15, T16, T17, T18

12

R7 6 2.34 9 1.8 2 0.1 3 0.15 1.10 T19, T20, T21, T22, T23, T24,

T25, T26, T27, T28, T29, T30,

T31, T32, T33, T34

16

R8 7 2.73 5 1 3 0.15 2 0.1 1.00 T19, T20, T21, T22, T23, T24,

T25, T26, T27, T28, T29, T30,

T31, T32, T33, T34

16

R9 6 2.34 9 1.8 4 0.2 1 0.05 1.10 T19, T20, T21, T22, T23, T24,

T25, T26, T27, T28, T29, T30,

T31, T32, T33, T34

16

R10 8 3.12 8 1.6 5 0.25 2 0.1 1.27 T19, T20, T21, T22, T23, T24,

T25, T26, T27, T28, T29, T30,

T31, T32, T33, T34

16

R11 4 1.56 3 0.6 5 0.25 2 0.1 0.63 T19, T20, T21, T22, T23, T24,

T25, T26, T27, T28, T29, T30,

T31, T32, T33, T34

16

R12 8 3.12 7 1.4 2 0.1 1 0.05 1.17 T35, T36, T37, T38, T39, T40, T41 7

R13 6 2.34 7 1.4 2 0.1 1 0.05 0.97 T42, T43, T44 3

R14 5 1.95 5 1 3 0.15 2 0.1 0.80 T42, T43, T44 3

R15 9 3.51 3 0.6 5 0.25 2 0.1 1.12 T45, T46, T47, T48, T49, T50 6

R16 4 1.56 7 1.4 3 0.15 1 0.05 0.79 T45, T46, T47, T48, T49, T50 6

R17 6 2.34 5 1 2 0.1 2 0.1 0.89 T51, T52 2

R18 7 2.73 3 0.6 1 0.05 1 0.05 0.86 T53, T54, T55, T56, T57, T58,

T59, T60, T61, T62

9

R19 5 1.95 5 1 5 0.25 2 0.1 0.83 T53, T54, T55, T56, T57, T58,

T59, T60, T61, T62

9

R20 3 1.17 7 1.4 4 0.2 3 0.15 0.73 T63, T64, T65, T66, T67, T68, T69 7

R21 6 2.34 5 1 5 0.25 2 0.1 0.92 T70, T71, T72, T73, T74, T75 6

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

219

R22 9 3.51 9 1.8 5 0.25 2 0.1 1.42 T76, T77, T78, T79, T80, T81,

T82, T83, T84, T85, T86

10

R23 8 3.12 7 1.4 4 0.2 1 0.05 1.19 T87, T88, T89, T90 4

R24 6 2.34 5 1 3 0.15 2 0.1 0.90 T91, T92, T93 3

R25 5 1.95 9 1.8 2 0.1 1 0.05 0.98 T94, T95, T96, T97, T98, T99,

T100

7

III. PROPOSED METHODOLOGY FOR

REQUIREMENT BASED TEST CASE

PRIORITIZATION

For proposing the technique of requirements-based test

prioritization, Ant Colony Optimization (ACO) and Particle

Swarm Optimization (PSO) are used in the hybrid form. This

section initially provides the overview of ACO and PSO
individually, which will be followed by a detailed

explanation of the proposed technique.

A. Ant Colony Optimization

It is a population-based search method that simulates

actual ants' performance to find the shortest route [38]. This

approach was proposed by [39]. The motion of the ants

depends on the pheromone that is stored on some routes by

other ants. ACO initiates by generating agents situated in

various positions of the search space used to construct

solutions. When the ants move from one position to

another, it leaves the biological pheromone to mark the
routes. It helps the succeeding ants to search the way their

team members identify pheromones and select the

probability routes. This algorithm depends on the alignment

of the pheromone on paths of every node. Ants are based on

the probability rule to select their solution to the problem.

Ants depend on the connection within the colony of simple

agents, which is known as agents. Furthermore, it is

encouraged by pheromone groups. The pheromone groups

work as dispersed and digitalized data in ACO, where ants

are used to construct results to the problem to be resolved

and adjust at the time of execution [40].
 The process stages of the ACO algorithm are:

 Initialization: During the algorithm's start, the

parameters are fixed, and all the pheromones’

variables, heuristic data are initialized.

 Build the ant solutions: For every ant j, build a

novel solution using the probabilistic rule to select

the solution elements. The regulation is a function

of the present solution to the sub-problem j,

pheromone, and heuristic data.

 Evaluate the solutions: Compute the solution of

every ant achieved in step 2, locate the non –

dominated results, and remove the dominated
results.

 Updating the pheromone matrices: This phase

involves the updating of the pheromone matrix

eliminated from newly built results. Hence, a

pheromone is related to boundaries in non –

dominated increased solutions.

 Termination standards: If the specific problem

situation is met, like the number of iterations,

running time, the algorithm stops, and the result of

the non-dominated result is set, or go to step 2.

B. Particle Swarm Optimization

This swarm method is a nature-inspired optimization

approach that pretends the communal performance and

lively motion of the animals inside the flock. Every bird or

animal in the search area regulates the flying behavior in

accordance with the individual and other flying knowledge

of the birds [41]. In particle swarm optimization, Swarm

refers to many homogeneous agents who interact amongst

themselves in their environment. This algorithm is based on

the behavior of organisms in a group, such as depicted by

bird flock, fish, or insects, to achieve an optimal solution

[42-43]. In this, group members try to make a shared
objective according to feedback from the other group

members. Each member of the group tries to find a possible

solution at any instant in time. After that candidate's

suitability, the solution is communicated to other members

of the swarm via signals. Other members, therefore, senses

the strength of the transmitted signal, and according to the

fitness function, the suitability of the candidate solution is

assessed.

The populace is modified randomly with the particles'

collection, and every particle demonstrates a result

(solution). This approach finds an optimal number of
rounds. In every round, particles are executed using

fitness_value, and it results from the function known as

particle fitness_value. If the fit_value of the output has

better performance, then the stored location of the particle

is the best value, known as (pbest) personal best. In the last

iteration, the particle having the best fit_value is chosen as

the global best value (gbest). It is accountable for

controlling particles towards a suitable position [44]. Each

particle allocates its moving velocity by vigorously

consistent with its flying capabilities that depend on the g

best value.

Thus, the novel position of the particle is changed in

accordance with:

 Its present location

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

220

 Its present speed

 The space among its present location and Pbest

 The space among its existing location and Gbest

Hence, the speed (v) and location (l) for every updating
particle by utilizing the equation below;

𝑣𝑗 = w.𝑣𝑗−1 + 𝐶2 x rand () x (𝑝𝑏𝑒𝑠𝑡𝑗 – p.l) + 𝐶3 x and (

) x gbest –pl) …….. (i)

The location equation is;

p.l = p.v.l + 𝑣𝑗 ………..(ii)

The inertia weight (w) is computed in accordance with
the below equation as;

W =
(𝑡𝑚𝑎𝑥𝑖−𝑡) −(𝑤𝑠𝑡−𝑤𝑠𝑡𝑜𝑝)

𝑡𝑚𝑎𝑥𝑖
 + 𝑤𝑠𝑡𝑜𝑝 …………….(iii)

In equation (iii), w is inertia weight, p.v.l is the particle’s

location in the previous particle, pl is the present location of

the particle, 𝑣𝑗 is the present speed for j, 𝑣𝑗−1 is preceding

speed, 𝐶2 and 𝐶3 is static acceleration value, rand() is a

random amount, pbest is best_particle, gbest is the best_

particle acquired completed whole iterations. And, 𝑡𝑚𝑎𝑥𝑖 is

the maximum value of iteration, 𝑤𝑠𝑡 is start weight, inertia,

𝑤𝑠𝑡𝑜𝑝 is end inertia weight, and t is the present iteration

value.

C. Ant colony and Particle swarm optimization Hybrid

Technique (APHT)

In the hybrid technique for requirements-based test case

prioritization, the process is having various modules and

sub-modules to process the requirements and generate the

prioritized lists.

The initial step of the processing is to upload the

processed requirement document that has the detail of

requirements and the generated test cases. The proposed

approach fetches the requirements and pre-processes those

entries with the help of attribute selection, priorities

calculations, and mapping of the requirements with the

processed cases. This step is an iterative process that

provides the detailed analysis and selection of all cases

gives with the requirements list. The most common

formulas that used to process the priorities for mapping are:

𝐶𝑃𝑉 = 𝐶𝑃 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶𝑃) … (1)

𝐼𝐶𝑉 = 𝐼𝐶 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐼𝐶) … (2)

𝐶𝑅𝑉 = 𝐶𝑅 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐶𝑅) … (3)

𝐹𝐼𝑉 = 𝐹𝐼 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡 (𝐹𝐼) … (4)

The given priority vectors in eq. 1,2,3,4 helps to generate

prioritized and un-prioritized lists in the test case

prioritization process. Once the priority vector and mapping

process complete, the system releases the un-prioritized list

of the test cases with the APFD calculation as in eq. 5.

APFD = 1 −
TF1+TF2+.……TFm

𝑚𝑛
+

1

2𝑛
 … (5)

The un-prioritized test case lists are processed as the

population of the hybrid approach, which is designed to get

the better-prioritized list of the test case generation process.

Initialized population process with the ant colony

optimization modules, which helps to get the selected

attributes in processed form and make a list more accurate.

It processes with population update the fitness values to get
the final population for a hybrid form of PSO optimization

process.

Best_population_matrixPSO = ∑ ant_fitness(k). Cost > BestSol. Cost.

𝑛

𝑘=0

The additional methods of the hybrid algorithm are used

to finalize the population in terms of less error rate and

better selection of the population components. The selected
component becomes the population for the particle swarm

optimization process. The swarm optimization process

validates and processes the cases with requirements and

finds the best routes toward the priority vectors. It updates

the fitness values of calculated vectors and computes the

best global fitness value for the priority vectors.

Priority_Fitness_Vector = ∑ particle_route_fitness(p). Cost > global_fitness. Cost.

𝑛

𝑝=0

The iterative process updates random positions and
velocity of the particles to find the accurate fitness values

as priorities of the test cases. It processes the population till

it gets the better priority vector or the end of the iteration

give for optimization. The calculated priority vectors

visualize on the frontend screen with the mapped

requirements with calculated APFD value along with

computation time.

The below figure depicts the flowchart of the proposed

research work.

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

221

No

Yes

D

r

o

p

s

o

l

u

t

i

o

n

Start

Upload requirements

dataset(*.xlsx) R’

Pre-processing

Selection and filtering

of the components R’

Calculate weight
percentage

Map requirement and

test cases
Un-prioritized test case vectors

Initialize population

Ant Path selections (Random)
Requirements

Mapped?

Update Pheromone

Final evaluated population for

particles

All Ant

processed?

Validate positions and routes
and parameters

Calculate Fitness value (f_best)

Update particle processing

parameters

f_best>gbest

Iteration

processed? Best calculated prioritized
vectors

Updated position

Map case priority
vectors

Compute route cost

Stop

Update global fitness

Velocity

positions

Upper and lower
bounds

CPV=CP*Weight
(CP)

ICV= IC * Weight

(IC)

CRV=CR *Weight
(CR)

FIV= FI *Weight

(FI)

Yes

No

Yes

No

Yes

No

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

222

 Pseudocode of the Proposed technique

Pseudo code of APHT Technique

Input: Requirements, Processed test case matrix, Particles, Pheromone.

Output: Prioritized test cases.

1. Upload test case Matrix, requirements TC= {T1, T2, T3… Tn}, Req= {R1, R2, R3,… Rn}

2. For i=1: length (Req) do, //weight calculations of pre-processed requirement
3. CPV=CP*Weight (CP)

4. ICV= IC * Weight (IC)

5. CRV=CR *Weight (CR)

6. FIV= FI *Weight (FI)

7. end For.

8. For map=1: length (TC)

9. MappedR=original_matrix. find (contains (Req,TC)); //map requirements as 2D fault matrix

10. End for.

11. Repeat step 8 for mapping all the requirements and test cases.

12. for i=1: size(inp_dat_rearrange,1) do // Calculate un-prioritized list

13. [~, col1] = find (MappedR (i, :) == true); // find for matrix index
14. Un_prioritized (i,1) = col1(1,1);

15. End for

16. Initialize population and random path for MappedR

17. Selection of paths AP

18. Update tour T for updated AP

19. Get cost of T as popCost= CostFunction(ant_a(k_a). Tour)

20. Update Pheromone.

21. Repeat step 17 till all iterations.

22. Collect best path population PsoPop= popCost.

23. Validate positions and Velocity and initial parameters.

24. Velocity = w*V (i, :) + c1(1, D). *(pbest(i,:)) + c2*rand(1,D).*(gbest - P(i,:));
25. Update position of particles

26. Calculate fitness value // the cost of a prioritized list

27. Priority_Fitness_Vector = ∑ particle_route_fitness(p). Cost > global_fitness. Cost.
𝑛

𝑝=0

28. find_pos= find(posit(i)== gbest.cost); // simulate prioritized list pattern

29. Repeat for all the test cases

30. calculate APFD = 1 −
TF1+TF2+.……TFm

𝑚𝑛
+

1

2𝑛

31. end

w=Inertia, V=random-intial-velocity, c1=Accelaration Coff., D=length(lb), pbest=Fitness,
c2=Accelaration Coff, Global best fit=gbest, P= Random position, AP=Ant Positions

IV. EXPERIMENTAL ANALYSIS

In the experimental setup, the proposed APHT technique

has been implemented in MATLAB 2018a for computing

the results on a computer with 8.00 GB RAM and Intel (R)

Core ™ i7-4600 U CPU @ 2.10 GHz 2.70 GHz Intel

processor. Initially, in the ACO technique, results were

generated upon 300 iterations with 40 ants. Then in the

PSO technique, the results were generated up to 100

iterations with 10 birds. For the proposed APHT technique,

the results were computed up to 10 iterations and 10 birds

as to this point saturation, and an optimum solution has
been attained.

 Performance Metric

 Average Percentage of Faults Detected (APFD)-

APFD = 1 −
TF1 + TF2 + TF3 + ⋯ … … … . TFm

mn
+

1

2n

“Where ‘T’ is the test suite to be evaluated, ‘m’ depicts the

number of faults in an application under test, ‘n’ is total test
cases in a test suite, and ‘TFj’ describes the location of the

first test case in Test Suit ‘T’ that reveals fault j.”

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

223

 T1 T2 T3 T4 T5

F1 * *

F2 * *

F3 *

F4 * * *

F5 * * *

For example, consider the above fault matrix of 5 test cases

and 5 faults. If the APFD is calculated when test cases run
in a sequential way from T1 to T5,

APFD = 1 −
1+1+5+1+2

5∗5
+

1

2∗5
 APFD = 70%

When the list is prioritized by some optimization technique

and the prioritization sequence is T5->T3->T1->T4->T2,

and APFD value is calculated, which is

APFD = 1 −
2+1+1+2+1

5∗5
+

1

2∗5
 APFD = 82%

 The prioritized sequence of test cases generated by the

proposed technique is- T77->T32->T33->T14->T41->T74-

>T66->T12->T96->T83->T2->T43->T8->T58->T54->T13-

>T42->T70->T99>-T11->T7->T73->T26->T93->T19-

>T35->T78->T61->T57->T6->T51->T98->T39->T52-

>T76->T30->T17->T65->T34->T4->T85->T82->T68-
>T79->T53->T25->T15->T89->T37->T94->T92->T100-

>T95->T48->T45->T16>T91->T9->T81->T59->T24-

>T20->T40->T27->T62->T55->T60->T3->T5->T38->T28-

>T47->T97->T29->T56->T71->T31->T36->T67->T88-

>T46->T1->T44->T23->T87->T90 >T75->T49->T72-

>T50->T69->T10->T63->T80->T22->T86->T84->T18-

>T64->T21.

When the APFD value is computed, it comes out to be

91%.

For the proposed technique, values of APFD are also
calculated for unprioritized sequence, random prioritized

sequence, and reverse prioritized sequence. For the

unprioritized sequence, the value of APFD is 74.04%.

When test cases are arranged in a random sequence, the

value of APFD is 64.93%. When test cases are arranged in

reverse prioritization sequence, i.e., from T100 to T1, the

value of APFD comes out to be 70.83%.

Graph 4.1 APFD value comparison of the proposed

technique with other prevailing techniques.

The above graph 4.1 depicts the comparison of the

APFD value of the proposed technique with other existing

techniques. It is evident that the proposed technique has
performed well in terms of higher fault detection value.

 Percentage of Test Suite executed for all

Requirements coverage (PTRr)

PTRr =
No. Of Test Cases Required for Complete Coverage of Requirements

Total Number of Test Case
× 100

PTR is a metric used for measuring the effectiveness of the

proposed technique. An efficient technique will schedule the

test case execution sequence in such a way that requirements

are identified at the starting of the execution sequence of the

test cases. So, a relatively low PTR value depicts a better

technique as a smaller number of test cases are required for

covering all requirements instead of executing a whole test

suite.
Consider a test suite of 5 test cases T1 to T5, which captures

5 requirements in a system. For any prioritization order T1-

>T2->T3->T4->T5, if all 5 test cases are required to cover

all 5 requirements, then PTR is 100. If only 2 test cases are

required for covering all the 5 requirements, then the PTR

value will be 40. (PTR =
2

5
× 100)

When the PTRr value is computed for the proposed

APHT technique, then it comes out to be 54%. When PTRr

values are calculated for the unprioritized sequence,

random sequence, and reverse sequence of the execution of

test cases, then the corresponding values come out to be

94%, 71%, and 95%, respectively.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

APHT

Technique

Unprioritized

Sequence

Random

Prioritized

Reverse

Prioritized

APFD Value

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

224

Graph 4.2 PTRr values comparison of the proposed

technique with the existing techniques.

From the above graph 4.2, it is evident that the proposed

APHT technique has performed well in terms of fewer test

cases required to be executed to cover all the requirements.

V. COMPARATIVE PERFORMANCE ANALYSIS

This section presents the comparative performance

analysis of the APHT technique with the PSO technique

and ACO technique. Initially, the APFD factor is taken for

evaluation. Then PTRr values are taken, which is followed

by the comparison of the average computation time. The

results obtained showed the effectiveness of the proposed

technique.

For the PSO technique, the test case sequence generated is-

T54->T3->T37->T47->T59->T57->T75->T89->T42->T19-

>T43->T62->T61->T66->T81->T83->T82->T56->T25-

>T40->T7->T45->T77->T68->T51->T73->T20->T79-

>T65->T14->T85->T46->T48->T34->T8->T97->T53-

>T44->T76->T74->T80->T63->T11->T69->T50->T94-

>T98->T86->T90->T5->T27->T91->T26->T93->T1->T18-

>T28->T10->T92->T52->T100->T64->T31->T9->T33-

>T72->T22->T96->T49->T12->T88->T99->T30->T58-

>T23->T70->T36->T6->T41->T13->T60->T38->T39-
>T84->T71->T2->T87->T17->T78->T55->T24->T15-

>T29->T32->T21->T16->T4->T35->T95->T67.

When the APFD value is computed, it comes out to be

87%.

For the ACO technique, the test case sequence generated is-

T45->T50->T91->T83->T58->T4->T19->T73->T55->T13-

>T75->T17->T48->T18->T5->T72->T51->T16->T7->T97-

>T28->T92->T68->T98->T47->T41->T9->T78->T57-

>T31->T53->T22->T10->T87->T21->T94->T32->T69-

>T96->T27->T100->T46->T37->T62->T64->T93->T40-

>T1->T3->T99->T49->T66->T82->T34->T70->T44->T63-
>T2->T59->T95->T26->T52->T84->T12->T6->T30->T60-

>T90->T61->T54->T86->T38->T71->T80->T39->T56-

>T15->T85->T14->T43->T76->T42->T77->T35->T81-

>T65->T89->T8->T11->T29->T23->T74->T24->T33-

>T36->T25->T67->T20->T79->T88.

When the APFD value is computed, it comes out to be

87.71%.

Graph 4.3 APFD value comparison of the proposed

technique with prevailing techniques.

It is evident from the above graph 4.3 that the proposed

APHT technique has performed well in terms of enhanced
rate of fault detection when compared to the ACO and PSO-

based techniques.

 Comparison of percentage of Test Suite required to

cover all the Requirements (PTRr).

 For drawing out the comparison of the percentage of test

cases required to be executed for covering all the

requirements, the PTRr value of the proposed APHT

technique has been evaluated against the PTRr values of the

unprioritized test execution order, ACO, and PSO based

execution orders. For this, the value comparison has been
shown by taking 25%, 50%, 75%, and 100% test cases

execution values. The values of the APHT technique, ACO,

PSO, and unprioritized order are 54%, 43%, 52%, and 94%,

respectively. It has been observed that the proposed

technique has not performed so well in terms of this

parameter. Still, it has shown its efficient performance in

terms of enhanced fault detection value and in

comparatively low execution time. The results were shown

in graph 4.4.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

APHT

Technique

Unprioritized

Sequence

Random

Prioritized

Reverse

Prioritized

PTRr

85%

86%

87%

88%

89%

90%

91%

92%

APHT
Technique

PSO Technique ACO
Technique

APFD Value

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

225

Graph 4.4 Comparison of percentage of Test Suite

required to cover all the Requirements (PTRr).

 Comparison of the average computation time.

Software testing is a time-consuming process and costly

process, so execution time plays a key role in assessing the

budget and quality of the software. If, by a certain

optimization technique, the execution time is reduced

without compromising the test suite quality along with

increased fault detection rate, then the software testing cost

and efforts are considerably reduced.

Execution time is the measure of necessary time utilized for

carrying out every command for the test case. On the basis

of the computation time taken by the proposed APHT

technique for generating the results, a comparison is made

with the execution time taken by other approaches, namely,

ACO and PSO techniques for carrying the desired

computation. The results are shown in graph 4.5.

Graph 4.5 Comparison of average computation time of

the proposed technique with prevailing techniques.

From the above graph 4.5, it is evident that execution time

has been considerably reduced even when the proposed

technique is a hybrid of the existing approaches. It is due to

the fact that the proposed technique requires a smaller

number of iterations to reach an optimum solution. For
generalizing the results, the algorithms were run five times,

and then their average is taken to compute the average

execution time. So, it is deduced that the proposed

technique is a time-saving technique, also which has an

impact on testing costs and efforts as they will also be

reduced.

VI. CONCLUSION
Regression testing is one of the popular techniques of

software testing, which involves re-execution of the software

program after its modification to check whether no new

faults have crept in the product. Test Case Prioritization

(TCP) is an approach of regression testing which executes
test cases in priority order. Many researchers have worked on

making the TCP process effective as software is developed

based on its requirements, so it is beneficial to test those

requirements first, which are complex as they will be the

ones where there is maximum possibility of occurrence of

faults. Usage of nature-inspired algorithms is also on the rise

in this field to optimize the results, thus saving time and cost

involved in the testing procedure. In this research work, an

efficient Ant colony and Particle swarm optimization Hybrid

Technique (APHT) for requirements-based test prioritization

has been proposed. To prove the effectiveness of the
proposed technique, an APFD metric and average execution

time were taken to measure the performance. When APFD

and PTRr values of the proposed techniques have been

compared with other prioritization strategies, it has been

observed that the proposed approach is quite efficient. When

the APFD and average execution time results obtained were

compared with the existing PSO and ACO techniques, then

also the worthiness of the proposed technique is proved. In

the future, the proposed technique will be compared with

various existing approaches by taken other performance

metrics also.

ACKNOWLEDGMENT
The first author of the paper is thankful and obliged to

the coauthor for the unconditional support in proposing this

technique and for giving valuable feedback from time to time

to improve the quality of the research work.

0

5

10

15

20

25

30

U
n

p
ri

o
ri

ti
ze

d

A
C

O

P
S

O

A
P

H
T

U
n

p
ri

o
ri

ti
ze

d

A
C

O

P
S

O

A
P

H
T

U
n

p
ri

o
ri

ti
ze

d

A
C

O

P
S

O

A
P

H
T

U
n

p
ri

o
ri

ti
ze

d

A
C

O

P
S

O

A
P

H
T

25% 50% 75% 100%

PTRr

0

2

4

6

8

10

APHT
Technique

PSO Technique ACO
Technique

Exe c ut io n T ime (s)

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

226

REFERENCES
[1] Joshi, S. A., and Tiple, B. S. (2014). Literature Review of Model-

Based Test case Prioritization. International Journal of Computer

Science & Information Technologies, 5(5).

[2] Arafeen, M. J., and Do, H. (2013, March). Test case prioritization

using requirements-based clustering. In 2013 IEEE sixth

international conference on software testing, verification and

validation (pp. 312-321). IEEE.

[3] Qu, B., Nie, C., Xu, B., & Zhang, X. (2007, July). Test case

prioritization for black-box testing. In 31st Annual International

Computer Software and Applications Conference (COMPSAC

2007) (Vol. 1, pp. 465-474). Ieee.

[4] Dahiya, O., & Solanki, K. (2018). A systematic literature study of

regression test case prioritization approaches, International Journal

of Engineering & Technology, Vol. 7, No. 4, pp.2184-2191.

[5] Dahiya, O., Solanki, K., Dalal, S., and Dhankhar, A. (2020).

Regression Testing: Analysis of its Techniques for Test

Effectiveness, International Journal of advanced trends in computer

science and engineering, Vol. 9, No. 1, pp. 737-744.

[6] Dahiya, O., & Solanki, K. (2021). An Efficient Requirement-based

Test Case Prioritization Technique using Optimized TFC-SVM

Approach, International Journal of Engineering Trends and

Technology, 69 (1).

[7] Jarzabek, S., Liszewski, K., & Boldak, C. (2020). Inferring hints for

defect fixing order from requirements-to-test-case mappings.

In Integrating Research and Practice in Software Engineering (pp.

43-51). Springer, Cham.

[8] Nayak, S., Kumar, C., Tripathi, S., & Majumdar, N. (2020). An

improved approach to enhance the test case prioritization efficiency.

In Proceedings of ICETIT 2019 (pp. 1119-1128). Springer, Cham.

[9] Yaseen, M., Ibrahim, N., & Mustapha, A. (2019). Requirements

prioritization and using iteration model for successful

implementation of requirements. Int. J. Adv. Comput. Sci.

Appl, 10(1), 121-127.

[10] Dhiman, R., & Chopra, V. (2019, March). A novel approach for test

case prioritization using the ACO algorithm. In 2019 IEEE 2nd

International Conference on Information and Computer

Technologies (ICICT) (pp. 292-295). IEEE.

[11] Alzaqebah, A., Masadeh, R., & Hudaib, A. (2018, April). Whale

optimization algorithm for requirements prioritization. In 2018 9th

International Conference on Information and Communication

Systems (ICICS) (pp. 84-89). IEEE.

[12] Masadeh, R., Alzaqebah, A., Hudaib, A., & Rahman, A. A. (2018).

Grey Wolf algorithm for requirements prioritization. Modern

Applied Science, 12(2), 54.

[13] KHATIBSYARBINI, M., ISA, M. A., & ABANG JAWAWI, D. N.

(2017). A HYBRID WEIGHT-BASED AND STRING

DISTANCES USING PARTICLE SWARM OPTIMIZATION

FOR PRIORITIZING TEST CASES. Journal of Theoretical &

Applied Information Technology, 95(12).

[14] Ashraf, E., Mahmood, K., Ahmed, T., & Ahmed, S. (2017). Value-

based PSO test case prioritization algorithm. International Journal

of Advanced Computer Science and Applications, 8(1), 389-394.

[15] Kumar, S., & Ranjan, P. (2017). ACO-based test case prioritization

for fault detection in the maintenance phase. International Journal

of Applied Engineering Research, 12(16), 5578-5586.

[16] Ansari, A., Khan, A., Khan, A., & Mukadam, K. (2016). Optimized

regression test using test case prioritization. Procedia Computer

Science, 79, 152-160.

[17] Srikanth, H., Hettiarachchi, C., & Do, H. (2016). Requirements-

based test prioritization using risk factors: An industrial

study. Information and Software Technology, 69, 71-83.

[18] Gao, D., Guo, X., & Zhao, L. (2015, September). Test case

prioritization for regression testing based on ant colony

optimization. In 2015 6th IEEE international conference on

software engineering and service science (ICSESS) (pp. 275-279).

IEEE.

[19] Tyagi, M., & Malhotra, S. (2014, July). Test case prioritization

using multi-objective particle swarm optimizer. In 2014

International Conference on Signal Propagation and Computer

Technology (ICSPCT 2014) (pp. 390-395). IEEE.

[20] Muthusamy, T., & Seetharaman, K. (2014). A new effective test

case prioritization for regression testing based on the prioritization

algorithm. Int. J. Appl. Inf. Syst. (IJAIS), 6(7), 21-26.

[21] Suri, B., & Singhal, S. (2011). Analyzing test case selection &

prioritization using ACO. ACM SIGSOFT Software Engineering

Notes, 36(6), 1-5.

[22] Krishnamoorthi, R., & Mary, S. S. A. (2009). Factor-oriented

requirement coverage-based system test case prioritization of new

and regression test cases. Information and Software Technology,

51(4), 799-808.

[23] Srikanth, H., & Williams, L. (2005). On the economics of

requirements-based test case prioritization. ACM SIGSOFT

Software Engineering Notes, 30(4), 1-3.

[24] Hujainah, F., Bakar, R. B. A., Abdulgabber, M. A., & Zamli, K. Z.

(2018). Software requirements prioritisation: a systematic literature

review on significance, stakeholders, techniques, and

challenges. IEEE Access, 6, 71497-71523.

[25] Ambreen, T., Ikram, N., Usman, M., & Niazi, M. (2018). Empirical

research in requirements engineering: trends and

opportunities. Requirements Engineering, 23(1), 63-95.

[26] Srikanth, H., Williams, L., & Osborne, J. (2005, November).

System test case prioritization of new and regression test cases.

In 2005 International Symposium on Empirical Software

Engineering, 2005. (pp. 10-pp). IEEE.

[27] Srikanth, H., Banerjee, S., Williams, L., & Osborne, J. (2014).

Towards the prioritization of system test cases. Software Testing,

Verification, and Reliability, 24(4), 320-337.

[28] Ma, T., Zeng, H., & Wang, X. (2016, May). Test case prioritization

based on requirement correlations. In 2016 17th IEEE/ACIS

International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing

(SNPD) (pp. 419-424). IEEE.

[29] Arafeen, M. J., & Do, H. (2013, March). Test case prioritization

using requirements-based clustering. In 2013 IEEE sixth

international conference on software testing, verification and

validation (pp. 312-321). IEEE.

[30] Uusitalo, E. J., Komssi, M., Kauppinen, M., & Davis, A. M. (2008,

September). Linking requirements and testing in practice. In 2008

16th IEEE International Requirements Engineering Conference (pp.

265-270). IEEE.

[31] Zhang, X., Nie, C., Xu, B., & Qu, B. (2007, October). Test case

prioritization based on varying testing requirement priorities and

test case costs. In Seventh International Conference on Quality

Software (QSIC 2007) (pp. 15-24). IEEE.

[32] Kalyani, R., Mounika, P. S., Naveen, R., Maridu, G., & Ramya, P.

(2018). Test Case Prioritization Using Requirements

Clustering. International Journal of Applied Engineering

Research, 13(15), 11776-11780.

[33] Salem, Y. I., & Hassan, R. (2010, December). Requirement-based

test case generation and prioritization. In 2010 International

Computer Engineering Conference (ICENCO) (pp. 152-157). IEEE.

[34] Kavitha, R. V. R. K., Kavitha, V. R., & Kumar, N. S. (2010,

October). Requirement-based test case prioritization. In 2010

International Conference on Communication Control and

Computing Technologies (pp. 826-829). IEEE.

[35] Salehie, M., Li, S., Tahvildari, L., Dara, R., Li, S., & Moore, M.

(2011, March). Prioritizing requirements-based regression test

cases: A goal-driven practice. In 2011 15th European Conference

on Software Maintenance and Reengineering (pp. 329-332). IEEE.

[36] Vescan, A., Şerban, C., Chisăliţă-Cretu, C., & Dioşan, L. (2017,

September). Requirement dependencies-based formal approach for

test case prioritization in regression testing. In 2017 13th IEEE

International Conference on Intelligent Computer Communication

and Processing (ICCP) (pp. 181-188). IEEE.

[37] Reddy, D. V., & Reddy, A. R. M. (2016). An approach for fault

detection in software testing through optimized test case

prioritization. International Journal of Applied Engineering

Research, 11(1), 57-63.

[38] Yun, H. Y., Jeong, S. J., & Kim, K. S. (2013, September).

Omdev Dahiya & Kamna Solanki / IJETT, 69(4), 215-227, 2021

227

Advanced harmony search with ant colony optimization for solving

the traveling salesman problem—Journal of Applied Mathematics,

2013.

[39] Dorigo, M. (1992). Optimization, learning, and natural algorithms.

Ph.D. Thesis, Politecnico di Milano.

[40] Akhtar, A. (2019). Evolution of ant colony optimization algorithm–

a brief literature review. In arXiv: 1908.08007.

[41] AbuNaser, A., Doush, I. A., Mansour, N., & Alshattnawi, S. (2015,

August). Underwater image enhancement using particle swarm

optimization. Journal of Intelligent Systems, 24(1), 99-115.

[42] Shi, Y., & Eberhart, R. C. (1998, March). Parameter selection in

particle swarm optimization. In International conference on

evolutionary programming (pp. 591-600). Springer, Berlin,

Heidelberg.

[43] Shi, Y., & Eberhart, R. C. (1999, July). An empirical study of

particle swarm optimization. In Proceedings of the 1999 congress

on evolutionary computation-CEC99 (Cat. No. 99TH8406) (Vol. 3,

pp. 1945-1950). IEEE.

[44] Garg, S., Patra, K., & Pal, S. K. (2014, June). Particle swarm

optimization of a neural network model in a machining process.

Sadhana, 39(3), 533-548.

[45] Dahiya, O., & Solanki, K. (2021). Prevailing Standards in

Requirement-Based Test Case Prioritization: An Overview. ICT

Analysis and Applications, 467-474.

[46] Dahiya, O., & Solanki, K. (2019). Comprehensive cognizance of

Regression Test Case Prioritization Techniques. International

journal of emerging trends in engineering research, 7(11), 638-646.

