
International Journal of Engineering Trends and Technology Volume 69 Issue 10, 108-117, October, 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I10P214 ©2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Predicting Processor Performance Using Machine

Learning Techniques: A Study on SPEC CPU2017

Benchmark Suite

Mutaz A. B. Al-Tarawneh1, Sami A. Al-Tarawneh2, Khaled S. Al-Maaitah1

Computer Engineering Department, Faculty of Engineering, Mutah University, Jordan 61710

Basic and Information Science Department, Karak University College, Al-Balqa Applied University, Jordan 61710

1mutaz.altarawneh, khaled_almaaitah@mutah.edu.jo, 2sami.tarawneh@bau.edu.jo

Abstract — Recent advances in the microprocessors
industry have introduced a plethora of processor models

with diverse microarchitectural characteristics. Such

diversity would normally complicate the decision on

choosing the best processor model for a particular

application class. Hence, an efficient tool is required to

estimate and compare the performance of different

processor models on a particular application. This paper

reports on using different machine learning models to

predict the performance of modern processor models on

various benchmark applications. These models include

Linear Regression (LR), Artificial Neural Networks

(ANNs), and Random Forests (RF). They are trained and
evaluated on a dataset constructed based on the Standard

Performance Evaluation Corporation (SPEC) CPU2017

benchmark performance evaluation results. The SPEC

CPU 2017 suite includes both integer and floating-point

applications. Both training and evaluation are performed

using WEKA data mining and machine learning tool.

Evaluation metrics include correlation coefficient, mean

absolute error (MAE), relative absolute error (RAE), root

mean squared error (RMSE), and root relative squared

error (RRSE). Evaluation results show that the Random

Forest-based model provides superior performance over
other models under all evaluation metrics. Ultimately, the

trained models can provide viable tools for the

performance of new processor models on standard

benchmark applications.

Keywords — Processor, microarchitecture, performance,

machine learning.

I. INTRODUCTION
Recently, the marketplace for multicore processors has

witnessed the emergence of several processor models.

These models provide similar general-purpose processing

capabilities but exhibit noticeable differences in terms of

their microarchitectural features such as clock frequency,

cache memory size, memory bandwidth, and memory

capacity [1]. On the other hand, the workload space

encompasses a wide range of applications with diverse

instruction types, memory access patterns, and control-
flow behavior [2] . Typically, computer users may depend

on some microarchitectural features such as clock

frequency to compare different microprocessor

configurations. However, microprocessor performance
depends not only on its microarchitectural configuration

but also on the characteristics of the applications or

workloads being executed [3, 4]. To attain educated and

standardized studies of processor performance, several

benchmark suites have been presented. In this context, the

Standard Performance Evaluation Corporation (SPEC)

CPU benchmark suite is one of the most widely used suites

to evaluate and compare the quality of different processor

designs in both the academic and industrial fields. The

SPEC CPU2017 is the most recent release of the SPEC

CPU suite ,[5] which has been widely used for

performance evaluation, assessment of new
microarchitecture configurations, and workload

characterization studies [6-16]. It has been introduced to

keep pace with recent advances in the microprocessor

industry, for which old benchmark suites such as

SPEC2006 may provide misleading results [17]. The

SPEC CPU2017 consists of 43 benchmarks, divided into 4

sub-suites, covering carefully selected integer and floating-

point applications [5]. The covered applications constitute

a representative sample of the whole workload space and

are designed to stress and evaluate different aspects of the

processor design [18]. In addition, the included
benchmarks correspond to either speed or rate versions,

which are used to evaluate execution time or throughput,

respectively.

Typically, the performance of a large collection of

processor configurations on the SPEC CPU suite is

published publicly on specialized repositories [19]. The

published performance results cover microprocessor

configurations with different vendors, processor models,

and microarchitectural features. However, repositories of

benchmark results may not be adequate when assessing the

performance and suitability of new processor models or

configurations. On the one hand, published results do not
establish a clear association between processor

performance on a particular benchmark and that

processor’s microarchitectural features. On the other hand,

the aggregate performance scores for benchmark suites

that cover a diverse set of application types can be

misleading as microprocessors may provide different

performance levels for different application classes. Hence,

this paper investigates the utilization of machine learning

models to predict microprocessor performance based on

https://ijettjournal.org/archive/ijett-v69i10p214
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

109

the speed version of the SPEC CPU2017 benchmark suite.

While other research efforts have applied some machine

learning-based techniques to analyze data from the SPEC

CPU2006 suite [1], applying machine learning models on

the SPEC CPU2017 is still in its infancy. On the other
hand, the SPEC CPU2017 includes some new application

types that were not covered in its 2006 counterpart [17]. In

addition, it includes more memory-intensive and complex

benchmarks that may include more than ~10x number of

dynamic instructions, as compared to those in the

CPU2006 suite[17]. Hence, machine learning models

obtained for the CPU2006 benchmark suite may not be

directly applicable to the SPEC CPU2017 benchmark suite.

The rest of this paper is organized as follows. Section II

introduces some necessary background material. Section

III briefly introduces the evaluation methodology. Section

IV presents a motivational analysis. Section V shows the
evaluation results, and Section VI summarizes and

concludes this paper.

II. BACKGROUND

This section provides an overview of the SPEC CPU2017

benchmark suite. It also briefly describes the machine
learning algorithms utilized in this work.

A. Benchmarks Overview

In this work, two CPU2017 benchmark groups, namely,

the speed integer (SPECspeed INT) and speed floating-

point (SPECspeed FP), are considered, as shown in Table I.

Each group consists of 10 benchmark programs which are
written in C, C++, and Fortran programming languages [5].

As compared to CPU2006, CPU2017 contains new

benchmarks and application domains [17]. In the integer

(INT) category, the artificial intelligence domain has been

expanded with three new benchmark programs (deepsjeng,

Leela, and exchange2). In addition, two other

compression-related applications, which include x264

(video compression) and xz (general data compression),

have also been added. On the other hand, nine new

benchmark programs have been added. In this regard,

parest implements a finite element solver for biomedical

imaging. Blender is a 3D rendering application. In
addition, cam4, pop2, and roms represent the climatology

domain. Furthermore, imagick represents an image

manipulation application, and nab is a molecular modeling

application with floating-point intensive operations,

representing the life sciences domain. Moreover, the

fotonik3d and the cactuBSSN represent the physics domain.

Table I summarizes some salient characteristics of the

considered benchmark programs.

TABLE I

Benchmark programs

SPECspeed Integer

Name IC (x109) Loads (%) Stores (%) Branches (%)

600.perlbench 2696 27.20 16.73 18.16

602.gcc 7226 40.32 15.67 15.60

605.mcf 1775 18.55 4.70 12.53

620.omnetpp 1102 22.76 12.65 14.55

623.xalancbmk 1320 34.08 7.90 33.18

625.x264 12546 37.21 10.27 4.59

631.deepsjeng 2250 19.75 9.37 11.75

641.leela 2245 14.25 5.32 8.94

648.exchange2 6643 29.61 20.22 8.67

657.xz 8264 13.34 4.73 8.21

SPECspeed Floating-point

603.bwaves 66395 31.00 4.42 13

607.cactuBSSN 10976 43.87 9.50 1.80

 619.lbm 4416 29.62 17.68 1.40

621.wrf 18524 23.20 5.80 9.48

627.cam4 15594 20 14 10.92

628.pop2 18611 21.71 8.41 15.13

638.imagick 66788 18.16 0.46 9.30

644.nab 13489 23.49 7.51 9.55

649.fotonik3d 4280 33.99 13.89 3.84

654.roms 22968 32.02 8.02 7.53

These characteristics include the dynamic instruction count

(IC) and the percentage of memory access instructions (i.e.,

the Load and Store instructions) in addition to the

percentage of control-flow instructions (i.e., Branch

instructions). They together characterize the inherent

instruction mix of each benchmark, benchmark's memory-

boundedness, CPU-boundedness, and control-flow
behavior. As shown, the benchmark programs exhibit

noticeable diversity in terms of their instruction count and

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

109

frequencies of different instruction types. Such diversity

would cause differences in the memory access patterns,

amount of instruction-level parallelism (ILP) extracted

from each benchmark, and, in turn, the performance of the

associated benchmarks on different microarchitectural
configurations. Typically, the performance of a particular

machine, with a specific microarchitectural configuration,

on the benchmark (i) is quantified in terms of SPEC ratio

(SPECRatioi), as shown in equation 1 [20, 21].

ref i

i
sys i

T
SPECRatio

T







(1)

Where Tref-i is the execution time of benchmark (i) on the

reference machine, Tsys-i is the execution time of

benchmark (i) on the system being tested. The overall

performance score of the tested system configuration is

achieved by aggregating individual SPEC ratios for all

benchmarks within a specific category, as shown in

equation 2.

1

n

n
i

i

SPECScore SPECRatio


 

(2)

Where (n) is the number of benchmark programs in a

particular category. The aggregate performance score is

the geometric mean of the individual SPEC ratios. While

the aggregate score provides some useful information

about the average-case performance of the tested

configuration, it may not provide an accurate indication of

the performance of each benchmark; as different

benchmarks may perform differently on the same hardware

configuration. Hence, considering the availability of

different application domains and the diversity among

different benchmarks, an efficient and accurate tool is
required to estimate the performance of different

benchmark applications on new hardware configurations.

Hence, this work investigates the utilization of machine

learning models as performance estimation tools based on

the SPEC CPU2017 benchmark suite.

B. Machine Learning Algorithms

This section briefly introduces the machine learning

algorithms employed in this work. The algorithms include

linear regression (LR), artificial neural networks (ANNs),
and random forests (RF). These algorithms are used to

predict the performance of a particular processor

configuration on a specific benchmark application based

on some input features. These features are mainly related

to the processor microarchitectural features and the

application type. As the predicted performance value is a

continuous numeric value, the machine learning algorithms

are used to perform regression operations.

a) Linear Regression

Linear regression is a supervised machine learning
approach in which a linear relationship is established

between some independent variables (i.e., inputs) and a

dependent variable (i.e., output) [22, 23]. It can be applied

to predict an output value according to new input features.

So, a linear model for predicting an output value based on

some input features (xj) can be summarized as shown in

equation 3.

0 1 1 2 2 k ky x x x         

(3)

In equation (3), the Betai parameters are called regression

coefficients that characterize the linear relationship and

construct a linear model between the input features (i.e., xj)

and the output value (y). Hence, the linear model is
obtained by adjusting the values of the regression

coefficients based on the relationship between the input

features and their corresponding output value while

training the model using a set of training data.

b) Artificial Neural Networks

Artificial neural networks are widely used in supervised

learning applications in which a non-linear relationship

may exist between the input features and the output

variable. They represent data processing systems that are

composed of the interconnection of fully connected layers
[24]. Each layer consists of basic units called perceptrons.

A typical ANN consists of an input layer, one or more

hidden layers, and an output layer that are connected via

weighted connections, as shown in fig. 1. The input layer

receives the values of the input features and feeds them to

the hidden layer. The number of nodes in this layer is

determined based on the number of input features. On the

other hand, each node in the hidden layer performs a

weighted sum of its inputs. Thereafter, the computed

weighted sum is used by a particular activation function to

decide on the value that should be fed to the nodes of the

next layer, based on a predefined threshold value [25].

Fig. 1 ANN model two hidden layers.

The hidden layers structure, i.e., the number of layers

and the number of nodes per layer, is experimentally

decided according to the sought model performance. In

addition, in regression-oriented ANNs, the output layer

contains a single node that performs a un thresholded
weighted sum of the inputs it receives from the last hidden

layer. Hence, an ANN-based model is obtained by setting

the values of the connection weights such that a particular

cost function is optimized based on the relationship

between the input features and their corresponding output

values in a representative training dataset.

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

110

c) Random Forests

Random forests represent a supervised ensemble-based

machine learning algorithm [26]. It is widely used to

perform regression tasks, especially in the presence of

categorical input variables (i.e., features). It operates by
constructing an ensemble of base learners (i.e., decision

trees) at training time and outputting the average

prediction among the individual trees as the final

prediction of the output variable. In other words, the

algorithm grows trees to form the ensemble and aggregates

the predictions of the single trees to generate an ensemble

prediction. Typically, constructing ensembles from base

learners such as decision trees can significantly improve

prediction performance as compared to that of a single

base learner [27]. In addition, ensemble learning can be

further improved by injecting randomization into the base

learning process as in Random Forests, in which diverse
base learners (i.e., decision trees) are created. To create

diverse trees, each tree is grown on a subsample or

bootstrap sample of the data. A further random element is

introduced by randomly drawing splitting candidate

variables at each node split in the decision trees. Such

randomization in the ensemble construction process would

minimize the amount of correlation between individual

base learners and correct for potential individual decision

trees' inclination towards overfitting the training sets.

Hence, a better prediction performance would necessarily

be achieved.

III. EVALUATION METHODOLOGY

A. SPEC CPU2017 Datasets

To test the prediction performance of different machine
learning algorithms, a representative dataset is required. In

this work, two datasets were constructed based on the

SPEC CPU2017-based evaluation results that have been

published on the SPEC website since the release of the

benchmark in June 2017. There are separate evaluation

reports for each of the integer and floating-point

benchmark groups. Hence, this work constructs separate

datasets for each of the integer and floating-point

benchmark groups. Each evaluation report contains

comprehensive information about the tested system, such

as test sponsor, processor vendor, processor hardware
configuration, operating system, and compiler settings.

Each report highlights the SPEC ratio of the tested

processor under each benchmark in the associated

benchmark group. The number of evaluation reports

obtained for each benchmark group is 4773. These

evaluation reports were then processed to extract the

information required to construct the dataset. As each

evaluation report contains the SPEC ratio of the associated

processor on 10 different benchmarks (from either the

integer or the floating-point groups), each dataset consists

of 47730 entries. Table II summarizes the information

contained in each entry of the dataset. As shown, each
entry stores both the input variables (i.e., features) related

to the corresponding processor besides its recorded SPEC

ratio (i.e., the target variable). In addition, Table II shows

the data type of each variable. Each entry stores both

numeric and categorical variables. The obtained datasets

were then preprocessed using two main steps. First, all

categorical variables were encoded using the one-hot

encoding technique. Second, all numeric variables were

normalized on the [0,1] scale. Ultimately, this work seeks
to build and evaluate machine learning models that can be

used to predict the SPEC ratio of a processor based on its

associated input features.

TABLE II

SPEC CPU2017 Dataset Variables

Name Data type

Input variables

Processor vendor

(Intel, AMD)
Categorical

Microarchitecture code name
(CoffeeLake, CascadeLake,

Skylake, KabyLake,

Broadwell)
Categorical

Segment
(Server, Desktop)

Categorical

Nominal clock frequency Numeric

Maximum clock frequency
Numeric

Number of cores Numeric

Number of chips Numeric

Level-1 cache size (KB) Numeric

Level-2 cache size (KB) Numeric

Level-3 cache size (MB) Numeric

Memory size (GB) Numeric

Memory channels Numeric

Memory speed (MHz) Numeric

Thermal Design Point (TDP)
Numeric

Benchmark name

(Table I)
Categorical

Target (Output) variable

SPEC ratio Numeric

B. Machine Learning Models Training and Evaluation

After obtaining the SPEC CPU2017 datasets, they were

used to build and evaluate different machine learning

models. These models were trained and evaluated using

the WEKA machine learning tool [28]. These models

include a linear regression model (LR), four artificial

neural networks-based models (ANN-1, ANN-2, ANN-3,

and ANN-4), and a random forests-based model (RF). The

LR and RF models were configured using their default
parameters in the WEKA tool. On the other hand, the

ANN models were configured to have the same learning

rate and momentum values but a different number of

hidden layers. The learning rate and momentum

hyperparameters were set to 0.01 and 0.9, respectively.

The number of hidden layers is set following the options

available in the WEKA tool. Table III summarizes the

options available in the WEKA tool to choose the number

of hidden layers. As shown, the number of hidden layers is

calculated based on the number of input and output

variables. The considered machine learning models were

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

111

trained on 70% of datasets and then tested on the

remaining 30%. Their performance was assessed based on

WEKA's built-in evaluation parameters that include

correlation coefficient (R), mean absolute error (MAE),

relative absolute error (RAE), root mean squared error
(RMSE), and root relative squared error (RRSE) [28].

The mean absolute error of an individual model i (MAEi) is

evaluated as given by equation 4.

1

1
| |

n

i ij j

j

MAE P A
n 

 

(4)

Where P(ij) is the value predicted by the individual

model i for entry j (out of n entries), and Aj is the actual

target value for entry j. For a perfectly fitted

model, P(ij) = Aj and MAEi = 0. So, the MAEi values range

from 0 to infinity, with 0 corresponding to the ideal value.

On the other hand, the relative absolute error of model i

(RAEi) is calculated as shown in equation 5.

1

1

| |

| |

n

ij j

j

i n

j

j

P A

RAE

A A















(5)

As shown, the relative absolute error computes the total

absolute error of model i and normalizes it by dividing by

the total absolute error of the simple predictor, and the

whose predicted value is always equal to the average of the

actual target values observed during the training process.

TABLE III

Number of Hidden Layers Options

ANN

configuration
Number of hidden layers

ANN-1 No. of outputs

ANN-2 (No. of inputs + No. of

outputs)/2

ANN-3 No. of inputs

ANN-4 No. of inputs + no. of outputs

For a perfect model, the numerator is equal to 0 and, hence,
RAEi =0. In addition, the root means the squared error of

model i (RMSEi)can be computed as shown in equation 6.

As shown, RMSEi is a descending metric with an ideal

value of 0.

2

1

1
()

n

i ij j

j

RMSE P A
n 

 

(6)

Furthermore, the relative root squared error of model i
(RRSEi) can be calculated based on equation 7. As

illustrated, the relative squared error takes the total squared

error of model i and normalizes it by dividing by the total

squared error of the simple predictor, which is simply the

average of the actual target values. By taking the square

root of the relative squared error, the error is reduced to

the same dimensions as the quantity being predicted.

2

1

2

1

()

()

n

ij j

j

i n

j

j

P A

RRSE

A A















(7)

IV. MOTIVATIONAL ANALYSIS

This section presents a preliminary motivational

analysis that sheds light on the variations of the SPEC

ratios of different processor models on different

benchmark programs. It considers the variations among

different processor vendors, microarchitecture code names,

and market segments. Fig. 2 and Fig. 3 show the average

SPEC ratios of different processor models, grouped by

processor vendor (i.e., Intel and AMD), for the integer and

floating-point benchmark groups, respectively. The
column labeled as SPECspeed_int and SPECspeed_fp

represents the average aggregate score considering all

benchmarks in the corresponding category.

As shown in Fig. 2, Intel processors have slightly better

aggregate scores than those of AMD processors on the

integer benchmarks. However, this trend cannot be

generalized when considering individual benchmarks. For

instance, Intel processors have a higher average SPEC

ratio on the perlbench benchmark, while the AMD

processors have a higher SPEC ratio on the mcf benchmark.

On the other hand, processor models – from the same
vendor are not performing equally on all benchmarks. As

illustrated in Fig. 2, the SPEC ratios associated with the

deepsjeng and leela benchmarks are generally lower than

those of other benchmarks.

6
.2

1
9
4

9
.2

2
8
1

1
2
.1

1
4
6

6
.8

7
9
1

1
0
.8

1
3
4

1
2
.6

9
6
1

5
.1

8
7
8

4
.4

2
0
7

1
3
.9

9
9
1 1

9
.9

6
7
3

9
.1

1
8
5

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m

cf

62
0.
om

ne
tp

p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in

t
0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

(a) Intel

4.
99

04 9.
89

34 15
.2

81
7

5.
18

11 9.
79

04 12
.9

57
4

5.
01

51

4.
39

69

16
.9

89
3

20
.7

68
6

9.
07

36

60
0.

pe
rlb

en
ch

60
2.

gc
c

60
5.

m
cf

62
0.

om
ne

tp
p

62
3.

xa
lan

cb
m

k

62
5.

x2
64

63
1.

de
ep

sje
ng

64
1.

lee
la

64
8.

ex
ch

an
ge

2

65
7.

xz

SPECsp
ee

d_
in

t
0

10

20

30

40

Benchmark

SP
E

C
 R

at
io

(b) AMD

Fig. 2: SPEC ratios based on processor vendor – Integer

benchmarks.

https://www.gepsoft.com/GeneXproTools/AnalysesAndComputations/MeasuresOfFit/RelativeSquaredError.htm

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

112

In addition, Fig. 3 shows that AMD processors have higher

average aggregate scores on the floating-point benchmarks.

However, this observation does not apply to individual

benchmarks. In this regard, Intel processors have a higher

average SPEC ratio on the bwaves benchmark, while the
AMD processors have a higher average SPEC ratio on the

nab benchmark. Fig. 4 shows the average SPEC ratios per

benchmark besides the average aggregate scores for

different processor models, grouped by the

microarchitecture code name for the integer benchmarks

group.

46
9.

67
43

12
9.

25
05

71
.7

34
5

89
.1

17
2

80
.7

05
5

54
.4

01
9

10
4.

98
92 19

9.
88

21

75
.8

52
7

12
8.

60
82

11
0.

46
19

60
3.

bw
av

es

60
7.

ca
ct

uB
SSN

61
9.

lb
m

62
1.

w
rf

62
7.

ca
m

4

62
8.

po
p2

63
8.

im
ag

ic
k

64
4.

na
b

64
9.

fo
to

ni
k3

d

65
4.

ro
m

s

SPECsp
ee

d_
fp

0

200

400

600

800

1000

Benchmark

S
P

E
C

 R
at

io

(a) Intel

4
3
8
.7

6
0
0

2
0
0
.6

1
2
9

4
9
.0

8
8
0

1
1
3
.8

1
0
0

8
5
.7

8
6
3

5
9
.2

1
3
3 1

8
7
.6

8
6
0

2
6
1
.5

8
0
7

7
2
.0

8
7
4 1
7
8
.9

7
9
7

1
3
0
.4

6
0
2

60
3.
bw

av
es

60
7.
ca

ct
uB

SS
N

61
9.
lb
m

62
1.
w
rf

62
7.
ca

m
4

62
8.
po

p2

63
8.
im

ag
ic
k

64
4.
na

b

64
9.
fo

to
ni
k3

d

65
4.
ro

m
s

SP
EC

sp
ee

d_
fp

0

200

400

600

800

1000

Benchmark

S
P

E
C

 R
a
ti

o

(b) AMD

Fig. 3: SPEC ratios based on processor vendor – Floating-point benchmarks.

6
.3

1
4
7

9
.3

2
2
4

1
2
.9

5
1
2

7
.4

2
4
8

1
1
.7

2
8
9

1
3
.5

2
7
6

5
.2

6
0
2

4
.5

4
1
7

1
4
.8

1
6
7 2
1
.6

8
4
3

9
.6

0
2
7

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m
cf

62
0.
om

ne
tp
p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in
t

0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

5
.7

2
5
8

8
.7

6
5
5

1
0
.9

5
3
3

5
.8

9
1
6

9
.0

6
2
0

1
1
.1

7
5
1

4
.8

2
2
5

4
.0

9
7
1

1
2
.9

3
8
5 1

9
.9

1
9
9

8
.3

3
6
5

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m
cf

62
0.
om

ne
tp
p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in
t

0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

(a) CascadeLake (b) Skylake

6
.7

5
5
2

1
1
.1

6
2
6

1
4
.9

2
6
9

6
.6

0
6
7 1

2
.2

3
5
4

1
4
.7

1
9
6

6
.1

6
3
3

5
.0

8
0
0

1
6
.3

9
5
3

1
1
.8

4
5
5

9
.7

2
4
7

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m
cf

62
0.
om

ne
tp
p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in
t

0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

5
.9

4
2
5

9
.9

1
7
6

1
2
.4

3
4
8

5
.5

1
9
7

9
.5

7
3
8

1
1
.2

4
8
6

5
.4

8
8
3

4
.4

1
1
8

1
3
.1

3
1
5

8
.6

1
5
6

7
.9

9
9
1

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m
cf

62
0.
om

ne
tp
p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in
t

0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

(c) CoffeeLake (d) KabyLake

Fig. 4: SPEC ratios based on microarchitecture code name – Integer benchmarks.

As shown, there are noticeable differences in the average
aggregate scores among processor models following

different microarchitecture code names. In addition, there

are also pronounced differences in the SPEC ratios are

associated with different individual benchmarks under

each microarchitecture code name. Fig. 5 shows the

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

113

average and aggregate SPEC scores for different processor

models, grouped by the market segment for the integer

benchmarks group.

As shown, Server processors have, in general, higher
average aggregate performance scores. However, they do

not perform equally on all individual benchmarks.

Similarly, desktop processors exhibit varying SPEC ratios

under different benchmark applications.

6
.1

3
4
3

9
.2

7
7
6

1
2
.3

7
5
1

6
.7

7
7
8

1
0
.7

5
9
7

1
2
.7

5
3
3

5
.1

7
7
3

4
.4

2
2
2

1
4
.2

8
1
1 2

0
.2

5
3
7

9
.1

4
5
7

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m
cf

62
0.
om

ne
tp
p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in
t

0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

(a) Server

5
.6

4
5
7

9
.3

1
7
8

1
1
.3

2
7
0

5
.2

4
2
3 9
.4

0
8
7

1
0
.7

2
1
5

5
.0

1
5
0

4
.2

3
0
6

1
1
.3

2
0
4

8
.1

2
5
3

7
.4

7
4
5

60
0.
pe

rlb
en

ch

60
2.
gc

c

60
5.
m
cf

62
0.
om

ne
tp
p

62
3.
xa

la
nc

bm
k

62
5.
x2

64

63
1.
de

ep
sj
en

g

64
1.
le
el
a

64
8.
ex

ch
an

ge
2

65
7.
xz

SP
EC

sp
ee

d_
in
t

0

10

20

30

40

Benchmark

S
P

E
C

 R
a
ti

o

(b) Desktop

Fig. 5: SPEC ratios based on the market segment –

Integer benchmarks.

Hence, the results presented in this section show that

relying on aggregate performance scores may provide

misleading results. Relying on one factor such as processor

vendor, microarchitecture code name or market segment

may not provide enough information to compare different

processor models or predict the performance of new

models for specific individual benchmarks. Therefore, an

efficient tool is required to predict the performance of new

processor models on different workloads considering not

only processor information but also processor

configuration, benchmark type, and the interplay between
application behavior and processor's internal

microarchitecture. In this regard, machine learning

algorithms can be considered as viable options for

performance prediction considering the presence of

various features that influence processor performance.

V. RESULTS AND ANALYSIS

This section presents and compares the prediction

performance of the considered machine learning

algorithms on the constructed datasets for the integer and

floating-point benchmark groups.

A. Performance Analysis on Integer Benchmarks

Dataset

Fig. 6 shows and compares the correlation coefficient of

different machine learning models on the integer

benchmarks dataset. The correlation coefficient

characterizes the linear correlation between the actual and

the predicted SPEC ratio values. As shown, the ANN-2,

ANN-3, ANN-4, and RF algorithms have achieved

adequately high correlation coefficient values as compared
to the LR and ANN-1 (i.e., an ANN with a single hidden

layer). Hence, the variation in the predicted (i.e., target)

variable can be sufficiently explained by these models. In

addition, the RF algorithm has achieved the highest

correlation coefficient with a value of 0.99. The RF

algorithm has achieved up to 6% improvement in

correlation coefficient as compared to the LR and ANN-1

algorithms.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0.90

0.92

0.94

0.96

0.98

1.00

Prediction model

C
o
r
r
e
la

ti
o
n

 C
o
e
ff

ic
ie

n
t LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 6: Correlation coefficient comparison – Integer

benchmarks.

On the other hand, Fig. 7 illustrates the mean absolute

error (MAE) values of the considered machine learning
models.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0.0

0.5

1.0

1.5

Prediction model

M
A

E

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 7: Mean absolute error (MAE) comparison –

Integer benchmarks.

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

114

As shown, the MAE value of the ANN models with a

greater number of hidden layers (i.e., the deep ANN

models in ANN-2, ANN-3, and ANN-4) besides the RF

algorithms have achieved lower MAE values as compared

to the LR and ANN-1 models. In addition, the RF
algorithm has achieved the lowest MAE value among all

competitor algorithms; its associated MAE value is o.38. It

has attained up to 69% reduction in the MAE value as

compared to the LR and ANN-1 algorithms. Fig. 8 depicts

the relative absolute error (RAE) metric which normalizes

the sum of absolute errors of the considered models by that

of a simple predictor. As illustrated in Fig. 8, the ANN-2,

ANN-3, ANN-4, and the RF models are performing

reasonably well as compared to other models. In addition,

their associated RAE values prove their superiority over a

simple predictor. In other words, they can capture the

inherent relationship between the input features and the
target variable and produce more accurate predictions, as

compared to a simple predictor. Overall, the RF algorithm

has achieved a 9.08% RAE value which is the lowest RAE

value among the considered models. It has obtained up to

68% reduction in the RAE metric as compared to the LR

and ANN-1 models.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

80

100

Prediction model

R
A

E
(%

)

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 8: Relative absolute error (RAE) comparison –

Integer benchmarks.

Fig. 9 presents the root mean squared error (RMSE)

metric for the studied machine learning models.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0.0

0.5

1.0

1.5

2.0

Prediction model

R
M

S
E

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 9: Root mean squared error (RMSE) comparison –

Integer benchmarks.

As can be observed, the RMSE metric exhibits a similar

trend to that of the MAE and RAE metrics. In other words,

having deeper neural network models (i.e., ANN-2, ANN-

3, and ANN-4) or an ensemble-based predictor (i.e., RF)

has resulted in lower RMSE values (i.e., more prediction
accuracy). As compared to the LR and ANN-1 models, the

RF model's improvement in RMSE has reached up to 59%.

Fig. 10 compares the root relative squared error (RRSE)

values of the obtained machine learning models. The

RRSE metric normalizes the sum of squared errors of a

machine learning model by that of a simple mean-based

predictor. As shown, the RRSE metric follows an identical

trend to that of other metrics with the RF-based model

achieving the best performance among all other models.

With a 15.30% RRSE value, the RF algorithm has

achieved around 59% improvement when compared to the
LR and the ANN-1 models.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

80

100

Prediction model

R
R

S
E

 (
%

)

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 10: Root relative squared error (RRSE)

comparison – Integer benchmarks.

B. Performance Analysis on Floating-point Benchmarks

Dataset

Fig. 11 shows and compares the correlation coefficient of

different machine learning models on the Floating-point

benchmarks dataset. The correlation coefficient

characterizes the linear correlation between the actual and

the predicted SPEC ratio values.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0.85

0.90

0.95

1.00

Prediction model

C
o
o
r
e
la

t
io

n
 C

o
e
f
f
ic

ie
n

t

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

 Fig. 11: Correlation coefficient comparison – Floating-

point benchmarks.

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

115

As shown, the ANN-2, ANN-3, ANN-4, and RF

algorithms have achieved adequately high correlation

coefficient values as compared to the LR and ANN-1 (i.e.,

an ANN with a single hidden layer). Therefore, the

variation in the predicted (i.e., target) variable can be
sufficiently explained by these models. In addition, the

ANN-2, ANN-3, ANN-4, and the RF algorithm have

achieved an identical correlation coefficient value of 0.99.

They have achieved up to 11% improvement in correlation

coefficient as compared to the LR algorithm. On the other

hand, Fig. 12 shows and compares the mean absolute error

(MAE) values of the machine learning models considered

in this work. As depicted, the MAE value of the relatively

deep ANN models along with the RF algorithm has

attained better MAE values when compared to the LR and

ANN-1 models. In addition, the RF algorithm has

achieved the lowest MAE value among all competitor
algorithms; its observed MAE value is 6.64 as opposed to

40.40 in the case of the LR model. The RF-based model

has attained up to 83.5% reduction in the MAE value as

compared to the LR model. Fig. 13 depicts the relative

absolute error (RAE) metric which normalizes the sum of

absolute errors of the considered machine learning

predictors by that of a simple predictor.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

Prediction model

M
A

E

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 12: Mean absolute error (MAE) comparison –

Floating-point benchmarks.

As illustrated in Fig. 13, the ANN-2, ANN-3, ANN-4, and

the RF models have achieved noticeable improvement in

their RAE values; they have obtained a pronounced

reduction in their sum of absolute errors as compared to

their simple predictor counterpart. In addition, the RF

algorithm has attained a 6.87% RAE surpassing all other

competitor models. As compared to the LR model, the RF-
based model has achieved up to 83.6% reduction in the

RAE metric.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

Prediction model

R
A

E
 (

%
)

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 13: Relative absolute error (RAE) comparison –

Floating-point benchmarks.

Fig. 14 shows the root mean squared error (RMSE) values

for the considered machine learning models. As seen in

Fig. 14, the RMSE values follow similar behavior to that

of the MAE and RAE values. In other words, the ANN-2,

ANN-3, ANN-4, and the RF models have achieved lower
RMSE values (i.e., better prediction accuracy). As

compared to the LR model, the RF model improvement in

RMSE has reached around 75%. Finally, Fig. 15 shows the

RRSE values of the considered machine learning models.

As illustrated, the RRSE trend is identical to that of other

metrics with the RF model yielding the best RRSE-based

performance among all other competitor models. As

shown, the RF's RRSE value is 11.49%. Its percent
reduction in RRSE, as compared to the LR mode, is 75%.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

80

100

Prediction model

R
M

S
E

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 14: Root mean squared error (RMSE) comparison

– Floating-point benchmarks.

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

80

100

Prediction model

R
R

S
E

 (
%

)

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

Fig. 15: Root relative squared error (RRSE)

comparison – Floating-point benchmarks.

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

116

In summary, the results shown in this section prove the

ability of relatively deep ANN-based models and the RF

model to achieve noticeable accuracy in predicting the

performance of microprocessors. These models can learn

the inherent and potentially non-linear relationship
between some processor- and workload-specific features

and the associated SPEC ratios.

VI. CONCLUSIONS

Recently, a variety of logically equivalent but

microarchitecturally different processor models has been

introduced. These models would normally exhibit similar
general-purpose processing capabilities but yield diverse

performance readings on similar workloads. Hence, end-

users need efficient tools that capture the interplay

between processor microarchitecture and workload

characteristics. In this regard, this paper has investigated

the feasibility of using machine learning models to predict

processor performance based on a standardized and widely

used benchmark suite i.e., the SPEC CPU2017 suite, that

includes both integer and floating-point benchmark

applications that are considered as a representative sample

of typical user workload space. The considered machine
learning models were trained and evaluated based on the

recently submitted and published SPEC evaluation results.

Evaluation results have proved the ability of relatively

deep ANN models along with the RF-based model to

provide accurate performance predictions with the RF-

based model surpassing its predictive counterparts. Overall,

the considered machine learning models can serve as

feasible tools to predict the performance of new processor

models on standard benchmark applications.

REFERENCES
[1] Y. Wang, V. Lee, G.-Y. Wei, and D. Brooks, Predicting New

Workload or CPU Performance by Analyzing Public Datasets,

ACM Trans. Archit. Code Optim., 15(4)(2019) Article 53, doi:

10.1145/3284127.

[2] S. Singh and M. Awasthi, Efficacy of Statistical Sampling on

Contemporary Workloads: The Case of SPEC CPU2017, in 2019

IEEE International Symposium on Workload Characterization

(IISWC), 3-5 (2019) 70-80, doi:

10.1109/IISWC47752.2019.9042114.

[3] M. Al-Tarawneh, Z. A. Al Tarawneh, and S. E. A. Alnawayseh, A

CPU-Guided Dynamic Voltage and Frequency Scaling (DVFS) of

Off-Chip Buses in Homogenous Multicore Processors, 2015,

DVFS; Multicore; Off-chip Bus; Power; Performance 10(7)

(2015), doi: 10.15866/irecos.v10i7.6742735-747.

[4] M. Al-Tarawneh, Analysis of the Factors Influencing Architectural

Time- Predictability of Superscalar Processors, Journal of

Computing Science and Engineering, 13(2019) 39-65, doi:

10.5626/JCSE.2019.13.2.39.

[5] J. Bucek, K.-D. Lange, and J. v. Kistowski, SPEC CPU2017:

Next-Generation Compute Benchmark, presented at the

Companion of the 2018 ACM/SPEC International Conference on

Performance Engineering, Berlin, Germany, (2018). [Online].

Available: https://doi.org/10.1145/3185768.3185771.

[6] A. Limaye and T. Adegbija, A Workload Characterization of the

SPEC CPU2017 Benchmark Suite, in 2018 IEEE International

Symposium on Performance Analysis of Systems and Software

(ISPASS), 2-4 April 2018 (2018) 149-158, doi:

10.1109/ISPASS.2018.00028.

[7] R. H. S. R and A. Milenković, SPEC CPU2017: Performance,

Event, and Energy Characterization on the Core i7-8700K,"

presented at the Proceedings of the 2019 ACM/SPEC International

Conference on Performance Engineering, Mumbai, India, (2019).

[Online]. Available: https://doi.org/10.1145/3297663.3310314.

[8] S. Singh and M. Awasthi, Memory Centric Characterization and

Analysis of SPEC CPU2017 Suite, presented at the Proceedings of

the 2019 ACM/SPEC International Conference on Performance

Engineering, Mumbai, India, (2019). [Online]. Available:

https://doi.org/10.1145/3297663.3310311.

[9] A. Navarro-Torres, J. Alastruey-Benedé, P. Ibáñez-Marín, and V.

Viñals-Yúfera, Memory hierarchy characterization of SPEC

CPU2006 and SPEC CPU2017 on the Intel Xeon Skylake-SP,

PLOS ONE, 14(8) (2019). e0220135, doi:

10.1371/journal.pone.0220135.

[10] N. Schmitt, J. Bucek, K.-D. Lange, and S. Kounev, Energy

Efficiency Analysis of Compiler Optimizations on the SPEC CPU

2017 Benchmark Suite, presented at the Companion of the

ACM/SPEC International Conference on Performance

Engineering, Edmonton AB, Canada, (2020). [Online]. Available:

https://doi.org/10.1145/3375555.3383759.

[11] P. Prieto, P. Abad, J. A. Herrero, J. A. Gregorio, and V. Puente,

SPECcast: A Methodology for Fast Performance Evaluation with

SPEC CPU 2017 Multiprogrammed Workloads, presented at the

49th International Conference on Parallel Processing - ICPP,

Edmonton, AB, Canada, (2020). [Online]. Available:

https://doi.org/10.1145/3404397.3404424.

[12] R. Hebbar and A. Milenković, A Preliminary Scalability Analysis

of SPEC CPU2017 Benchmarks, in SoutheastCon 2021, 10-13

March 2021 (2021) 1-8, doi:

10.1109/SoutheastCon45413.2021.9401917.

[13] A. Rimsa, J. Nelson Amaral, and F. M. Q. Pereira, Practical

dynamic reconstruction of control flow graphs, Software: Practice

and Experience, 51(2) (2021) 353-384, 2021, doi:

https://doi.org/10.1002/spe.2907.

[14] W. Wang, Helper function inlining in dynamic binary translation,

presented at the Proceedings of the 30th ACM SIGPLAN

International Conference on Compiler Construction, Virtual,

Republic of Korea, (2021). [Online]. Available:

https://doi.org/10.1145/3446804.3446851.

[15] W. Lee, J. Lee, B. K. Park, and R. Y. C. Kim, Microarchitectural

Characterization on a Mobile Workload, Applied Sciences, 11(3)

(2021) 1225, [Online]. Available: https://www.mdpi.com/2076-

3417/11/3/1225.

[16] H. Jang, M. C. Park, and D. H. Lee, IBV-CFI: Efficient fine-

grained control-flow integrity preserving CFG precision,

Computers & Security, 94, 101828, 2020/07/01/ 2020, doi:

https://doi.org/10.1016/j.cose.2020.101828.

[17] R. Panda, S. Song, J. Dean, and L. K. John, Wait of a Decade: Did

SPEC CPU 2017 Broaden the Performance Horizon?, in 2018

IEEE International Symposium on High Performance Computer

Architecture (HPCA), 24-28 Feb. 2018 (2018) 271-282, doi:

10.1109/HPCA.2018.00032.

[18] Q. Wu, S. Flolid, S. Song, J. Deng, and L. John, Invited Paper for

the Hot Workloads Special Session Hot Regions in SPEC

CPU2017, 2018 IEEE International Symposium on Workload

Characterization (IISWC), (2018) 71-77.

[19] SPEC. Standard Performance Evaluation Corporation.

www.spec.org (accessed April,2021).

[20] E. Lieven, Computer Architecture Performance Evaluation

Methods. Morgan & Claypool, (2010) 1.

[21] J. L. Hennessy and D. A. Patterson, Computer architecture : a

quantitative approach. (in English), (2019).

[22] H. I. Lim, A Linear Regression Approach to Modeling Software

Characteristics for Classifying Similar Software, in 2019 IEEE

43rd Annual Computer Software and Applications Conference

(COMPSAC), 15-19 Jul 2019, 1(2019) 942-943, doi:

10.1109/COMPSAC.2019.00152.

[23] D. L. Mohr, W. J. Wilson, and R. J. Freund, Chapter 7 - Linear

Regression, in Statistical Methods (Fourth Edition), D. L. Mohr,

W. J. Wilson, and R. J. Freund Eds.: Academic Press, 2022, 301-

349.

[24] I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B.

Liboni, and S. F. dos Reis Alves, Artificial Neural Network

Architectures and Training Processes, in Artificial Neural

Networks : A Practical Course, I. N. da Silva, D. Hernane Spatti,

R. Andrade Flauzino, L. H. B. Liboni, and S. F. dos Reis Alves

Eds. Cham: Springer International Publishing, (2017) 21-28.

[25] I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B.

Liboni, and S. F. dos Reis Alves, The Perceptron Network, in

 Mutaz A. B. Al-Tarawneh et al. / IJETT, 69(10), 108-117, 2021

117

Artificial Neural Networks : A Practical Course, I. N. da Silva, D.

Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and S. F.

dos Reis Alves Eds. Cham: Springer International Publishing,

(2017) 29-40.

[26] L. Breiman, Random Forests, Machine Learning, 45(1) 5-32,

2001/10/01 2001, doi: 10.1023/A:1010933404324.

[27] Z. Khan et al., Ensemble of optimal trees, random forest and

random projection ensemble classification, Advances in Data

Analysis and Classification, 14(1) (2020) 97-116, doi:

10.1007/s11634-019-00364-9.

[28] I. Witten, M. Hall, E. Frank, G. Holmes, B. Pfahringer, and P.

Reutemann, The WEKA data mining software: An update,

SIGKDD Explorations, 11 (2009) 10-18, doi:

10.1145/1656274.1656278.

