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Abstract - In this present paper, the geometrical non-linearity 

in free In-plane vibration of inextensible circular arch with 

uniform cross section and elastically restrained against rotation 
at the two ends has been investigated. Using the ends conditions 
and the transfer matrix, the eigen values of problem are 
determined iteratively using the Newton-Raphson algorithm. The 

kinetic and potential energy are discretized into a series of a 

finite spatial functions which are a combination of linear modes 
and basic function contribution coefficients. The use of 

Hamilton’s principle energy reduces the problem into a set of 
non-linear algebraic system that solved numerically using an 
approximate explicit method developed previously the so-called 
second formulation. Considering the multi-mode approach, the 
effect of the dimensionless rotational stiffness of springs at the 
two ends on non-linear frequency in the neighborhood of the first 
mode shape of the arch has been presented with their 
corresponding non-linear deflections and curvatures. 
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I. INTRODUCTION 

The Arches are one of the important structural element 

on many fields such as mechanical, aerospace, and civil 

engineering, the authors classified the arches by their 

shallowness ratio into two classes; shallow arch and deep 

or no-shallow arch. 

The vibration analysis of the arches is different from the 

analogous problems of rectilinear beam, because they 

depend on two variables: radial displacement, and 
tangential displacement. The present study will be mainly 

focused on the nonlinear free in-plane vibration of non-

shallow circular arch. Many researchers have investigated 

dynamic behaviour and vibration of arches, such as a 

review papers of P. Chidamparam and A.W. Leissa 1.  N. 

M. Auciello and M. A. De Rosa 2, Laura et al 3, Also the 

books about the Theory of Arched Structure by Igor A. 

Karnovsky , and The Dynamics of Arches and Frames by J. 

Henrych 4. The early investigators into the in-plan theory 

of rings and arches were Hope (1871) and Love (1944). 

Robert R. Archer 5 employed the equations of motion as 

given in Love with the addition of terms to represent 
damping effects to find the first four natural frequencies 

clamped incomplete ring with a constant symmetrical cross 

section. The general dynamic slope-deflection equations, 

which include the effect of dynamic load for a continuous 

circular arch frames are presented by T. M. Wang and J. M. 

Lee 6.  F Yang, R. Sedaghati and E. Esmailzadeh 7  

investigated the free vibration of curved beam based on 

different hypotheses including and excluding the axial 
extensity, rotary inertia and the shear deformation. Chu. 

Chengyi et al 8 developed a new theory for nonlinear 

buckling and nonlinear analysis of circular arch including 

the shear deformation, the theory of a Cosserat point was 

used by M.B. Rubin, E. Tufekci 9 to study a three-

dimensional free vibrations of a circular arch in small 

deformations, the problem of the base-excited motions of a 

circular arch is solved by Mau and Williams 10. 

Concerning the geometrical nonlinearity of circular arch, 

J.D. Yau, Y.B. Yang 11 proposed a nonconventional 

structural approach for deriving the planar curved beam 

element. C.A. Dimopoulos, C.J. Gantes 12 investigated the 
effect of other behaviour factors, such as the geometrical 

and material nonlinearities and the initial imperfections on 

the strength of the arches . Recently, A semi analytical 

solution  for  free  in-plane  vibration  of inextensible  

circular  arches  with a  uniform  cross-section  and  added  

point  masses  is presented by Ahmed Babahammou and 

Rhali Benamar 13.  

In this present paper, the geometrically non-linear free 

in plane vibration of circular arch elastically restrained at 

the two ends against the rotation will be presented 

following the analogous of references 14 and 15. For the 
simplification, the complicating effects such as rotary 

inertia and shear deformation will be ignored. The arch is 

assumed to be inextensible. The theoretical model is based 

on the Euler–Bernoulli beam theory in polar coordinates 

and the von Karman geometrical non-linearity assumptions. 

Harmonic motion is assumed and expended into a series of 

finites spatial functions. The use of Hamilton’s principle 

energy, reduces the problem into a set of non-linear 

algebraic equations solved numerically  using an 

approximate method the so-called second formulation 

developed in 16. The effect of the dimensionless rotational 
stiffness of spring at the two ends on non-linear behaviour 

of arch will be presented. 
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II. REVIEW OF THE MATHEMATICAL 

APPROACH 

A. Linear problem 

Considering the circular arch elastically restrained at the 

two ends by a rotational springs RK and  LK  in Fig. 1, 

with radius R and opening angle θ, young’s modulus E, 

cross section A, moment of inertia I and distributed mass µ. 

The shear deformation and rotary inertia are neglected 

because the arch is supposed to be thin.  u and w are 

respectively radial and tangential displacement of the arch, 

when The arch axis is supposed to inextensible radial and 

tangential displacement are related by 17 : 

 

w
u







 

 
(1) 

Fig.1: Schematic of system 

 

In this case the planar equation of motion can expressed 

as: 
 

5 3 4 3

5 3 2
2 0

u u u R u

EI t



   

   
   

    
 

 

(2) 

 
Considering the arch in a harmonic motion, we put: 

 

 

( , ) ( )cos( )u t U t  
 

(3) 

By writing this form of solution: 

 

( )U e  
 

(4) 

By replacing the Equation (3) and (4) into equation (2) the 

characteristic equation can be written as:      

5 3 22 (1 ) 0     
 

(5) 

Where 
4 2

2 R

EI

 
   is the non-dimensional frequency.  

The general solution of the differential equation (2) in 

term of radial displacement can be written as: 

 

1 2 3

4 5

( ) cosh( ) sinh( )

cos( ) sin( )

U C C C

C C

  

 

  

 
 

 
(6) 

     

    Where: 1   , 1    and 1   

 

The boundary condition circular arch may be written as: 

 

0( 0) ( 0)U U   
 

 (7) 

 

0( 0) ( 0)W W     

 (8) 

 

   ( 0) ( 0) 0LM k            
0 0( 0) ( ) 0RM k       

  
 (9) 

    Where the bending moment expression may be written 

as: 

4 2

3 4 2
( )

EI w w
M

R


 

   
  

  
 

 
(10) 

The eigenvalues of system 6 6   are determined 

iteratively using the Newton-Raphson algorithm in Matlab . 

The corresponding frequency parameter λ are presented in 

Table 1 and 2 for various values of the dimensionless 

rotational stiffness of spring R
R

K R
K

EI

   and L
L

K R
K

EI

  . 

Using the Cartesian coordinate the first and second mode 

shape of arch are plotted respectively in Fig.3. 
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Table1: Frequency parameter λ for circular arch elastically restrained against the rotation at the 

ends 

 
0  0K   6K   12K    

Present  Galerkin Ref 19 Present  Galerkin Ref 19 Present  Galerkin Ref 19 

 80  19,25  17,932 17.964 23,3875  23,345 22.788 25,3507  25,489 24.711 

 120  8  6,9168 6.9268 9,93484 9,8534 9.5407 10,8348  10,719 10.337 

 180  3  2.2646 2.2646 3,97311  3.7656 3.6196 4,40242  4.068 3.9151 

                          24K     100K   
710K   

  Present Galerkin  Ref 19 Present Galerkin  Ref 19 Present Galerkin  Ref 19 

 80  27,2562  26,275 26.399 29,7513  29,268 28.383 30,8942  30,061 29.218 

 120  11,6994 10,9 10.954 12,8193 11,778 11.599 13,3281 12,225 11.848 

 180  4,80443  4.2825 4.1194 5,31211  4.4710 4.3140 5,53832  4.5387 4.3844 

  

  

Fig.2: Representation of the first longitudinal and transversal displacement of circular arch 

elastically Restrained at the ends by a rotational springs at the two ends 

Table2: Frequency parameter λ for circular arch elastically restrained against the 

rotation at the ends LK 
=  and RK 

 variable. 

First frequency parameter  1   

    40 60 80 100 120 180 

0  Present  101.203 44.497 24.652 15.468 21.311 4.195 

 Ref 18 99,582 42,940 23,178 14,091 9,210 3,254 

6  Present  109.9715 48.435 26.899 16.934 11.523 4.706 

 Ref 18

 
106,407

 
46,892

 
25,826

 
16,010

 
10,672

 
4,027

 
12  Present  114.201 50.328 27.975 17.631 12.015 4.940 

 Ref 18 110,360 48,752 26,888 16,684 11,129 4,205 

24  Present  118.274 52.147 29.005 18.297 12.482 5.157 

 Ref 18 114,705 50,500 27,771 17,189 11,440 4,298 

100  Present  123.479 54.467 30.3152 19.138 13.070 5.423 

 Ref 18 119,970 52,473 28,720 17,718 11,766 4,411 

   Present  125.792 55.495 30.894 19.509 13.328 5.538 

 Ref 18 123,977 53,740 29,218 17,926 11,848 4,384 
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B. Formulation of the Nonlinear Problem 

Kinetic energy T potential energies V  for the system in 

Fig.1 can be written as 20: 

0
2 2(1)

0
2

R w w
T dt

t t


     

     
     


 

 
(11) 
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
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(13) 

To develop the non-linear theory, the displacement 
function is expanded as a series of N basic spatial 

functions:    

1

( , ) sin( )
N

i i

i

w t a W t 



 

 
(14) 

 

 

 

 

 

 

 

Using a generalized parameterization and the usual 

summation convention defined in [10] and [9]   The kinetic 

energy T  

and potential energy V due to axial, bending and elastic 

foundation energy of the arch can be expressed as: 

2 21
cos ( )

2
i j ijT a a m t 

 

 
(15) 

         

21
sin ( )

2
a i j ijV a a k t

 

 

(16) 

41
sin ( )

2
b i j k l ijklV a a a a b t

 

 
(17) 

 

ijm , ijk  and ijklb  are respectively, the mass tensor, linear 

and quadratic nonlinear rigidity tensors of the arch in 

which their expressions are defined as: 

0

0

ji

ij i j
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m R WW d



 
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(19) 

 

 

 

  

Fig.3: Representation of the first longitudinal and transversal displacement of circular arch 

elastically 

At two ends. In blue RK 

= , LK 

=  , in red RK 

=100 and LK 

=   
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The coefficients ia  are unknowns as well as the frequency 

ω. 

The dynamic behavior of a conservative system may be 

obtained using Hamilton’s principle by taking into account 

the forcing term, may be written as follow: 

 

2

0

V T dt




   

 
(21) 

The process leads to non-linear algebraic equations for the 

unknown coefficients ia that can be written in a matrix 

form as follows: 

          2 3
( ) 0

2
K M A B A A    

 
(22) 

Where {A} is a column vector of a basic functions 

contribution ia .To evaluate the non-dimensional 

parameter, ones put: 

 
0

( )i i iW hW hW


 


   
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2
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3
,

ij ij ijkl

ij ij ijkl

m k b EIh
R h
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
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    

 
(24) 

Which leads to: 

2

3

EI

R




 

 

 
(25) 

Where ijm
, ijk 

 and ijklb
are the non-dimensional  

generalized parameter given by: 
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(29) 

For uniform rectangular section α = 3. 

Equation cans be rewritten in non-dimensional form as: 

      2 3
( ) 0

2
K M A B A A                

 
(30) 

Using the tonsorial notation, one put: 

23
0

2
i ir i j k ijkr i ira k a a a b a m       

 
(31) 

with  1,...,r n  

2
 is given in by: 

           

    
2

3

2

T T

T

A K A A B A A

A M A


   
  

 
(32) 

For higher amplitudes, a second formulation has been 

considered in which only second order terms of the type

1 1i j ij ra b  
are neglected when considering the first non-

linear mode. By separating in the non-linear expression  

i j k ijkra a a b
terms proportional to 

3

1a , terms proportional 

to 
2

1ia  and neglecting terms proportional to 1 i ja   leads 

to: 

After 

substituting and rearranging, equation can be written in 

matrix form as: 

    2 3

2
r r r r rR RR R R

K M A A                

     3

111

3

2
r ra b 

  
 

 

 
(34) 

Where the  term 
2

r r ijrrR R
a b          is a r r matrix 

depending on ra . 
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III.  NUMERICAL RESULTS AND DISCUSSION 

   The first eight linear frequencies of an arch elastically 

restrained against the rotation at the two ends, are 

summarized in Table 3 for   L RK K K    and in Table 4 

for LK    and various values of  RK  with an opening 

angle 0 180  . 

    The linear analysis was performed in order to use the 

linear modes shapes as a basics functions on non-linear 

analysis.  

For a given value of 
1a , Table 5,6 and 7 present the 

frequency ratio nl

l






 , the dimensionless non-linear 

amplitude maxW
h



 and the basic Contribution coefficient 

functions 
i obtained by this method in case of SS circular 

arch ( 0L RK K   ), CS circular arch ( 0,L RK K    ) 

and CC circular arch ( L RK K    ) respectively . 

     The Fig.4 and 5 give the backbone curves 

corresponding to various values of  dimensionless 

rotational stiffness at the two ends  LK   and RK  . 

    The corresponding normalized first non-linear mode 

shape and curvatures are shown in Fig.6 to 11 respectively. 

The hardening behaviour type of geometrical non-

linearity can be clearly observed in Fig. 4 and 5.   

     The effect of the dimensionless rotational stiffness at 

the two ends on the curvatures and frequency ratio   

associated to the first non-linear deflection can be clearly 

observed in Table 8 by the difference between linear and 

non-linear theory for an estimate non-linear normalized 

amplitude  max 1.6
W

h



 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: The first fundamental frequencies of 

circular elastically restrained at two ends with 

LK    and various level of 
RK   and 

0 180  . 

 

RK   0 6 12 100   

1  4,1957 4,7068 4,9402 5,4237 5,5383 

2  8,9916 9,369 9,5976 10,242 10,439 

3  17,119 17,647 17,988 19,047 19,398 

4  25,982 26,431 26,753 27,964 28,449 

5  38,095 38,641 39,043 40,66 41,35 

6  50,978 51,465 51,844 53,583 54,449 

7  67,082 67,64 68,082 70,21 71,326 

8  83,976 84,475 84,903 87,124 88,45 

Table 4 : The first eight fundamental frequency 

of circular arch elastically restrained at two ends 

with various values of  L RK K K     and 

0 180   

K   0 6 12 100   

1  3 3,9731 4,4024 5,3121 5,5383 

2  7,5875 8,3637 8,8096 10,05 10,439 

3  15 16,02 16,671 18,705 19,398 

4  23,582 24,494 25,131 27,489 28,449 

5  35 36,066 36,847 39,984 41,35 

6  47,583 48,567 49,322 52,735 54,449 

7  63 64,095 64,96 69,116 71,326 

8  79,584 80,613 81,448 85,822 88,45 
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Table 5: Contribution coefficient functions corresponding to the first non-linear mode shape of circular arch for 

0L RK K   and 0 180   

nl

l






  maxW
h



 1a  
2  

3  
4  

5  
6  

7  
8  

1,002004 0,08165 0,05 3,70E-10 -7,82E-07 2,91E-13 -4,91E-08 7,57E-14 -8,25E-

09 

7,54E-

14 

1,064259 0,46947 0,2875 4,86E-08 -0,00015 1,72E-11 -9,28E-06 1,03E-11 -1,56E-

06 

1,34E-

11 

1,200969 0,857231 0,525 1,70E-07 -0,0009 -1,10E-10 -5,56E-05 3,95E-11 -9,46E-
06 

7,57E-
11 

1,390341 1,244886 0,7625 3,13E-07 -0,00274 -6,59E-10 -0,000166 8,25E-11 -2,87E-

05 

2,18E-

10 

1,613943 1,632399 1 4,57E-07 -0,00613 -1,78E-09 -0,000364 1,41E-10 -6,38E-

05 

4,64E-

10 

Table 6: Contribution coefficient functions corresponding to the first non-linear mode shape of circular arch for 

0,L RK K    and 0 180   

nl

l






  maxW
h



 1a  
2  

3  
4  

5  
6  

7  
8  

1,000552 0,084803 0,05 9,47E-06 5,16E-07 1,96E-07 5,21E-08 2,71E-08 1,06E-08 6,30E-

09 

1,018089 0,487909 0,2875 0,001797 9,88E-05 3,77E-05 1,01E-05 5,25E-06 2,05E-06 1,23E-
06 

1,059116 0,892589 0,525 0,010914 0,000613 0,000237 6,36E-05 3,34E-05 1,31E-05 7,87E-

06 

1,121058 1,301556 0,7625 0,033317 0,001932 0,0007599 0,000206 0,00011 4,30E-05 2,60E-

05 

1,200683 1,719943 1 0,074879 0,004508 0,001812 0,000497 0,00027 0,000106 6,47E-

05 

Table 7 : Contribution coefficient functions corresponding to the first non-linear mode shape of circular arch for 

L RK K    and 0 180   

nl

l






  maxW
h



 1a  2  3  4  5  6  7  8  

1,000595 0,087679 0,05 -4,26E-11 3,36E-06 3,12E-13 2,95E-07 -3,78E-14 6,05E-08 4,52E-

12 

1,019487 0,504433 0,2875 -7,82E-09 0,000634 6,03E-11 5,62E-05 -8,61E-12 1,16E-05 8,76E-

10 

1,063593 0,922336 0,525 -4,41E-08 0,003789 3,93E-10 0,000344 -6,99E-11 7,19E-05 5,57E-

09 

1,129963 1,342267 0,7625 -1,22E-07 0,01129 1,41E-09 0,001061 -2,74E-10 0,000226 1,82E-

08 

1,214955 1,764991 1 -2,47E-07 0,024557 4,00E-09 0,002406 -7,19E-10 0,000524 4,43E-

08 
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Fig.4: Backbone curve of circular arch elastically 

restrained at the end , in the vicinity of the first mode, for 

various values of K 
, with  K 

= LK  = K 
 

 

Fig.5: Backbone curve of circular arch elastically  

restrained at the end , in the vicinity of the first mode,  

LK    and  various values of  RK   

 
 

Fig.6:Representation of the first normalized longitudinal transversal non-linear amplitude of circular arch 

elastically restrained at the end with 0L RK K    
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Fig.7:Representation of the first normalized longitudinal transversal non-linear amplitude of circular arch 

elastically restrained at the end with 0LK    and RK    . 

 

 

 

  

Fig.8:Representation of the first normalized longitudinal transversal non-linear amplitude of circular arch 

elastically restrained at the end with LK    and RK     
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 Fig.9: The curvature associated to the first non-linear modes shape for various values of K 
 

 

 

 

Fig.10: The curvature associated to the first non-linear modes shape for LK    and  various values of  RK 
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IV.  CONCLUSION 

The geometrical non-linearity in free In-plane vibration of 

inextensible circular arch elastically restrained at the ends 

against rotation has been investigated. The generalized 

transcendent equation of frequency has been solved 

iteratively using the Newton-Raphson algorithm. The 

analysis of the geometrical non-linearity was performed 

based on the Euler Bernoulli theory and the Von Karman 
geometrical non-linearity assumptions. The linear 

frequencies have been obtained for various values of the 

dimensionless rotational stiffness of springs at the two 

ends. The linear modes shapes have been plotted and used 

as a basic function on non-linear analysis. The kinetic and 

total strain energy were discretized into a set of non-linear 

algebraic equations and derived using a Hamilton’s 

principle energy and spectral analysis. The problem is 

reduced into a set of non-linear algebraic equations solved 

numerically by an approximate explicit method the so-

called second formulation. Based on multi-mode approach, 
the effect of the dimensionless rotational stiffness of 

springs at the two ends on non-linear behavior of arch has 

been illustrated on the backbone curves of the frequency-

amplitude dependence for various cases. Also the non-

linear amplitude and curvature associated to the first non-

linear deflection has been presented in case of CC, SS and 

CS circular arch.  
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Table 8: effect of torsion spring stiffness K   on non-linear curvature and frequency ration of circular arch  
 

 
Curvature at   0   

l

 nl 

 
l

nl






  
  Linear Non-linear difference 

K  =12 207.50 211.39 3.85 2.875 3.726 1.295 

K  =100 380.47 399.13 18.66 4.018 4.770 1.187 

K  =  430.80 458.78 27.93 4.390 5.168 1.177 


