
International Journal of Engineering Trends and Technology Volume 69 Issue 4, 16-20, April 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I4P203 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

TLHEL: Two Layer Heterogeneous Ensemble

Learning for Prediction of Software Faults

Jyoti Goyal1*, Bal Kishan2

1Department of Computer Science & Applications, Maharshi Dayanand University
2Department of Computer Science & Applications, Maharshi Dayanand University

1jyoti.goyal24@gmail.com, 2balkishan248@gmail.com

Abstract

Software fault prediction is the most ubiquitous research

concept in the domain of software engineering. Prior

literature concedes the importance of ML techniques in the
prediction of software faults, but the expedient method that

gives consistently good results has still remained

undetermined. So, to achieve high accuracy consistently,

we have investigated many ensemble methods that advance

the individual techniques and improves the performance of

the fault prediction model. This paper proposed the novel

TLHEL: two-layer heterogeneous ensemble model to

predict software faults with less misclassification rate. The

novelty of this model is that it combines the metric

selection and training as a single process which reduces

the computation overhead significantly, and performs
feature selection with cross-validation, which particularly

reduces the biasness of the model. The implementation of

the TLHEL model will significantly increase the efficiency

of the model.

Keywords: Faults, heterogeneous ensembling model,

Metrics, Stacking, Software fault prediction,

I. INTRODUCTION
Software quality assurance is the important phase of every

software industry because it ensures the desired quality of

the software product. Predicting faults at an early stage

significantly reduces the cost of fixing and correcting

faults [1-4]. The idea behind the prediction of faults is to

categorize the part of the software that is

Fault-prone from the part that is fault-free. This
categorization is highly beneficial for the testing team

because it is not possible to examine the whole system

completely. So, it greatly maximizes the optimum

utilization of scarce resources and also reduces the

maintenance cost & effort. Software fault prediction using

machine learning techniques is highly researched by many

researchers. State-of-the-art research revealed that not a

single classifier is always able to deal with all types of

faults. To overcome this limitation, ensemble learning is

introduced.

Ensemble learning is a machine learning technique where

more than one single machine learning algorithm is trained

and combined in order to produce a final output better than

the outputs of individual algorithms [5-10]. There are two

categories of ensemble learning; homogeneous and

heterogeneous ensembles.[11] Inhomogeneous

ensembling, every base learner is developed using the

same kind of algorithm, but in the heterogeneous

ensemble, every base learner is developed in a different
way by employing different machine learning techniques.

The final prediction is created by merging together each

particular base learner prediction statistically [12,13].

Diversity and accuracy are two essential and vital

conditions required to satisfy conditions and attain a

decent ensemble. There are different ways to enhance the

diversity of the models [14]:

1. Different machine learning algorithms

2. Different hyperparameter settings

3. Different feature sets

4. Different training sets

 Bagging

 Cross-validation

Stacking combines multiple base-level classifiers that are

generated by using different learning methods (Wolpert,

1992). Similar to boosting, stacking classifiers use

complex weighting schemes in comparison with bagging

that uses simple uniform weighting schemes [15]. Several

research papers showed that stacking could produce better

performance in comparison with the voting [16,26]. So,

here, we presented TLHEL: the two-layer heterogeneous

ensembling learning that combines the output of different
classifiers using stacking.

The main outline of the paper is. First, we present a few

descriptions of the basics of fault prediction. Second, we

define the problem that we observe in existing literature

then we propose the solution. Third, we explain our

proposed TLHEL: Two-layer heterogeneous ensemble

learning with a flowchart. Fourth, we discuss the expected

outcomes, and then finally, we conclude the findings of the

paper.

II. LITERATURE REVIEW

In the 21st century, no one can imagine their life without

technology. Without software, technology is like a human
without a brain. So, good quality software plays the

biggest role in everyone’s life. To provide quality

software, it is very important that the software should be

fault-free. Many research works have been done in this

https://ijettjournal.org/archive/ijett-v69i4p203
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Jyoti Goyal & Bal Kishan et al. / IJETT, 69(4), 16-20, 2021

17

field. Some of that recent work is discussed in this section.

Ehsan Elahi et al. proposed an ensemble approach that is a

model averaging method by employing different machine

learning techniques with class balancing. The results prove

that the model performs better than the other ensembling
methods [17]. Thanh khuat et al. proposed an ensemble

approach with data resampling techniques and data

balancing techniques. The results show that the ensemble

classifiers always perform better than the single classifiers

[18]. Mohammad Zubair khan proposed a hybrid model

and used eight datasets from the promise data repository to

validate the results. The results state that Ada SVM and

Bagging SVM are the best-performing classifiers [19].

Manu Banga et al. proposed a hybrid approach using PSO

and a modified genetic algorithm for feature selection and

classification of the faulty and non-faulty module. The

algorithm is implemented on National Aeronautics and

Space Administration Metric Data Program datasets [20].

Javad elmi et al. also proposed a multi-classifier system

that proves the ensemble-based system is always better

than standalone classifiers [21]. Mabayoje et al. design an

approach where the wrapper feature selection method for

selection of features and heterogeneous ensemble method

is used to find the faulty modules. The results proved that
naïve Bayes with genetic search feature selection gives the

best results as compared to others [22]. Mohammad Zubair

khan also performed a comparative study with individual

classifiers and ensemble classifiers for fault prediction, and

the results revealed that random forest is the best

performing classifiers among all classifiers [23].

 Abimbola G Akintola et al. performs the comparative

analysis based on the heterogeneity of classifiers with
feature selection techniques such as PCA, FSE, CFS for

the prediction of defects. The outcome proves that the

model will perform better when it is integrated with

specific sets of features [24]. Zhiqiang L. et al. performed

a study where the author focuses on two major problems is

linearly inseparable data and highly imbalanced data; their

proposed ensemble technique EMKCA outperformed the

existing techniques [25]. Mohammad Akour et al.

performed a comparative study between Bagging,

Boosting, Stacking, and Base Learner classifiers. The

empirical results prove that among 11 base classifiers, RF
is the best performing classifier that can be blended with

other classifiers to get an efficient fault prediction model

[26].

All of the research work mentioned above uses different

approaches for the prediction of faults, but no one focuses

on all the dimensions collectively like data preparation,

feature selection, data imbalance, etc.

III. PROBLEM DEFINITION

After doing a survey of the vast set of literature for

software fault prediction, we find that almost all software

fault prediction models are performing means similarly if

they are producing similar performance figures, but the

kind of defects detected by them are different. So, it leads

to the following implications:

 First, we need to reconsider the performance

metrics used for accessing the predictive
capability of the model.

 Second, using only one model creates biasness in

the model. So, we need to use ensembling.

 Third, advanced ensembling techniques need to

be used, like stacking and blending.

In particular, the existing methods of combining outputs of

different classifiers miss the contribution of the classifier

that detects small but different defects not detected by the

majority of classifiers. That’s why the majority voting

ensemble approach suffers from the problem of the

sizeable property of defects. So, we require to enhance the
combination strategies of ensembling [28].

Moreover, feature engineering performs a significant role

in the efficiency of any defect prediction model. Mayhaps

some models perform better when they are integrated with

specific subsets of features or metrics. This is the reason

why feature engineering plays a dominant role in

increasing the predictive performance of the model.

So, we proposed new ways of building an enhanced defect

prediction model that will address all these limitations.

IV. PROPOSED WORK

In this section, we propose a TLHEL approach that will
address all the issues we discuss in the problem definition.

The main objective of our proposed approach is to reduce

the misclassification rate both in case of faulty or non-

faulty. The efficiency of any model depends on how well it

predicts the data, and its prediction depends on how well

the model is trained. To effectively train the model, it is

necessary that the data we use for training is good because

it works on the simple principle GIGO: garbage in garbage

out. So, our proposed approach, TLHEL, works on all the

dimensions of data. The algorithm and architecture of our

proposed approach TLHEL are mentioned in figure 1 and
figure 2, where the whole dataset is divided into training

and testing data. The training data is analyzed from various

perspectives and prepare in such a way that it will

efficiently train the model. It includes missing values

treatment and outlier treatment. Outlier means all the

values that are outside the range. Then we check the ratio

of faulty and non-faulty classes. If it is not 1, it means the

dataset is suffering from a class imbalance issue. So, to

make it balance, we use a technique called SMOTE that

generates artificial instances of the minority class. After

that, we select those features that are highly correlated

with the faults, then we train the base set of classifiers and
validate it on the validation dataset. This process continues

until we get the optimized model. The output of these

classifiers will work as new instances for the meta-model.

This meta-model is used to provide final predictions on

real data.

 Jyoti Goyal & Bal Kishan et al. / IJETT, 69(4), 16-20, 2021

18

 Training Data

Figure 1: Architecture of Proposed TLHEL approach

 X1 X2 X3 Y

A 4.8 587 N

B 7.9 - Y

C - 7 Y

Fault

Data

SMOTE

Imbalanced

Data
Balanced

Data

Outliers

K fold Cross Validation

Training Data Validation Data

Results of Base Classifier/Input for Meta Classifier

Meta Classifier

Heterogen

eous Base

Classifiers

S

T

A

C

K

I

N

G

Testing

Data

Final Prediction

Faulty/Not Faulty

Base

Classifier 1

Base

Classifier 2

T

R

A

I

N

I

N

G

P

H

A

S

E

Outlier

Treatment

Missing &

Categorica

l Value

Treatment

Data Pre-processing

Base

Classifier 3

 Jyoti Goyal & Bal Kishan et al. / IJETT, 69(4), 16-20, 2021

19

The proposed TLHEL method given in the following

figure is summarized here:

1. Input fault dataset with features and output

labels.

2. Pre-process dataset by handling missing values

and discretizing categorical data.

3. Perform feature engineering by using RFECV.

4. Perform class balancing using SMOTE

5. Normalize the features using the Minmax

scaling method

6. Identify and treat outliers if they exist.

7. Divide the training dataset into training and

testing datasets.
8. Train and Test the base learners with a reduced

set of features with k fold cross-validation

9. The result of these base learners’ classifiers

will work as metadata for a meta learner.

10. Train the meta-learner with the newly

constructed dataset.

11. Test the meta-model with the test dataset

12. Evaluate the novel TLHEL model in terms of

F1-score, accuracy, ROC-AUC

These are the basic set of steps that we follow to build an

efficient fault prediction model.

All these steps are majorly categorized into six major

sections:

A. Input fault data: The dataset for the prediction of

faults is available in a Promise data repository. We can

also use it from the GitHub repository. It can also be

prepared using a bug tracking system.

B. Pre-processing of data: The data we extract from this

repository is not always ready for model training. It
sometimes contains missing values, outliers or it suffers

from a class balancing problem. So, in this step, we

handle all these problems.

C. Feature Engineering: It is the most crucial step of

every machine learning model. So, we select those

features that are highly correlated with faults. We also

remove all those features that suffer from

multicollinearity that unnecessarily increases the
dimensions of the features. The model having fewer

features always performs better.

D. Base Classifiers: The classifiers used at layer 1 are

base classifiers or weak learners. These base classifiers

are selected on the basis of diversity so that they will be

able to detect different faults. Diversity can be created in

any of the ways mentioned in the above section.

Start

Input fault data

with features and

output labels

Is class labels

balanced?

Normalize the reduced set

of features by Minmax

scaling technique

Perform Class

balancing using

SMOTE

Train and Test the Base set of

classifiers with K fold cross

validation

Stop

Preprocess dataset by Handling

Missing values and discretizing

categorical features

Perform Feature Selection using

Rfecv

Is features

Scaled?

Yes

NO

Yes

Create Metadata based on results

of these classifiers

Train the Meta Model with newly

constructed data

Test the new TLHEL model on

test dataset

Provide the Resultant Class labels

Evaluate the Model based on

various performance metrics

Figure 2: Workflow of proposed TLHEL model

 Jyoti Goyal & Bal Kishan et al. / IJETT, 69(4), 16-20, 2021

20

E. Meta Learner: The classifier we select at layer 2 is

called meta learner. The training of meta learner is

performed on the output of the base learner. The output

of the base learner will become the training data of meta

learner. The final prediction of the real data will be

provided by the meta learner.

All these modules are the major components of out

TLHEL model. The implementation of this approach

will appear in my next publication.

V. CONCLUSION AND FUTURE WORK

In this study, a TLHEL: two-layer heterogeneous

ensemble learning is proposed that addresses the

problem mentioned in the problem statement. We are not

only concerned with improving the accuracy of the

model but also with detecting the different faults that are

possible only by utilizing different or heterogeneous or

diverse classifiers. The diversity of the classifiers is

achieved by selecting classifiers from different

categories. But even after detecting different faults, they

are not considered due to their small figure. So, we opt
for the stacking technique that overcomes the problem of

consideration of small but different defects. Therefore,

it’s a combined framework that manages the limitation

of the data by using outlier removal techniques and data

balancing techniques and provides an optimized fault

prediction model. The findings of the proposed model

will appear in my next publication.

REFERENCES
[1] Li, Ning, Martin Shepperd, and Yuchen Guo. A Systematic

Review of Unsupervised Learning Techniques for Software

Defect Prediction., Information and Software Technology

122(2020).

[2] Al-Shaaby, Ahmed, Hamoud Aljamaan, and Mohammad

Alshayeb. Bad Smell Detection Using Machine Learning

Techniques: A Systematic Literature Review., Arabian Journal

for Science and Engineering 45(4)(2020) 2341–69.

https://doi.org/10.1007/s13369-019-04311-w.

[3] Ensemble Approach to Code Smell Identification., (2019).

[4] Patchaiammal, P, and R Thirumalaiselvi., Software Fault

Prediction Exploration Using Machine Learning Techniques.,

(6)(2019) 109–13.

[5] Zhou, Zhi-Hua.., Ensemble Learning., 1–5.

[6] Dietterich, Thomas G., Ensemble learning., The handbook of

brain theory and neural networks 2(2002) 110-125.

[7] Polikar, Robi.., Ensemble learning., Ensemble machine learning.

Springer, Boston, MA, (2012). 1-34.

[8] Yohannese, Chubato Wondaferaw, et al., Ensembles based

combined learning for improved software fault prediction: A

comparative study., 12th International Conference on Intelligent

Systems and Knowledge Engineering (ISKE). IEEE, (2017).

[9] Yucalar, Fatih, et al., Multiple-classifiers in software quality

engineering: Combining predictors to improve software fault

prediction ability., Engineering Science and Technology, an

International Journal 23.4(2020) 938-950.

[10] Sagi, Omer, and Lior Rokach., Ensemble learning: A

survey., Wiley Interdisciplinary Reviews: Data Mining and

Knowledge Discovery 8.4(2018) e1249.

[11] Petrakova, Aleksandra, Michael Affenzeller, and Galina

Merkurjeva.., Heterogeneous versus Homogeneous Machine

Learning Ensembles., (2015) 135–40.

[12] Laradji, Issam H., Mohammad Alshayeb, and Lahouari Ghouti..,

Software Defect Prediction Using Ensemble Learning on

Selected Features., Information and Software Technology

58(2015) 388–402.

http://dx.doi.org/10.1016/j.infsof.2014.07.005.

[13] Wang, Tiejian, Zhiwu Zhang, Xiaoyuan Jing, and Liqiang

Zhang., Multiple Kernel Ensemble Learning for Software Defect

Prediction., Automated Software Engineering 23(4)(2016) 569–

90.

[14] Bahler, Dennis, and Laura Navarro.., Methods for Combining

Heterogeneous Sets of Classifiers., Proceedings of the 17th

National Conference on Artificial Intelligence [American

Association for Artificial Intelligence (AAAI) (2000) 1–6.

[15] Fan, David W, Philip K Chan, and Salvatore J Stolfo., A

Comparative Evaluation of Combiner and Stacked

Generalization., Proceedings of AAAI-96 Workshop on

Integrating Multiple Learned Models: 40–46.

[16] Bowes, David, Tracy Hall, and Jean Petri. Software Defect

Prediction: Do Different Classifiers Find the Same Defects?.

(2017).

[17] Elahi, Ehsan., A New Ensemble Approach for Software Fault

Prediction., 2020 17th International Bhurban Conference on

Applied Sciences and Technology (IBCAST): (2020) 407–12.

[18] Tung, Thanh, Khuat My, and Hanh Le., Evaluation of Sampling-

Based Ensembles of Classifiers on Imbalanced Data for Software

Defect Prediction Problems., SN Computer Science 1(2)(2020)

1–16. https://doi.org/10.1007/s42979-020-0119-4.

[19] Education, I J Modern, Computer Science, and Mohammad

Zubair Khan.., Hybrid Ensemble Learning Technique for

Software Defect Prediction., (February)(2020) 1–10.

[20] Banga, Manu. 2020. Proposed Software Faults Detection Using

Hybrid Approach., (2019) 1–14.

[21] Elmi, Javad, and Mahdi Eftekhari.., Dynamic Ensemble Selection

Based on Hesitant Fuzzy Multiple Criteria Decision Making.,

Soft Computing. https://doi.org/10.1007/s00500-020-04668-3.,(

2020).

[22] Mabayoje, M A et al.., Wrapper Feature Selection Based

Heterogeneous Classifiers for Software Defect Prediction., (2019)

(March).

[23] Alsaeedi, Abdullah, and Mohammad Zubair Khan.., Software

Defect Prediction Using Supervised Machine Learning and

Ensemble Techniques: A Comparative Study.,(2019) 85–100.

[24] Akintola, Abimbola, Abdullateef Balogun, Fatimah B Lafenwa-

balogun, and Hammed Mojeed., “Comparative Analysis of

Selected Heterogeneous Classifiers for Software Defects

Prediction Using Filter-Based Feature Selection Methods., (2018)

1–6.

[25] Li, Zhiqiang, Xiao-yuan Jing, Xiaoke Zhu, and Hongyu Zhang.,

Heterogeneous Defect Prediction through Multiple Kernel

Learning and Ensemble Learning., (2017).

[26] Akour, M, I Alsmadi, and I Alazzam., Software Fault Proneness

Prediction: A Comparative Study between Bagging, Boosting,

and Stacking Ensemble and Base Learner Methods.” International

Journal of Data Analysis Techniques and Strategies 9(1)(2017)

1–16. https://www.scopus.com/inward/record.uri?eid=2-s2.0-

85018941954&doi=10.1504%2FIJDATS.2017.083058&partnerI

D=40&md5=20c0819792a0bee83561965240f9b392.

[27] D. I. George Amalarethinam, P. Mercy "MPTR_QoS: Multi-Path

Trust Routing for Improving QoS in Heterogeneous IoT Based

WSN" International Journal of Engineering Trends and

Technology 69.3(2021):58-63.

[28] Ayidagn, Kassahun Azezew, and Shilpa Gite. , Analysis of

Feature Selection Algorithms and a Comparative study on

Heterogeneous Classifier for High Dimensional Data survey.

