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Abstract - A refined beam-theory taking a count the 

thickness-stretching is presented in this research for bending 

vibratory behavior analysis of thick FG-beams. In this 
theory, the number of unknowns is reduced to four instead of 

five in the other theories. Transverse displacement is 

expressed through a hyperbolic function and subdivided into 

bending, shear, and thickness-stretching components. The 

number of unknowns is so reduced, which involves a 

decrease of the governing equations number. The boundary 

conditions at the top and bottom FG-beam faces are satisfied 

without any shear correction factor. Effective characteristics 

of FG-beam material change continuously in the thickness 

direction according to a distribution law depending on the 

constituents volume proportion. Equations of motion are 
obtained from Hamilton's principle and are solved by 

assuming the Navier’s solution type, for the case of a Simply 

Supported FG-beam, transversely loaded. Numerical results 

obtained are exposed and analyzed in detail to verify the 

validity of the current theory and to prove the influence of 

the material composition, geometry, shear, and normal 

deformation on the frequency response and stresses. 

Keywords: Refined beam-theory, Functionally Graded 

Beam, Thickness stretching. 

I. INTRODUCTION  

Functionally classified FGMs are new types of 

composites obtained by mixing ceramic and metallic 

constituents [1]. Material properties vary continuously 

through the beam-thickness in the function of the mixing 

proportion. This avoids the stress concentration observed in 

laminate composites. MGFs are reserved for specific uses, 

for example, coatings of thermal barriers for turbine blades, 

shielding for military applications, automotive, space, and 

aerospace industries, biomedical materials.  

FGMs are currently in great demand by industries, so they 

require very specific models to analyze their behavior and 

predict their responses. Many researchers have been 

interested in different analyzes of the FGM structures 

because of their wide application areas. Both main beam 

models, the Euler-Bernoulli model (CBT) for thin beams 

and the Timoshenko model (SDT) for thick beams, were 

introduced. CBT model ignores the transverse shear 
deformation effect. It was modified to take into account the 

shear deformation into consideration, resulting in the SDT 

model. But, this second model requires a shear correction to 

satisfy the boundary conditions on the top and bottom beam 
faces, which influences the results. The Higher-order SDT 

aims to eliminate the failure of CBT and First-order SDT by 

assuming a higher-order variation through FG-B thickness 

for transverse displacement without providing any shear 

correction.  

Multiple models with various shear stress shapes have 

been proposed, for example, the Reddy model [2]. Thai and 

VO [3] have presented several refined theories of HSDT 

beams. They have shown that these models are very 

effective in the static and dynamic studies of FG and 

laminates beams. Recently, Ibnorachid et al. [4] investigated 

thermo-mechanical behavior of Porous Functionally Graded 

Beams, resting on elastic foundations by using a Refined 

HSDT. Aydogdu and Taskin [5] used the Euler Bernoulli 

model and parabolic and exponential shear functions to 

examine the bending vibration-responses of a Simply-

Supported FG-Beams. Sallai et al. [6] used different beam 
theories to investigate the static behavior of an FG thick 

Timoshenko-beam. A numerical solution for (TBT) and 

(HSDT) is presented by Simsek [7] using the Ritz method. 

The finite element method and HSDT are used by Kadoli et 

al. [8] to analyze the bending vibration responses of the thick 

FG-beams. An analytical solution for the cantilevered thick 

FG-beams is provided by Zhong and Yu [9] for various 

types of mechanical loads. Based on the neutral surface 

concept, Ould Larbi [10] presented an efficient theory to 

study bending-free vibration of thick FG-beams. Similarly, a 

new First order of SDT theory is developed by Bouremana 
et al. [11], based on the position of the neutral surface for 

thick FG-beams.  

The thickness-stretching impact was introduced for the 

first time in the analysis of the vibrational behavior of thick 

FG plates [12-14]. Ibnorachid et al. [15] studied the free and 

forced vibration behavior of simply supported FG beams 
using an HSDT in which the thickness-stretching effect is 

incorporated. Osofero et al. [16] provided an analysis 

method of buckling in bending of FG sandwich beams, 

considering thickness-stretching and shear effects. Meradjah 

et al. [17] also integrated the thickness-stretching effects in a 

new shear strain theory that they proposed to analyze the 

bending vibration of FG-beams.  

https://ijettjournal.org/archive/ijett-v69i4p209
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Zakaria Ibnorachid et al. / IJETT, 69(4), 57-66, 2021 
 

58 

A refined theory is presented in this work to analyze 

bending vibration of thick FG-beam, with simply supported 

ends and under transverse loading. By superimposing the 

deflection on the bending, shear, and thickness-stretching 

parts, the governing equations are derived from Hamilton's 
principle. The equations system obtained is solved by using 

Navier's solutions. The material characteristics are presumed 

to change through the beam thickness following the law of 

dosing. Detailed mathematical formulations are provided, 

and example results are proposed to show the relevance of 

the present theory to other theories using more unknowns 

and to prove the effects of thickness-stretching and the 

influences of many parameters such as material index and 

slenderness ratio on frequency response and stresses. 

II. THEORETICAL FORMULATION 

A.  Model definition 

Fig.1 shows the proposed model for this study. It is a 

thick FG-beam with length (L), of the rectangular section 

having for width (b) and for height (h). 

 

Fig. 1 Geometry of the FG-beam 

The FG-beam is composed of a combination of metal and 

ceramics whose combination changes from the top surface 

purely ceramic to the bottom surface completely metallic. 

The beam material effective characteristic 𝒫 is assumed to 

de changes through the FG-beam thickness in relation to the 
volume ratio and the characteristics of the constituent 

material. It is formulated by the law of mixing as follow: 

𝒫 = 𝒫𝑚𝜗𝑚 + 𝒫𝑐𝜗𝑐  , 𝒫 = (𝐸, 𝜌, 𝜈,…… )                        (1) 

𝐸, 𝜌 , 𝜈 are Young modulus, mass density, and Poisson’s 

coefficient, respectively. Variation of 𝜈 is generally small, so 

it remains constant. 

𝜗𝑐and 𝜗𝑚 are ceramic and metal volume proportions 

respectively, defined by [18]: 

𝜗𝑚 + 𝜗𝑐 = 1,    𝜗𝑐 = (0.5 +
𝑧
ℎ⁄ )

𝑝

,        𝑝 ≥ 0                      (2) 

The gradient index(𝑝), with 𝑝 ≥ 0, determines the profile 

of the material in the FG beam thickness direction. It can be 

modified to obtain the optimum component materials 

distribution.  

The plot in Fig.2 shows the distribution of ceramic 

volume proportion across the FG-beam thickness for 

different values of the material indexes. 

 
Fig. 2 Ceramic volume proportion profile across FG-beam 

thickness for different values of 𝒑 

Each effective characteristic of the FG-beam can be 

expressed as follows: 

𝒫(𝑧) = (𝒫𝑐 −𝒫𝑚)(0.5 +
𝑧
ℎ⁄ )

𝑝

+𝒫𝑚   ,       𝒫 = 𝐸, 𝜌        (3) 

B. Displacement and strain fields  

Transverse and axial displacements of the FG-structure 

are expressed, according to the casi-3D theory [19], as 

follow: 

{
𝑈(𝑥, 𝑧) = 𝑢0(𝑥) − 𝑧 𝜕𝑤𝑏 𝜕𝑥⁄ − 𝒻(𝑧) 𝜕𝑤𝑠 𝜕𝑥⁄

𝑊(𝑥, 𝑧) = 𝑤𝑏(𝑥) + 𝑤(𝑥) + 𝑤𝑠𝑡(𝑥)                  
                  (4) 

with,                                                                                               

𝑤𝑠𝑡(𝑥) = ℊ(𝑧)𝜙(𝑥),   ℊ(𝑧) = 1 − 𝑑𝒻(𝑧) 𝑑𝑧⁄                       (5) 

𝑢0 :  Axial displacement 

𝑤𝑏 : Bending transverse displacement 

𝑤𝑠 : Shear transverse displacement 

𝑤𝑠𝑡: Thickness-Stretching displacement 

𝑢0, 𝑤𝑏 , 𝑤𝑠 and 𝜙are four unknowns to be determined 

𝒻(𝑧) and ℊ(𝑧)are the shape functions 
The strains are as follows: 

{
𝜀𝑥  = 𝜕𝑢0 𝜕𝑥⁄ − 𝑧𝜕2𝑤𝑏 𝜕𝑥2⁄ − 𝒻(𝑧) 𝜕2𝑤𝑠 𝜕𝑥

2⁄

𝜀𝑧  = (𝑑ℊ(𝑧) 𝑑𝑧⁄ )𝜙                                                    

𝛾𝑥𝑧 = ℊ(𝑧)[𝜕𝑤𝑠 𝜕𝑥⁄ + 𝜕𝜙 𝜕𝑥⁄ ]                                

            (6) 

The FG-beam material obeys Hooke's law. So, the linear 

elastic equation can be expressed as: 
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{

σx
σz
τxz
} = E(z) [

1 ν 0
ν 1 0

0 0
1

2(1 + ν)

] {

εx
εz
γxz

}

= 𝐸(𝑧)

{
  
 

  
 
𝜕𝑢0
𝜕𝑥

− 𝑧
𝜕2𝑤𝑏
𝜕𝑥2

− 𝒻(𝑧)
𝜕2𝑤𝑠
𝜕𝑥2

+ 𝜈
𝑑ℊ(𝑧)

𝑑𝑧
𝜙    

𝜈
𝜕𝑢0
𝜕𝑥

− 𝜈𝑧
𝜕2𝑤𝑏
𝜕𝑥2

− 𝜈𝒻(𝑧)
𝜕2𝑤𝑠
𝜕𝑥2

+
𝑑ℊ(𝑧)

𝑑𝑧
𝜙

1

2(1 + 𝜈)
(
𝜕𝑤𝑏
𝜕𝑥

+
𝜕𝑤𝑠
𝜕𝑥

)
}
  
 

  
 

     (7) 

C. Calculation of energies 

1) Strain energy 

{
 
 
 

 
 
 
𝛿𝒰 = ∫ ∫ [∫ (

𝜎𝑥𝛿𝜀𝑥
+𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜎𝑧𝛿𝜀𝑧

) 𝑑𝑧

ℎ

2

−
ℎ

2

] 𝑑𝑦𝑑𝑥           (8) 
𝑏

0

𝐿

0

= ∫ (
𝒩𝑥

𝜕𝛿𝑢0
𝜕𝑥

−ℳ𝑥
𝑏
𝜕2𝛿𝑤𝑏
𝜕𝑥2

−ℳ𝑥
𝑠
𝜕2𝛿𝑤𝑠
𝜕𝑥2

+𝒬𝑥𝑧 (
𝜕𝛿𝑤𝑠
𝜕𝑥

+
𝜕𝛿𝜙

𝜕𝑥
) +𝒩𝑧𝛿𝜙

)
𝐿

0

𝑑𝑥   

 

where,𝒩x, ℳx
b,  ℳx

s, 𝒬xzand 𝒩z are the stress resultants, 

specified as: 

{
 
 
 

 
 
 (𝒩𝑥 ,ℳ𝑥

𝑏 ,ℳ𝑥
𝑠) = ∫ [1, 𝑧, 𝒻(𝑧)]𝜎𝑥

ℎ/2

−ℎ/2

𝑏 𝑑𝑧      

𝒬𝑥𝑧 = ∫ 𝜏𝑥𝑧ℊ(𝑧)𝑏 𝑑𝑧
ℎ/2

−ℎ/2

                                   

𝒩𝑧 = ∫ 𝜎𝑧

ℎ/2

−ℎ/2

𝑑ℊ(𝑧)

𝑑𝑧
𝑏 𝑑𝑧                                

                   (9) 

By using Eq (7), the stress resultants given in Eq (9) can 

be expressed as: 

{
 
 

 
 
𝒩𝑥

ℳ𝑥
𝑏

ℳ𝑥
𝑠

𝒬𝑥𝑧
𝒩𝑧 }

 
 

 
 

=

[
 
 
 
 
𝒜  
ℬ  
ℬ𝑠
𝒳  
0 

ℬ 
𝒟 
𝒟𝑠
𝒴 
0 

ℬ𝑠
𝒟𝑠
ℋ𝑠

𝒴𝑠
0 

𝒳 
𝒴 
𝒴𝑠
𝒵 
0 

0
0
0
0
𝒜𝑠]
 
 
 
 

{
 
 
 
 

 
 
 
 

𝜕𝑢0
𝜕𝑥

−
𝜕2𝑤𝑏
𝜕𝑥2

−
𝜕2𝑤𝑠
𝜕𝑥2

(
𝜕𝑤𝑠
𝜕𝑥

+
𝜕𝜙

𝜕𝑥
)
}
 
 
 
 

 
 
 
 

                     (10) 

(𝒜, ℬ, 𝒟,ℬs, 𝒟s,ℋs,𝒳, 𝒴,𝒴s, 𝒵,𝒜s) are the FG-beam 

stiffness expressed as follows: 

 

 

{
 
 
 
 

 
 
 
 
(𝒜,ℬ, 𝒟,ℬ𝑠 , 𝒟𝑠 ,ℋ𝑠) =                                                             

∫ (1, 𝑧, 𝑧2, 𝒻(𝑧), 𝑧𝒻(𝑧), 𝒻(𝑧)2)𝐸(𝑧)
ℎ/2

−ℎ/2

𝑏 𝑑𝑧      

(𝒳,𝒴, 𝒴𝑠 ,𝒵) =                                                                       (11) 

∫ (𝜈, 𝜈𝑧, 𝜈𝒻(𝑧),
𝑑ℊ(𝑧)

𝑑𝑧
)
𝑑ℊ(𝑧)

𝑑𝑧
𝐸(𝑧)

ℎ/2

−ℎ/2

𝑏 𝑑𝑧   

𝒜𝑠 = ∫ ℊ(𝑧)2
ℎ/2

−ℎ/2

𝐸(𝑧)

2(1 + 𝜈)
𝑏𝑑𝑧                                                 

 

2) Potential energy due to the external transverse load 

applied 

𝛿𝒱 = −∫ 𝓆(𝑥)𝛿𝑊𝑑𝑥
𝐿

0

 

      =  −∫ 𝓆(𝑥)𝛿(𝑤𝑏 + 𝑤𝑠 + 𝑤𝑠𝑡)𝑑𝑥  
𝐿

0

                              (12) 

𝓆(x): External transverse loading. 

3) Kinetic energy  

{
 
 
 
 
 
 

 
 
 
 
 
 𝛿𝒦 = ∫ ∫ [∫ 𝜌(𝑧)(�̇�𝛿�̇� + �̇�𝛿�̇�)

ℎ/2

−ℎ/2

𝑑𝑧] 𝑑𝑦𝑑𝑥              
𝑏

0

𝐿

0

= ∫ (
𝐼0[�̇�0𝛿�̇�0 + (�̇�𝑏 + �̇�𝑠)(𝛿�̇�𝑏 + 𝛿�̇�𝑠)]

+𝐽0[(�̇�𝑏 + �̇�𝑠)𝛿�̇� + �̇�𝛿(�̇�𝑏 + �̇�𝑠)]
)

𝐿

0

𝑑𝑥  

−∫ (
𝐼1 [�̇�0

𝜕𝛿�̇�𝑏
𝜕𝑥

+
𝜕�̇�𝑏
𝜕𝑥

𝛿�̇�0] + 𝐼2
𝜕�̇�𝑏
𝜕𝑥

𝜕𝛿�̇�𝑏
𝜕𝑥

+𝐽1 [�̇�0
𝜕𝛿�̇�𝑠
𝜕𝑥

+
𝜕�̇�𝑠
𝜕𝑥

𝛿�̇�0]

)
𝐿

0

𝑑𝑥   (13) 

−∫ (
𝐾2
𝜕�̇�𝑠
𝜕𝑥

𝜕𝛿�̇�𝑠
𝜕𝑥

−  𝐽2 [
𝜕�̇�𝑏
𝜕𝑥

𝜕𝛿�̇�𝑠
𝜕𝑥

+
𝜕�̇�𝑠
𝜕𝑥

𝜕𝛿�̇�𝑏
𝜕𝑥

]

+𝐾0�̇�𝛿�̇�

)
𝐿

0

𝑑𝑥 

 

(𝐼0, 𝐼1, 𝐼2, 𝐽0, 𝐽1, 𝐽2,𝐾0, 𝐾2) are the mass inertias, defined as 

follows: 

{
 
 
 

 
 
 (𝐼0, 𝐼1, 𝐼2) = ∫ (1, 𝑧, 𝑧2)𝜌(𝑧)

ℎ/2

−ℎ/2

𝑏 𝑑𝑧                              

(𝐽0, 𝐽1, 𝐽2) = ∫ (ℊ, 𝒻(𝑧), 𝑧𝒻(𝑧))𝜌(𝑧)
ℎ/2

−ℎ/2

𝑏 𝑑𝑧                

(𝐾0, 𝐾2)   = ∫ (ℊ(𝑧)2, 𝒻(𝑧)2)𝜌(𝑧)
ℎ/2

−ℎ/2

𝑏 𝑑𝑧                   

 (14) 

D. Governing equation 

To obtain the beam governing-equation, Hamilton 

principle is applied as follows. 

∫ (δ𝒰 + δ𝒱 − δ𝒦)dt
t2

t1

= 0                                                   (15) 

 

Replacing the expressions 𝛿𝒰, 𝛿𝒱 and 𝛿𝒦 of Eqs (8),(12) 

and (13) into Eq (15), we obtain the following system by 

integrating by parts, and by gathering the coefficients of 

𝛿𝑢0, 𝛿𝑤𝑏 , 𝛿𝑤𝑠 and 𝛿𝜙. 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝛿𝑢0 :  

𝜕𝒩𝑥

𝜕𝑥
= 𝐼0�̈�0 − 𝐼1

𝜕�̈�𝑏
𝜕𝑥

− 𝐽1
𝜕�̈�𝑠
𝜕𝑥

               

𝛿𝑤𝑏 : 
𝜕2ℳ𝑥

𝑏

𝜕𝑥2
+ 𝓆 = 𝐼0(�̈�𝑏 + �̈�𝑠)                        

+𝐼1
𝜕�̈�0
𝜕𝑥

− 𝐼2
𝜕2�̈�𝑏
𝜕𝑥2

−  𝐽2
𝜕2�̈�𝑠
𝜕𝑥2

+ 𝐽0�̈�

𝛿𝑤𝑠 :  
𝜕2ℳ𝑥

𝑠

𝜕𝑥2
+
𝜕𝒬𝑥𝑧
𝜕𝑥

+ 𝓆 = 𝐼0(�̈�𝑏 + �̈�𝑠)         

 +𝐽1
𝜕�̈�0
𝜕𝑥

− 𝐽2
𝜕2�̈�𝑏
𝜕𝑥2

−𝐾2
𝜕2�̈�𝑠
𝜕𝑥2

+ 𝐽0�̈�

δϕ: 
∂𝒬xz
∂x

 −𝒩z = J0(ẅb + ẅs) + K0ϕ̈           

            (17) 

Using Eq (10) we can express Eqs (17) in terms of 

displacement of 𝑢0, 𝑤𝑏 , 𝑤𝑠 and 𝜙 as follows: 

{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 𝛿𝑢0:  𝒜

𝜕2𝑢0
𝜕𝑥2

−  ℬ
𝜕3𝑤𝑏
𝜕𝑥3

− ℬ𝑠
𝜕3𝑤𝑠
𝜕𝑥4

+𝒳
𝜕𝜙

𝜕𝑥
              

         = 𝐼0�̈�0 − 𝐼1
𝜕�̈�𝑏
𝜕𝑥

− 𝐽1
𝜕�̈�𝑠
𝜕𝑥

                                     

𝛿𝑤𝑏: ℬ
𝜕3𝑢0
𝜕𝑥3

− 𝒟
𝜕4𝑤𝑏
𝜕𝑥4

− 𝒟𝑠
𝜕4𝑤𝑠
𝜕𝑥4

+ 𝒴
𝜕2𝜙

𝜕𝑥2
+ 𝓆      

= 𝐼1
𝜕�̈�0
𝜕𝑥

+ 𝐼0(�̈�𝑏 + �̈�𝑠) − 𝐼2
𝜕2�̈�𝑏
𝜕𝑥2

             

−𝐽2
𝜕2�̈�𝑠
𝜕𝑥2

+ 𝐽0�̈�                                        

𝛿𝑤𝑠: ℬ𝑠
𝜕3𝑢0
𝜕𝑥3

−𝒟𝑠
𝜕4𝑤𝑏
𝜕𝑥4

−ℋ𝑠

𝜕4𝑤𝑠
𝜕𝑥4

+𝒜𝑠

𝜕2𝑤𝑠
𝜕𝑥2

        

 +(𝒜𝑠 + 𝒴𝑠)
𝜕2𝜙

𝜕𝑥2
+ 𝓆 = 𝐽1

𝜕�̈�0
𝜕𝑥

  + 𝐼0(�̈�𝑏 + �̈�𝑠)

 −𝐽2
𝜕2�̈�𝑏
𝜕𝑥2

−𝐾2
𝜕2�̈�𝑠
𝜕𝑥2

+ 𝐽0�̈�                                     

 𝛿𝜙: 𝒳
𝜕𝑢0
𝜕𝑥

− 𝒴
𝜕2𝑤𝑏
𝜕𝑥2

+ (𝒜𝑠 + 𝒴𝑠)
𝜕2𝑤𝑠
𝜕𝑥2

                     

−𝒜𝑠

𝜕2𝜙

𝜕𝑥2
+𝒵𝜙 = 𝐽0(�̈�𝑏 + �̈�𝑠) + 𝐾0�̈�       

  (18) 

E. Analytical solution for a Simple Supported Functionally 

Graded beam (S-S FG-beam) 

Analytical solutions of the motion equations are provided, 

based on Navier type solutions. The following 

displacements 𝑢0, 𝑤𝑏 , 𝑤𝑠 and 𝜙 are assumed to be 

combinations of known trigonometric functions which 

satisfy the boundary conditions. The unknown coefficients 

are determined for each "𝑛". 

 

[
 
 
 
𝑢0(𝑥, 𝑡)

𝑤𝑏(𝑥, 𝑡)

𝑤𝑠(𝑥, 𝑡)

𝜙(𝑥, 𝑡) ]
 
 
 

= ∑

[
 
 
 
 
𝑈𝑛 𝑐𝑜𝑠(𝜆𝑥)𝑒

𝑖𝜔𝑛𝑡

𝑊𝑏𝑛 𝑠𝑖𝑛(𝜆𝑥)𝑒
𝑖𝜔𝑛𝑡

𝑊𝑠𝑛 𝑠𝑖𝑛(𝜆𝑥)𝑒
𝑖𝜔𝑛𝑡

𝜙𝑛 𝑠𝑖𝑛(𝜆𝑥)𝑒
𝑖𝜔𝑛𝑡 ]

 
 
 
 ∞

𝑛=1

                                  (19) 

𝜔𝑛is the eigen frequency associated with the 𝑛𝑡ℎeigen mode, 

𝜆 = 𝑛𝜋 𝐿⁄ , and 𝑈𝑛 ,𝑊𝑏𝑛 , 𝑊𝑠𝑛 and 𝜙𝑛 are the unknown 

coefficients. 

The following boundary conditions are imposed for a 

beam with two ends simply supported. 

𝑈 = 𝑊 =ℳ𝑥
𝑏 =ℳ𝑥

𝑠 = 0                                                      (20) 

The assumed mechanical transverse load 𝓆(𝑥) is 
developed in a sinusoidal Fourier series as: 

𝓆(𝑥) = ∑𝒬𝑛 𝑠𝑖𝑛(𝜆𝑥)

∞

𝑛=1

                                                           (21) 

We give for certain loads, the following coefficients 𝒬n. 

1) Sinusoidal distribution case: 

𝑛 = 1 ⟹ 𝒬
1
= 𝓆0                                                                    (22) 

2) Uniform distributioncase: 

𝒬
𝑛
=
4𝑞0 
𝑛𝜋

 ,     (𝑛 = 1, 3, 5)                                                     (23) 

Analytical solutions may be reached from the eigenvalues 

system below for any fixed value of "𝑛": 

([𝐾] − 𝜔𝑛
2[𝑀]){𝛥} = {𝐹}                                                        (24) 

In the static problem case, Eq.(24)becomes: 

[𝐾]{𝛥} = {𝐹}                                                                            (25) 

with,  

[𝐾] = [

𝓀11
𝓀12
𝓀13
𝓀14

  𝓀12
  𝓀22
  𝓀11
  𝓀24

  𝓀13
  𝓀23
  𝓀33
  𝓀34

  𝓀14
  𝓀24
𝓀34
  𝓀44

] ;                                                            

[𝑀] = [

𝓂11

𝓂12

𝓂13

0

  𝓂12

  𝓂22

𝓂23

  𝓂24

  𝓂13

𝓂23

  𝓂33

  𝓂34

  0
  𝓂24

  𝓂34

  𝓂44

] ;                                            (26) 

{𝛥} = {

𝑈𝑛
𝑊𝑏𝑛

𝑊𝑠𝑛
𝜙𝑛

} , {𝐹} = {

0 
𝒬𝑛
𝒬𝑛
0 

}                                                 

𝓀11 = 𝒜𝜆
2;  𝓀12 = −ℬ𝜆

3;  𝓀23 = 𝒟11
𝑠 𝜆4;                  

𝓀22 = 𝒟11𝜆
4; 𝓀13 = −ℬ𝑠𝜆

3; 𝓀24 = 𝒴𝜆
2;                   

𝓀33 = ℋ𝜆
4+𝒜𝑠𝜆

2;  𝓀14 = −𝒳𝜆;                                  

 𝓀34 = (𝒜𝑠 + 𝒴𝑠)𝜆
2;  𝓀44 = 𝒵 +𝒜𝑠𝜆

2 ;                       
𝓂11 = 𝐼0 ; 𝓂12 = −𝐼1𝜆 ; 𝓂13 = −𝐽1𝜆;                       

𝓂22 = 𝐼0 + 𝐼2𝜆
2;    𝓂23 = 𝐼0 + 𝐽2𝜆

2 ;   𝓂24 = 𝐽0;     

𝓂33 = 𝐼0 +𝐾2𝜆
2 ;   𝓂34 = 𝐽0 ;  𝓂44 = 𝐾0                  

     (27) 

III. NUMERICAL RESULTS AND DISCUSSION 
In this part, a uniform transverse load is applied to the FG 

S-S FG-beam. Some numerical examples are proposed to 

first validated the model presented above and assess its 

accuracy. The FG-beam material is composed by 

𝐴𝑙2𝑂3(Alumina) and 𝐴𝑙(Aluminum). The material 
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characteristics of the corresponding components are listed in 

Table1. 

TABLE I. Material characteristics of 𝑨𝒍𝟐𝑶𝟑and 𝑨𝒍 [21] 

Components 𝝂 𝑬(𝑮𝑷𝒂) 𝝆 (𝒌𝒈/𝒎𝟑) 
Ceramic (alumina 

𝑨𝒍𝟐𝑶𝟑) 
0.3 380 3960 

Metal (aluminum 𝑨𝒍) 0.3 70 2702 

Dimensionless form is used as follows: 

�̅� = 100 (
𝐸𝑚ℎ

3

𝑞0𝐿
4
)𝑈 (0,−

ℎ

2
) ;                                    

𝑊 ̅̅ ̅̅ = 100 (
𝐸𝑚ℎ

3

𝑞0𝐿
4
)𝑊(𝐿/2, ℎ/2)                               

𝜎𝑥𝑧̅̅ ̅̅ = (
ℎ

𝑞0𝐿
)𝜎𝑥𝑧(0, 0);       𝜎�̅� = (

ℎ

𝑞0𝐿
)𝜎𝑧 (

𝐿

2
,
ℎ

2
) ;   

�̅� = (𝜔𝐿2/ℎ)√
𝜌𝑚

𝐸𝑚
                                                      

             (28) 

Numerical example as set out in Table 2 is performed for 

various material indexes to validate the present model. The 

results obtained by this theory, concerning displacements 
and the stresses, for (L/h=5) and those obtained by the 

analytical solution provided by Li et al. [22] are compared. 

The following shape function on the basis of Reddy beam 

theory is used: 

𝑓(𝑧) =
4𝑧3

3ℎ2
                                                                                (29) 

A. Static analysis 

TABLE II reveals that the présent théory is agree 
perfectly with that of Li et al. [22], and thus confirme the 

validation of the proposed method of solution. It can be seen 

also that the CBT model, wich omits shear deformation 

effects, under-estimates  displacements and stresses of the 

thick FG-beams. 

 TABLE II. Comparison of Non- dimensional transverse 

and axial displacements, axial and shear stresses of S-S 

FG-beam for various material indexes 

 

 

Fig. 3 Thickness stretching effect on the non-dimensional: 

(a)transverse, (b)axial displacements 

To investigate again the effects of the  thickness  

stretching on displacements, a comparison between the non 

dimensional displacements of the beam obtained from the 

present model with and without thickness stretching is made 

in Figs.3 (a) and (b) for the transverse and axial 

displacements respectively, for (L/h=5) and (p=5). The 

difference between the two curves is clearly seen. It is large 

out in the midle of the beam  and becomes zero at the ends 

for the transverse displacement and becomes zero out in the 

middle of the beam for  the axial displacement, unlike for 

the axial displacement wich is large  at the ends and 

vanishes out in the midle of the beam. 

 

𝒑 Theory 
𝑳 𝒉⁄ = 𝟓 

�̅̅̅� �̅� �̅�𝒙 �̅�𝒙𝒛 

𝟎 

Li et al. [22] 3.1657 0.9402 3.8020 0.7500 

CBT 2.8783 0.9211 3.7500 - 

Present 3.1681 0.9406 3.7919 0.7503 

𝟎. 𝟓 

Li et al. [23] 4.8292 1.6603 4.9925 0.7676 

CBT 4.4401 1.6331 4.9206 - 

Present 4.8202 1.6653 4.9893 0.7674 

𝟏 

Li et al. [23] 6.2599 2.3045 5.8837 0.7500 

CBT 5.7746 2.2722 5.7959 - 

Present 6.2475 2.2903 5.8797 0.7503 

𝟓 

Li et al. [23] 9.7802 3.7089 8.1030 0.5790 

CBT 8.7508 3.6496 8.1329 - 

Present 9.7787 3.6955 8.1099 0.5867 

𝟏𝟎 

Li et al. [23] 10.8979 3.8860 9.7063 0.6436 

CBT 9.6072 3.8097 9.5228 - 

Present 10.8847 3.8780 9.7086 0.6645 

(𝐚) 

(𝐛) 

(𝐚) 
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Fig. 4 Shear effect on axial displacement a long of the 

FGB on: (a) Lower beam face and (b) Uper beam face. 

Effect of shear on the évolution of non-dimensional axial 

displacement along the beam  on the uper and lower beam 

faces is evaluated from Fig. 4, for (L/h=5) and (p=5). It's 

clearly that shear does not have a great effect on the axial 

displacement, but not negligible. It can be seen also that 

shear it is maximum at the ends and vanishes at mid-span of 

the beam. 

In second examination and analysis example, effects of 

shear and thickness stretching on the non-dimensional 
tranverse displacement of the FG S-S beam are evaluated in 

Fig. 5, for (L/h=5) and (p=5).  It is obvious from these 

figures that the shear effect is more important on the two 

displacements  and it is greatest than  the effect of thickness 

streching for the transverse displacement. So the effect of 

the shear on the displacements connot be overlooked, 

especially for the thick beams. 

 
Fig. 5 Shear and stretching effects on the transverse 

displacement.  

 

 

Fig. 6 Non-dimensional: (a) Axial displacement 𝐔 , (b) 

Mid-span deflection 𝐖 through the FG-beam thickness. 

In Figs. 6 the evolution of non-dimensional (a) in-plane 

displacement at the end U(0) and (b) transverse displacement 

W(𝐿/2) at mid-span through the FG-beam thickness under 

uniform load is presented for (L/h=5) and (p=5). A slight 

difference appears for this shortest beam. It's clearly seen 

that,  the maximum displacement is at the bottom of the 

beam for axial displacement, and at the median plane for 

transverse displacement. This is due to the consideration of 

the thickness stretching (𝜀𝑧 ≠ 0). 
 

 
 

(𝐛) (𝐚) 

(𝐛) 
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Fig. 7 Non-dimensional: (a) Shear stress 𝛔𝐱𝐳 , (b) stress 

due to the thickness stretching 𝛔𝐳 versus the material 

parameter. 

Figs.7 (a) and (b) illustrate the evolution of the non-

dimensional (a) transverse shear stress, (b) stress due to the 

thickness stretching, versus power-law index(𝑝)for (L/h=5). 

All curves display the matérial index dependence of the 

stresses. It is clear that stress due to the thickness stretching 

exhibit low values but not negligibles compared with those 
of the transverse shear stress. 

Variations of the non-dimensional axial stressσxacross the 

depth and versus non-dimensional length of the FGB are 

presented in Figs.8 (a) and (b) for (L/h=5) and (p=5). It may 

be seen that axial stress vanishes at the ends, but it is 

maximum at the middle of the beam, and  The upper beam 

face is stretched, on the other hand, the lower face is 

compressed.Extension stress at the upper beam face is 

higher than the compressive stress at the lower face, because 

at uper face, the beam is ceramic-rich, whereas at the  lower 

face, it is metal-rich. It may be observed also, that the 
neutral plan, where the axial stress vanishes is moved  

upwards relative to the middle position. This is due to non-

homogeneous material of the FG-beam (p=5). 

 

 

Fig. 8  𝛔𝐱 distributions: (a)over the FG-beam thickness, 

(b) versus the beam non-dimensional length  

In Figs.9 (a) and (b) are plotted the distributions of the 

non-dimensional shear stress σxzthrough thethickness and 

versus non-dimensional length of the FG-beam, respectively, 

for (L/h=5) and (p=5). These figures reveal that the shear 

stress reaches its maximum value at the beam ends, but with 

opposite signs. It is canceled in the middle of the beam on 

the neutral plane and the lower and upper faces. As a result,  

the conditions of non-shearing on both lower and upper 
faces of the beam are satisfied. 

Thickness-stretching impact on the stresses is evaluated 

in Figs.10 (a) and (b) for (L/h=5) and (p=5). It may be seen 

that σz vanishes at the ends. Its highest value is  reached a 

midle of the beam. The upper beam face is stretched, on the 

other hand, the lower face is compressed. Compressive stress 

at the lower face of the FG-beam is higher than extension 

stress at the upper face. 

 

 

(𝐚) 
(𝐛) 

(𝐚) 

(𝐛) 

(a) 
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Fig 9.  𝛔𝐱𝐳 Distributions: (a) over the FG-beam thickness, 

(b) versus dimensionneless length of the beam 

 
 

 
Fig 10.  𝛔𝐳 distributions: (a) over the FG-beam thickness, 

(b) versus the FG-beam non-dimensional length  

 

B. Dynamic analysis 

TABLE III summarizes dimensionless frequencies 

associated with the first, second and third mode shapes of 

the S-S FG-beam, for various (L/h) ratio and material 
parameter (p). 

Again,  the results obtained by the present model, when 

the thickness- stretching is neglected correlate closely with 

these obtained by the  HSDT solution [10]. HSDT model 

under-estimates the frequencies of thick FG beams. This is 

due to the effect of the stretching of de the beam thickness 

omitted by the HSDT formulation, in the thick FG-beams 

case. It is emphasized that in the HSDT [10] formulation, the 

unknowns number is greater than this provided by the 

present model.  

Again,  the results obtained by the present model, when 

the thickness- stretching is neglected correlate closely with 
these obtained by the  HSDT solution [10]. HSDT model 

under-estimates the frequencies of thick FG beams. This is 

due to the effect of the stretching of de the beam thickness 

omitted by the HSDT formulation, in the thick FG-beams 

case. It is emphasized that in the HSDT [10] formulation, the 

unknowns number is greater than this provided by the 

present model. 

Dimensionless frequency variation versus material 

parameter for a  (L/h=5) with and without taking a count of 

the thickness stretching, is plotted in Fig11 (a). The plot 

shown that increasing (p) leads decrease of the frequencies. 
Highest frequency is achieved for (p=0, completely ceramic 

beam) , and the lowest for (p →∞, completely metal beam). 

This can be explained by the fact that the increase in (p) 

leads to an increase in the amount of ceramic in the mixture 

which is replaced by the metal, and leads to a decrease in the 

Young's modulus of the beam and makes it more flexible. 

The thickness stretching impact is shown by the offset 

between both curves. It is clearly seen that the frequencies 

are noticeably under-estimate, when thickness stretching is 

omited. Impact of the slenderness ratio (L/h) on the 

frequencies is shown in fig.11(b). It is clearly seen that 

increase (L/h) leads to increase of frequencies. 

 

 

 

 

 

 

(𝐛) 

(𝐚) 
 

(𝐛) 
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TABLE III: Comparison of the S-S FG-beam frequencies 𝛚𝐢̅̅ ̅ for some values of ( 𝐋 𝐡⁄ ) and (𝐩) 

𝑳 𝒉⁄  Mode Theory 
𝒑 

0 0.5 1 5 10 

5 

1 

HSDT [10] 𝜀𝑧 = 0 5.1530 4.4110 3.9900 3.4000 3.2810 

Present 
𝜀𝑧 = 0 5.1527 4.4107 3.9904 3.4012 3.2816 

𝜀𝑧 ≠ 0 5.1516 4.4230 4.0169 3.4310 3.2984 

2 

HSDT [10] 𝜀𝑧 = 0 17.8840 15.4610 14.0120 11.5350 11.0220 

Present 
𝜀𝑧 = 0 17.8812 15.4588 14.0100 11.5431 11.0240 

𝜀𝑧 ≠ 0 17.8900 15.5052 14.0978 11.6348 11.0785 

3 

HSDT [10] 𝜀𝑧 = 0 34.2250 29.8490 27.1080 21.6990 20.7530 

Present 
𝜀𝑧 = 0 34.2097 29.8382 27.0979 21.7158 20.5561 

𝜀𝑧 ≠ 0 34.2975 29.9670 27.2813 21.8884 20.6748 

20 

1 

HSDT [10] 𝜀𝑧 = 0 5.4600 4.6510 4.2050 3.6480 3.5390 

Present 
𝜀𝑧 = 0 5.4603 4.6511 4.2051 3.6485 3.5390 

𝜀𝑧 ≠ 0 5.4602 4.6657 4.2351 3.6835 3.5595 

2 

HSDT [10] 𝜀𝑧 = 0 21.5730 18.3960 16.6340 14.3730 13.9260 

Present 
𝜀𝑧 = 0 21.5732 18.3962 16.6344 14.3746 13.9263 

𝜀𝑧 ≠ 0 21.5710 18.4520 16.7511 14.5094 14.0043 

3 

HSDT [10] 𝜀𝑧 = 0 47.5940 40.6530 36.7690 31.5720 30.5340 

Present 
𝜀𝑧 = 0 47.5930 40.6526 36.7679 31.5780 30.5369 

𝜀𝑧 ≠ 0 47.5841 40.7709 37.0192 31.8649 30.7005 

 

Fig.11 The Effect of the material parameter (a), beam 

slenderness (b), on dimensionless fundamental frequency 

of the S-S FG-beam. 

 

 

 

 

 

(b) (𝐚) 
(𝐛) 
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IV. CONCLUSIONS 

In this paper, a refined beam-theory is performed for 

bending vibratory analysis of the thick FG-beams, taking into 
consideration thickness-stretching.The transverse 

displacement is assumed to be the sum of three components, 

bending, shear and stretching of the thickness.This, leads to 

reduction of unknown’s number, therefore the number of 

governing equations.The FG-beam effectif material 

characteristics are supposed change continuously in thickness 

direction according to a mixing law depending on volume 

proportion of the constituents. Governing equations  are 

obtained from Hamilton's principle, and solved by using 

Navier-solutions. 

Graphical and numerical results obtained here agree 
perfectly with those obtained using other theories with more 

unknowns.The effects of the thickness-stretching, impact of 

the material parameter and the beam-slenderness have been 

studied. It is clearly that the shortest beams exhibit the 

greatest thickness-stretching impact. Also both geometric 

and material parameters affect the vibrational responses of 

the FG-beams. 
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