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Abstract 

Software fault prediction is the most ubiquitous research 

concept in the domain of software engineering. Prior 

literature concedes the importance of ML techniques in the 
prediction of software faults, but the expedient method that 

gives consistently good results has still remained 

undetermined. So, to achieve high accuracy consistently, 

we have investigated many ensemble methods that advance 

the individual techniques and improves the performance of 

the fault prediction model. This paper proposed the novel 

TLHEL: two-layer heterogeneous ensemble model to 

predict software faults with less misclassification rate. The 

novelty of this model is that it combines the metric 

selection and training as a single process which reduces 

the computation overhead significantly, and performs 
feature selection with cross-validation, which particularly 

reduces the biasness of the model. The implementation of 

the TLHEL model will significantly increase the efficiency 

of the model. 

 

Keywords: Faults, heterogeneous ensembling model, 

Metrics, Stacking, Software fault prediction, 

I. INTRODUCTION 
Software quality assurance is the important phase of every 

software industry because it ensures the desired quality of 

the software product. Predicting faults at an early stage 

significantly reduces the cost of fixing and correcting 

faults [1-4]. The idea behind the prediction of faults is to 

categorize the part of the software that is  

Fault-prone from the part that is fault-free. This 
categorization is highly beneficial for the testing team 

because it is not possible to examine the whole system 

completely. So, it greatly maximizes the optimum 

utilization of scarce resources and also reduces the 

maintenance cost & effort. Software fault prediction using 

machine learning techniques is highly researched by many 

researchers. State-of-the-art research revealed that not a 

single classifier is always able to deal with all types of 

faults. To overcome this limitation, ensemble learning is 

introduced. 

Ensemble learning is a machine learning technique where 

more than one single machine learning algorithm is trained 

and combined in order to produce a final output better than 

the outputs of individual algorithms [5-10]. There are two 

categories of ensemble learning; homogeneous and 

heterogeneous ensembles.[11] Inhomogeneous 

ensembling, every base learner is developed using the 

same kind of algorithm, but in the heterogeneous 

ensemble, every base learner is developed in a different 
way by employing different machine learning techniques. 

The final prediction is created by merging together each 

particular base learner prediction statistically [12,13]. 

Diversity and accuracy are two essential and vital 

conditions required to satisfy conditions and attain a 

decent ensemble. There are different ways to enhance the 

diversity of the models [14]: 

1. Different machine learning algorithms 

2. Different hyperparameter settings 

3. Different feature sets 

4. Different training sets 

 Bagging 

 Cross-validation 

Stacking combines multiple base-level classifiers that are 

generated by using different learning methods (Wolpert, 

1992). Similar to boosting, stacking classifiers use 

complex weighting schemes in comparison with bagging 

that uses simple uniform weighting schemes [15]. Several 

research papers showed that stacking could produce better 

performance in comparison with the voting [16,26]. So, 

here, we presented TLHEL: the two-layer heterogeneous 

ensembling learning that combines the output of different 
classifiers using stacking. 

The main outline of the paper is. First, we present a few 

descriptions of the basics of fault prediction. Second, we 

define the problem that we observe in existing literature 

then we propose the solution. Third, we explain our 

proposed TLHEL: Two-layer heterogeneous ensemble 

learning with a flowchart. Fourth, we discuss the expected 

outcomes, and then finally, we conclude the findings of the 

paper. 

II. LITERATURE REVIEW 

In the 21st century, no one can imagine their life without 

technology. Without software, technology is like a human 
without a brain. So, good quality software plays the 

biggest role in everyone’s life. To provide quality 

software, it is very important that the software should be 

fault-free. Many research works have been done in this 
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field. Some of that recent work is discussed in this section. 

Ehsan Elahi et al. proposed an ensemble approach that is a 

model averaging method by employing different machine 

learning techniques with class balancing. The results prove 

that the model performs better than the other ensembling 
methods [17]. Thanh khuat et al. proposed an ensemble 

approach with data resampling techniques and data 

balancing techniques. The results show that the ensemble 

classifiers always perform better than the single classifiers 

[18]. Mohammad Zubair khan proposed a hybrid model 

and used eight datasets from the promise data repository to 

validate the results. The results state that Ada SVM and 

Bagging SVM are the best-performing classifiers [19]. 

Manu Banga et al. proposed a hybrid approach using PSO 

and a modified genetic algorithm for feature selection and 

classification of the faulty and non-faulty module. The 

algorithm is implemented on National Aeronautics and 

Space Administration Metric Data Program datasets [20]. 

Javad elmi et al. also proposed a multi-classifier system 

that proves the ensemble-based system is always better 

than standalone classifiers [21]. Mabayoje et al. design an 

approach where the wrapper feature selection method for 

selection of features and heterogeneous ensemble method 

is used to find the faulty modules. The results proved that 
naïve Bayes with genetic search feature selection gives the 

best results as compared to others [22]. Mohammad Zubair 

khan also performed a comparative study with individual 

classifiers and ensemble classifiers for fault prediction, and 

the results revealed that random forest is the best 

performing classifiers among all classifiers [23]. 

 Abimbola G Akintola et al. performs the comparative 

analysis based on the heterogeneity of classifiers with 
feature selection techniques such as PCA, FSE, CFS for 

the prediction of defects. The outcome proves that the 

model will perform better when it is integrated with 

specific sets of features [24]. Zhiqiang L. et al. performed 

a study where the author focuses on two major problems is 

linearly inseparable data and highly imbalanced data; their 

proposed ensemble technique EMKCA outperformed the 

existing techniques [25]. Mohammad Akour et al. 

performed a comparative study between Bagging, 

Boosting, Stacking, and Base Learner classifiers. The 

empirical results prove that among 11 base classifiers, RF 
is the best performing classifier that can be blended with 

other classifiers to get an efficient fault prediction model 

[26]. 

All of the research work mentioned above uses different 

approaches for the prediction of faults, but no one focuses 

on all the dimensions collectively like data preparation, 

feature selection, data imbalance, etc. 

III. PROBLEM DEFINITION 

After doing a survey of the vast set of literature for 

software fault prediction, we find that almost all software 

fault prediction models are performing means similarly if 

they are producing similar performance figures, but the 

kind of defects detected by them are different. So, it leads 

to the following implications: 

 First, we need to reconsider the performance 

metrics used for accessing the predictive 
capability of the model.  

 Second, using only one model creates biasness in 

the model. So, we need to use ensembling. 

 Third, advanced ensembling techniques need to 

be used, like stacking and blending. 

In particular, the existing methods of combining outputs of 

different classifiers miss the contribution of the classifier 

that detects small but different defects not detected by the 

majority of classifiers. That’s why the majority voting 

ensemble approach suffers from the problem of the 

sizeable property of defects. So, we require to enhance the 
combination strategies of ensembling [28]. 

Moreover, feature engineering performs a significant role 

in the efficiency of any defect prediction model. Mayhaps 

some models perform better when they are integrated with 

specific subsets of features or metrics. This is the reason 

why feature engineering plays a dominant role in 

increasing the predictive performance of the model. 

So, we proposed new ways of building an enhanced defect 

prediction model that will address all these limitations. 

 

IV. PROPOSED WORK 

In this section, we propose a TLHEL approach that will 
address all the issues we discuss in the problem definition. 

The main objective of our proposed approach is to reduce 

the misclassification rate both in case of faulty or non-

faulty. The efficiency of any model depends on how well it 

predicts the data, and its prediction depends on how well 

the model is trained. To effectively train the model, it is 

necessary that the data we use for training is good because 

it works on the simple principle GIGO: garbage in garbage 

out. So, our proposed approach, TLHEL, works on all the 

dimensions of data. The algorithm and architecture of our 

proposed approach TLHEL are mentioned in figure 1 and 
figure 2, where the whole dataset is divided into training 

and testing data. The training data is analyzed from various 

perspectives and prepare in such a way that it will 

efficiently train the model. It includes missing values 

treatment and outlier treatment. Outlier means all the 

values that are outside the range. Then we check the ratio 

of faulty and non-faulty classes. If it is not 1, it means the 

dataset is suffering from a class imbalance issue. So, to 

make it balance, we use a technique called SMOTE that 

generates artificial instances of the minority class. After 

that, we select those features that are highly correlated 

with the faults, then we train the base set of classifiers and 
validate it on the validation dataset. This process continues 

until we get the optimized model. The output of these 

classifiers will work as new instances for the meta-model. 

This meta-model is used to provide final predictions on 

real data. 
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Figure 1:  Architecture of Proposed TLHEL approach 
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The proposed TLHEL method given in the following 

figure is summarized here: 

1. Input fault dataset with features and output 

labels. 

2. Pre-process dataset by handling missing values 

and discretizing categorical data. 

3. Perform feature engineering by using RFECV. 

4. Perform class balancing using SMOTE 

5. Normalize the features using the Minmax 

scaling method 

6. Identify and treat outliers if they exist. 

7. Divide the training dataset into training and 

testing datasets. 
8. Train and Test the base learners with a reduced 

set of features with k fold cross-validation 

9.  The result of these base learners’ classifiers 

will work as metadata for a meta learner. 

10. Train the meta-learner with the newly 

constructed dataset. 

11. Test the meta-model with the test dataset 

12. Evaluate the novel TLHEL model in terms of 

F1-score, accuracy, ROC-AUC  

These are the basic set of steps that we follow to build an 

efficient fault prediction model. 

All these steps are majorly categorized into six major 

sections: 

A. Input fault data: The dataset for the prediction of 

faults is available in a Promise data repository. We can 

also use it from the GitHub repository. It can also be 

prepared using a bug tracking system. 

B. Pre-processing of data: The data we extract from this 

repository is not always ready for model training. It 
sometimes contains missing values, outliers or it suffers 

from a class balancing problem. So, in this step, we 

handle all these problems. 

C. Feature Engineering: It is the most crucial step of 

every machine learning model. So, we select those 

features that are highly correlated with faults. We also 

remove all those features that suffer from 

multicollinearity that unnecessarily increases the 
dimensions of the features. The model having fewer 

features always performs better. 

D. Base Classifiers: The classifiers used at layer 1 are 

base classifiers or weak learners. These base classifiers 

are selected on the basis of diversity so that they will be 

able to detect different faults. Diversity can be created in 

any of the ways mentioned in the above section. 
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Figure 2:  Workflow of proposed TLHEL model 
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E.  Meta Learner: The classifier we select at layer 2 is 

called meta learner. The training of meta learner is 

performed on the output of the base learner. The output 

of the base learner will become the training data of meta 

learner. The final prediction of the real data will be 

provided by the meta learner.   

All these modules are the major components of out 

TLHEL model. The implementation of this approach 

will appear in my next publication.  

V. CONCLUSION AND FUTURE WORK 

In this study, a TLHEL: two-layer heterogeneous 

ensemble learning is proposed that addresses the 

problem mentioned in the problem statement. We are not 

only concerned with improving the accuracy of the 

model but also with detecting the different faults that are 

possible only by utilizing different or heterogeneous or 

diverse classifiers. The diversity of the classifiers is 

achieved by selecting classifiers from different 

categories. But even after detecting different faults, they 

are not considered due to their small figure. So, we opt 
for the stacking technique that overcomes the problem of 

consideration of small but different defects. Therefore, 

it’s a combined framework that manages the limitation 

of the data by using outlier removal techniques and data 

balancing techniques and provides an optimized fault 

prediction model. The findings of the proposed model 

will appear in my next publication. 
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