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Abstract — Recent advances in the microprocessors 
industry have introduced a plethora of processor models 

with diverse microarchitectural characteristics. Such 

diversity would normally complicate the decision on 

choosing the best processor model for a particular 

application class. Hence, an efficient tool is required to 

estimate and compare the performance of different 

processor models on a particular application. This paper 

reports on using different machine learning models to 

predict the performance of modern processor models on 

various benchmark applications. These models include 

Linear Regression (LR), Artificial Neural Networks 

(ANNs), and Random Forests (RF). They are trained and 
evaluated on a dataset constructed based on the Standard 

Performance Evaluation Corporation (SPEC) CPU2017 

benchmark performance evaluation results. The SPEC 

CPU 2017 suite includes both integer and floating-point 

applications. Both training and evaluation are performed 

using WEKA data mining and machine learning tool. 

Evaluation metrics include correlation coefficient, mean 

absolute error (MAE), relative absolute error (RAE), root 

mean squared error (RMSE), and root relative squared 

error (RRSE). Evaluation results show that the Random 

Forest-based model provides superior performance over 
other models under all evaluation metrics.  Ultimately, the 

trained models can provide viable tools for the 

performance of new processor models on standard 

benchmark applications.   

 

Keywords — Processor, microarchitecture, performance, 

machine learning. 

I. INTRODUCTION 
Recently, the marketplace for multicore processors has 

witnessed the emergence of several processor models. 

These models provide similar general-purpose processing 

capabilities but exhibit noticeable differences in terms of 

their microarchitectural features such as clock frequency, 

cache memory size, memory bandwidth, and memory 

capacity [1]. On the other hand, the workload space 

encompasses a wide range of applications with diverse 

instruction types, memory access patterns, and control-
flow behavior [2] . Typically, computer users may depend 

on some microarchitectural features such as clock 

frequency to compare different microprocessor 

configurations. However, microprocessor performance 
depends not only on its microarchitectural configuration 

but also on the characteristics of the applications or 

workloads being executed [3, 4]. To attain educated and 

standardized studies of processor performance, several 

benchmark suites have been presented. In this context, the 

Standard Performance Evaluation Corporation (SPEC) 

CPU benchmark suite is one of the most widely used suites 

to evaluate and compare the quality of different processor 

designs in both the academic and industrial fields. The 

SPEC CPU2017 is the most recent release of the SPEC 

CPU suite ,[5]  which has been widely used for 

performance evaluation, assessment of new 
microarchitecture configurations, and workload 

characterization studies [6-16]. It has been introduced to 

keep pace with recent advances in the microprocessor 

industry, for which old benchmark suites such as 

SPEC2006 may provide misleading results [17]. The 

SPEC CPU2017 consists of 43 benchmarks, divided into 4 

sub-suites, covering carefully selected integer and floating-

point applications [5]. The covered applications constitute 

a representative sample of the whole workload space and 

are designed to stress and evaluate different aspects of the 

processor design [18]. In addition, the included 
benchmarks correspond to either speed or rate versions, 

which are used to evaluate execution time or throughput, 

respectively.  

Typically, the performance of a large collection of 

processor configurations on the SPEC CPU suite is 

published publicly on specialized repositories [19]. The 

published performance results cover microprocessor 

configurations with different vendors, processor models, 

and microarchitectural features. However, repositories of 

benchmark results may not be adequate when assessing the 

performance and suitability of new processor models or 

configurations. On the one hand, published results do not 
establish a clear association between processor 

performance on a particular benchmark and that 

processor’s microarchitectural features. On the other hand, 

the aggregate performance scores for benchmark suites 

that cover a diverse set of application types can be 

misleading as microprocessors may provide different 

performance levels for different application classes. Hence, 

this paper investigates the utilization of machine learning 

models to predict microprocessor performance based on 

https://ijettjournal.org/archive/ijett-v69i10p214
https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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the speed version of the SPEC CPU2017 benchmark suite. 

While other research efforts have applied some machine 

learning-based techniques to analyze data from the SPEC 

CPU2006 suite [1], applying machine learning models on 

the SPEC CPU2017 is still in its infancy. On the other 
hand, the SPEC CPU2017 includes some new application 

types that were not covered in its 2006 counterpart [17]. In 

addition, it includes more memory-intensive and complex 

benchmarks that may include more than ~10x number of 

dynamic instructions, as compared to those in the 

CPU2006 suite[17]. Hence, machine learning models 

obtained for the CPU2006 benchmark suite may not be 

directly applicable to the SPEC CPU2017 benchmark suite.   

The rest of this paper is organized as follows. Section II 

introduces some necessary background material. Section 

III briefly introduces the evaluation methodology. Section 

IV presents a motivational analysis. Section V shows the 
evaluation results, and Section VI summarizes and 

concludes this paper.   

II. BACKGROUND 

This section provides an overview of the SPEC CPU2017 

benchmark suite. It also briefly describes the machine 
learning algorithms utilized in this work.   

 

A. Benchmarks Overview  

In this work, two CPU2017 benchmark groups, namely, 

the speed integer (SPECspeed INT) and speed floating-

point (SPECspeed FP), are considered, as shown in Table I. 

Each group consists of 10 benchmark programs which are 
written in C, C++, and Fortran programming languages [5]. 

As compared to CPU2006, CPU2017 contains new 

benchmarks and application domains [17]. In the integer 

(INT) category, the artificial intelligence domain has been 

expanded with three new benchmark programs (deepsjeng, 

Leela, and exchange2). In addition, two other 

compression-related applications, which include x264 

(video compression) and xz (general data compression), 

have also been added. On the other hand, nine new 

benchmark programs have been added. In this regard, 

parest implements a finite element solver for biomedical 

imaging.  Blender is a 3D rendering application. In 
addition, cam4, pop2, and roms represent the climatology 

domain. Furthermore, imagick represents an image 

manipulation application, and nab is a molecular modeling 

application with floating-point intensive operations, 

representing the life sciences domain. Moreover, the 

fotonik3d and the cactuBSSN represent the physics domain. 

Table I summarizes some salient characteristics of the 

considered benchmark programs.  

TABLE I 

Benchmark programs 

SPECspeed Integer 

Name IC (x109) Loads (%) Stores (%) Branches (%) 

600.perlbench 2696 27.20 16.73 18.16 

602.gcc 7226 40.32 15.67 15.60 

605.mcf 1775 18.55 4.70 12.53 

620.omnetpp 1102 22.76 12.65 14.55 

623.xalancbmk 1320 34.08 7.90 33.18 

625.x264 12546 37.21 10.27 4.59 

631.deepsjeng 2250 19.75 9.37 11.75 

641.leela 2245 14.25 5.32 8.94 

648.exchange2 6643 29.61 20.22 8.67 

657.xz 8264 13.34 4.73 8.21 

SPECspeed Floating-point 

603.bwaves  66395 31.00 4.42 13 

607.cactuBSSN 10976 43.87 9.50 1.80 

 619.lbm  4416 29.62 17.68 1.40 

621.wrf  18524 23.20 5.80 9.48 

627.cam4  15594 20 14 10.92 

628.pop2  18611 21.71 8.41 15.13 

638.imagick  66788 18.16 0.46 9.30 

644.nab  13489 23.49 7.51 9.55 

649.fotonik3d 4280 33.99 13.89 3.84 

654.roms  22968 32.02 8.02 7.53 
 

These characteristics include the dynamic instruction count 

(IC) and the percentage of memory access instructions (i.e., 

the Load and Store instructions) in addition to the 

percentage of control-flow instructions (i.e., Branch 

instructions). They together characterize the inherent 

instruction mix of each benchmark, benchmark's memory-

boundedness, CPU-boundedness, and control-flow 
behavior. As shown, the benchmark programs exhibit 

noticeable diversity in terms of their instruction count and 
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frequencies of different instruction types. Such diversity 

would cause differences in the memory access patterns, 

amount of instruction-level parallelism (ILP) extracted 

from each benchmark, and, in turn, the performance of the 

associated benchmarks on different microarchitectural 
configurations. Typically, the performance of a particular 

machine, with a specific microarchitectural configuration, 

on the benchmark (i) is quantified in terms of SPEC ratio 

(SPECRatioi), as shown in equation 1 [20, 21].  

ref i

i
sys i

T
SPECRatio

T







 

(1) 

Where Tref-i is the execution time of benchmark (i) on the 

reference machine, Tsys-i is the execution time of 

benchmark (i) on the system being tested. The overall 

performance score of the tested system configuration is 

achieved by aggregating individual SPEC ratios for all 

benchmarks within a specific category, as shown in 

equation 2.  
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Where (n) is the number of benchmark programs in a 

particular category. The aggregate performance score is 

the geometric mean of the individual SPEC ratios. While 

the aggregate score provides some useful information 

about the average-case performance of the tested 

configuration, it may not provide an accurate indication of 

the performance of each benchmark; as different 

benchmarks may perform differently on the same hardware 

configuration. Hence, considering the availability of 

different application domains and the diversity among 

different benchmarks, an efficient and accurate tool is 
required to estimate the performance of different 

benchmark applications on new hardware configurations. 

Hence, this work investigates the utilization of machine 

learning models as performance estimation tools based on 

the SPEC CPU2017 benchmark suite.  

B. Machine Learning Algorithms 

This section briefly introduces the machine learning 

algorithms employed in this work. The algorithms include 

linear regression (LR), artificial neural networks (ANNs), 
and random forests (RF). These algorithms are used to 

predict the performance of a particular processor 

configuration on a specific benchmark application based 

on some input features. These features are mainly related 

to the processor microarchitectural features and the 

application type. As the predicted performance value is a 

continuous numeric value, the machine learning algorithms 

are used to perform regression operations.  

 

a) Linear Regression 

Linear regression is a supervised machine learning 
approach in which a linear relationship is established 

between some independent variables (i.e., inputs) and a 

dependent variable (i.e., output) [22, 23].  It can be applied 

to predict an output value according to new input features. 

So, a linear model for predicting an output value based on 

some input features (xj) can be summarized as shown in 

equation 3.  

 

0 1 1 2 2 .... k ky x x x         
 

(3) 
 

In equation (3), the Betai parameters are called regression 

coefficients that characterize the linear relationship and 

construct a linear model between the input features (i.e., xj) 

and the output value (y). Hence, the linear model is 
obtained by adjusting the values of the regression 

coefficients based on the relationship between the input 

features and their corresponding output value while 

training the model using a set of training data.  

 

b) Artificial Neural Networks 

Artificial neural networks are widely used in supervised 

learning applications in which a non-linear relationship 

may exist between the input features and the output 

variable. They represent data processing systems that are 

composed of the interconnection of fully connected layers 
[24]. Each layer consists of basic units called perceptrons. 

A typical ANN consists of an input layer, one or more 

hidden layers, and an output layer that are connected via 

weighted connections, as shown in fig. 1. The input layer 

receives the values of the input features and feeds them to 

the hidden layer. The number of nodes in this layer is 

determined based on the number of input features. On the 

other hand, each node in the hidden layer performs a 

weighted sum of its inputs. Thereafter, the computed 

weighted sum is used by a particular activation function to 

decide on the value that should be fed to the nodes of the 

next layer, based on a predefined threshold value [25]. 
 

 

Fig. 1  ANN model two hidden layers. 

The hidden layers structure, i.e., the number of layers 

and the number of nodes per layer, is experimentally 

decided according to the sought model performance. In 

addition, in regression-oriented ANNs, the output layer 

contains a single node that performs a un thresholded 
weighted sum of the inputs it receives from the last hidden 

layer. Hence, an ANN-based model is obtained by setting 

the values of the connection weights such that a particular 

cost function is optimized based on the relationship 

between the input features and their corresponding output 

values in a representative training dataset.  
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c) Random Forests 

Random forests represent a supervised ensemble-based 

machine learning algorithm [26]. It is widely used to 

perform regression tasks, especially in the presence of 

categorical input variables (i.e., features). It operates by 
constructing an ensemble of base learners (i.e., decision 

trees) at training time and outputting the average 

prediction among the individual trees as the final 

prediction of the output variable. In other words, the 

algorithm grows trees to form the ensemble and aggregates 

the predictions of the single trees to generate an ensemble 

prediction.  Typically, constructing ensembles from base 

learners such as decision trees can significantly improve 

prediction performance as compared to that of a single 

base learner [27]. In addition, ensemble learning can be 

further improved by injecting randomization into the base 

learning process as in Random Forests, in which diverse 
base learners (i.e., decision trees) are created. To create 

diverse trees, each tree is grown on a subsample or 

bootstrap sample of the data. A further random element is 

introduced by randomly drawing splitting candidate 

variables at each node split in the decision trees. Such 

randomization in the ensemble construction process would 

minimize the amount of correlation between individual 

base learners and correct for potential individual decision 

trees' inclination towards overfitting the training sets. 

Hence, a better prediction performance would necessarily 

be achieved.  

III. EVALUATION METHODOLOGY 

A. SPEC CPU2017 Datasets 

To test the prediction performance of different machine 
learning algorithms, a representative dataset is required. In 

this work, two datasets were constructed based on the 

SPEC CPU2017-based evaluation results that have been 

published on the SPEC website since the release of the 

benchmark in June 2017. There are separate evaluation 

reports for each of the integer and floating-point 

benchmark groups. Hence, this work constructs separate 

datasets for each of the integer and floating-point 

benchmark groups. Each evaluation report contains 

comprehensive information about the tested system, such 

as test sponsor, processor vendor, processor hardware 
configuration, operating system, and compiler settings.  

Each report highlights the SPEC ratio of the tested 

processor under each benchmark in the associated 

benchmark group. The number of evaluation reports 

obtained for each benchmark group is 4773. These 

evaluation reports were then processed to extract the 

information required to construct the dataset. As each 

evaluation report contains the SPEC ratio of the associated 

processor on 10 different benchmarks (from either the 

integer or the floating-point groups), each dataset consists 

of 47730 entries. Table II summarizes the information 

contained in each entry of the dataset.  As shown, each 
entry stores both the input variables (i.e., features) related 

to the corresponding processor besides its recorded SPEC 

ratio (i.e., the target variable). In addition, Table II shows 

the data type of each variable. Each entry stores both 

numeric and categorical variables. The obtained datasets 

were then preprocessed using two main steps. First, all 

categorical variables were encoded using the one-hot 

encoding technique. Second, all numeric variables were 

normalized on the [0,1] scale. Ultimately, this work seeks 
to build and evaluate machine learning models that can be 

used to predict the SPEC ratio of a processor based on its 

associated input features.  

TABLE II 

SPEC CPU2017 Dataset Variables 

Name Data type 

Input variables 

Processor vendor 

(Intel, AMD) 
Categorical 

Microarchitecture code name 
(CoffeeLake, CascadeLake, 

Skylake, KabyLake, 

Broadwell) 
Categorical 

Segment 
(Server, Desktop) 

Categorical 

Nominal clock frequency Numeric 

Maximum clock frequency 
Numeric 

Number of cores Numeric 

Number of chips Numeric 

Level-1 cache size (KB) Numeric 

Level-2 cache size (KB) Numeric 

Level-3 cache size (MB) Numeric 

Memory size (GB) Numeric 

Memory channels Numeric 

Memory speed (MHz) Numeric 

Thermal Design Point (TDP) 
Numeric 

Benchmark name 

(Table I) 
Categorical 

Target (Output) variable 

SPEC ratio  Numeric 

 

B. Machine Learning Models Training and Evaluation 

After obtaining the SPEC CPU2017 datasets, they were 

used to build and evaluate different machine learning 

models. These models were trained and evaluated using 

the WEKA machine learning tool [28]. These models 

include a linear regression model (LR), four artificial 

neural networks-based models (ANN-1, ANN-2, ANN-3, 

and ANN-4), and a random forests-based model (RF). The 

LR and RF models were configured using their default 
parameters in the WEKA tool. On the other hand, the 

ANN models were configured to have the same learning 

rate and momentum values but a different number of 

hidden layers. The learning rate and momentum 

hyperparameters were set to 0.01 and 0.9, respectively. 

The number of hidden layers is set following the options 

available in the WEKA tool. Table III summarizes the 

options available in the WEKA tool to choose the number 

of hidden layers. As shown, the number of hidden layers is 

calculated based on the number of input and output 

variables. The considered machine learning models were 

https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
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trained on 70% of datasets and then tested on the 

remaining 30%. Their performance was assessed based on 

WEKA's built-in evaluation parameters that include 

correlation coefficient (R), mean absolute error (MAE), 

relative absolute error (RAE), root mean squared error 
(RMSE), and root relative squared error (RRSE) [28].  

The mean absolute error of an individual model i (MAEi) is 

evaluated as given by equation 4.  

 

1

1
| |

n

i ij j

j

MAE P A
n 
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(4) 

Where P(ij) is the value predicted by the individual 

model i for entry j (out of n entries), and Aj is the actual 

target value for entry j. For a perfectly fitted 

model, P(ij) = Aj and MAEi = 0. So, the MAEi values range 

from 0 to infinity, with 0 corresponding to the ideal value. 

On the other hand, the relative absolute error of model i 

(RAEi) is calculated as shown in equation 5.  
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(5) 

As shown, the relative absolute error computes the total 

absolute error of model i and normalizes it by dividing by 

the total absolute error of the simple predictor, and the 

whose predicted value is always equal to the average of the 

actual target values observed during the training process. 

TABLE III 

Number of Hidden Layers Options 

ANN  

configuration 
Number of hidden layers 

ANN-1 No. of outputs 

ANN-2 (No. of inputs + No. of 

outputs)/2 

ANN-3 No. of inputs 

ANN-4 No. of inputs + no. of outputs 

 

For a perfect model, the numerator is equal to 0 and, hence, 
RAEi =0. In addition, the root means the squared error of 

model i (RMSEi)can be computed as shown in equation 6. 

As shown, RMSEi is a descending metric with an ideal 

value of 0.  
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(6) 

 

Furthermore, the relative root squared error of model i 
(RRSEi) can be calculated based on equation 7. As 

illustrated, the relative squared error takes the total squared 

error of model i and normalizes it by dividing by the total 

squared error of the simple predictor, which is simply the 

average of the actual target values. By taking the square 

root of the relative squared error,   the error is reduced to 

the same dimensions as the quantity being predicted. 
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IV. MOTIVATIONAL ANALYSIS 

This section presents a preliminary motivational 

analysis that sheds light on the variations of the SPEC 

ratios of different processor models on different 

benchmark programs. It considers the variations among 

different processor vendors, microarchitecture code names, 

and market segments.  Fig. 2 and Fig. 3 show the average 

SPEC ratios of different processor models, grouped by 

processor vendor (i.e., Intel and AMD), for the integer and 

floating-point benchmark groups, respectively. The 
column labeled as SPECspeed_int and SPECspeed_fp 

represents the average aggregate score considering all 

benchmarks in the corresponding category.  

As shown in Fig. 2, Intel processors have slightly better 

aggregate scores than those of AMD processors on the 

integer benchmarks. However, this trend cannot be 

generalized when considering individual benchmarks. For 

instance, Intel processors have a higher average SPEC 

ratio on the perlbench benchmark, while the AMD 

processors have a higher SPEC ratio on the mcf benchmark. 

On the other hand, processor models – from the same 
vendor are not performing equally on all benchmarks. As 

illustrated in Fig. 2, the SPEC ratios associated with the 

deepsjeng and leela benchmarks are generally lower than 

those of other benchmarks.  
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Fig. 2: SPEC ratios based on processor vendor – Integer 

benchmarks. 

https://www.gepsoft.com/GeneXproTools/AnalysesAndComputations/MeasuresOfFit/RelativeSquaredError.htm
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In addition, Fig. 3 shows that AMD processors have higher 

average aggregate scores on the floating-point benchmarks. 

However, this observation does not apply to individual 

benchmarks. In this regard, Intel processors have a higher 

average SPEC ratio on the bwaves benchmark, while the 
AMD processors have a higher average SPEC ratio on the 

nab benchmark. Fig. 4 shows the average SPEC ratios per 

benchmark besides the average aggregate scores for 

different processor models, grouped by the 

microarchitecture code name for the integer benchmarks 

group.  
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Fig. 3: SPEC ratios based on processor vendor – Floating-point benchmarks. 
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(a) CascadeLake (b) Skylake 
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(c) CoffeeLake (d) KabyLake 

 

Fig. 4: SPEC ratios based on microarchitecture code name – Integer benchmarks. 

 
 

As shown, there are noticeable differences in the average 
aggregate scores among processor models following 

different microarchitecture code names. In addition, there 

are also pronounced differences in the SPEC ratios are 

associated with different individual benchmarks under 

each microarchitecture code name. Fig. 5 shows the 
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average and aggregate SPEC scores for different processor 

models, grouped by the market segment for the integer 

benchmarks group.  

 

As shown, Server processors have, in general, higher 
average aggregate performance scores. However, they do 

not perform equally on all individual benchmarks.  

Similarly, desktop processors exhibit varying SPEC ratios 

under different benchmark applications.  
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(b) Desktop  

 

Fig. 5: SPEC ratios based on the market segment – 

Integer benchmarks. 
 

Hence, the results presented in this section show that 

relying on aggregate performance scores may provide 

misleading results. Relying on one factor such as processor 

vendor, microarchitecture code name or market segment 

may not provide enough information to compare different 

processor models or predict the performance of new 

models for specific individual benchmarks. Therefore, an 

efficient tool is required to predict the performance of new 

processor models on different workloads considering not 

only processor information but also processor 

configuration, benchmark type, and the interplay between 
application behavior and processor's internal 

microarchitecture. In this regard, machine learning 

algorithms can be considered as viable options for 

performance prediction considering the presence of 

various features that influence processor performance.  

 

V. RESULTS AND ANALYSIS 

This section presents and compares the prediction 

performance  of the considered machine learning 

algorithms on the constructed datasets for the integer and 

floating-point benchmark groups.  

A. Performance Analysis on Integer Benchmarks 

Dataset 

Fig. 6 shows and compares the correlation coefficient of 

different machine learning models on the integer 

benchmarks dataset. The correlation coefficient 

characterizes the linear correlation between the actual and 

the predicted SPEC ratio values. As shown, the ANN-2, 

ANN-3, ANN-4, and RF algorithms have achieved 

adequately high correlation coefficient values as compared 
to the LR and ANN-1 (i.e., an ANN with a single hidden 

layer). Hence, the variation in the predicted (i.e., target) 

variable can be sufficiently explained by these models. In 

addition, the RF algorithm has achieved the highest 

correlation coefficient with a value of 0.99. The RF 

algorithm has achieved up to 6% improvement in 

correlation coefficient as compared to the LR and ANN-1 

algorithms.    
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Fig. 6: Correlation coefficient comparison – Integer 

benchmarks. 

 

On the other hand, Fig. 7 illustrates the mean absolute 

error (MAE) values of the considered machine learning 
models.  
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Fig. 7: Mean absolute error (MAE) comparison – 

Integer benchmarks. 
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As shown, the MAE value of the ANN models with a 

greater number of hidden layers (i.e., the deep ANN 

models in ANN-2, ANN-3, and ANN-4) besides the RF 

algorithms have achieved lower MAE values as compared 

to the LR and ANN-1 models.  In addition, the RF 
algorithm has achieved the lowest MAE value among all 

competitor algorithms; its associated MAE value is o.38. It 

has attained up to 69% reduction in the MAE value as 

compared to the LR and ANN-1 algorithms. Fig. 8 depicts 

the relative absolute error (RAE) metric which normalizes 

the sum of absolute errors of the considered models by that 

of a simple predictor. As illustrated in Fig. 8, the ANN-2, 

ANN-3, ANN-4, and the RF models are performing 

reasonably well as compared to other models. In addition, 

their associated RAE values prove their superiority over a 

simple predictor. In other words, they can capture the 

inherent relationship between the input features and the 
target variable and produce more accurate predictions, as 

compared to a simple predictor. Overall, the RF algorithm 

has achieved a 9.08% RAE value which is the lowest RAE 

value among the considered models. It has obtained up to 

68% reduction in the RAE metric as compared to the LR 

and ANN-1 models.  
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Fig. 8: Relative absolute error (RAE) comparison – 

Integer benchmarks. 
 

Fig. 9 presents the root mean squared error (RMSE) 

metric for the studied machine learning models.  
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Fig. 9: Root mean squared error (RMSE) comparison – 

Integer benchmarks. 

 

As can be observed, the RMSE metric exhibits a similar 

trend to that of the MAE and RAE metrics. In other words, 

having deeper neural network models (i.e., ANN-2, ANN-

3, and ANN-4) or an ensemble-based predictor (i.e., RF) 

has resulted in lower RMSE values (i.e., more prediction 
accuracy). As compared to the LR and ANN-1 models, the 

RF model's improvement in RMSE has reached up to 59%. 

Fig. 10 compares the root relative squared error (RRSE) 

values of the obtained machine learning models. The 

RRSE metric normalizes the sum of squared errors of a 

machine learning model by that of a simple mean-based 

predictor. As shown, the RRSE metric follows an identical 

trend to that of other metrics with the RF-based model 

achieving the best performance among all other models. 

With a 15.30% RRSE value, the RF algorithm has 

achieved around 59% improvement when compared to the 
LR and the ANN-1 models.  
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Fig. 10:  Root relative squared error (RRSE) 

comparison – Integer benchmarks. 

B. Performance Analysis on Floating-point Benchmarks 

Dataset 

Fig. 11 shows and compares the correlation coefficient of 

different machine learning models on the Floating-point 

benchmarks dataset. The correlation coefficient 

characterizes the linear correlation between the actual and 

the predicted SPEC ratio values.  
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 Fig. 11: Correlation coefficient comparison – Floating-

point benchmarks. 
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As shown, the ANN-2, ANN-3, ANN-4, and RF 

algorithms have achieved adequately high correlation 

coefficient values as compared to the LR and ANN-1 (i.e., 

an ANN with a single hidden layer). Therefore, the 

variation in the predicted (i.e., target) variable can be 
sufficiently explained by these models. In addition, the 

ANN-2, ANN-3, ANN-4, and the RF algorithm have 

achieved an identical correlation coefficient value of 0.99. 

They have achieved up to 11% improvement in correlation 

coefficient as compared to the LR algorithm.   On the other 

hand, Fig. 12 shows and compares the mean absolute error 

(MAE) values of the machine learning models considered 

in this work. As depicted, the MAE value of the relatively 

deep ANN models along with the RF algorithm has 

attained better MAE values when compared to the LR and 

ANN-1 models.  In addition, the RF algorithm has 

achieved the lowest MAE value among all competitor 
algorithms; its observed MAE value is 6.64 as opposed to 

40.40 in the case of the LR model. The RF-based model 

has attained up to 83.5% reduction in the MAE value as 

compared to the LR model. Fig. 13 depicts the relative 

absolute error (RAE) metric which normalizes the sum of 

absolute errors of the considered machine learning 

predictors by that of a simple predictor.  
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Fig. 12: Mean absolute error (MAE) comparison – 

Floating-point benchmarks. 

 

 

As illustrated in Fig. 13, the ANN-2, ANN-3, ANN-4, and 

the RF models have achieved noticeable improvement in 

their RAE values; they have obtained a pronounced 

reduction in their sum of absolute errors as compared to 

their simple predictor counterpart. In addition, the RF 

algorithm has attained a 6.87% RAE surpassing all other 

competitor models. As compared to the LR model, the RF-
based model has achieved up to 83.6% reduction in the 

RAE metric.  
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Fig. 13: Relative absolute error (RAE) comparison – 

Floating-point benchmarks. 

Fig. 14 shows the root mean squared error (RMSE) values 

for the considered machine learning models. As seen in 

Fig. 14, the RMSE values follow similar behavior to that 

of the MAE and RAE values. In other words, the ANN-2, 

ANN-3, ANN-4, and the RF models have achieved lower 
RMSE values (i.e., better prediction accuracy).  As 

compared to the LR model, the RF model improvement in 

RMSE has reached around 75%. Finally, Fig. 15 shows the 

RRSE values of the considered machine learning models. 

As illustrated, the RRSE trend is identical to that of other 

metrics with the RF model yielding the best RRSE-based 

performance among all other competitor models. As 

shown, the RF's RRSE value is 11.49%. Its percent 
reduction in RRSE, as compared to the LR mode, is 75%.  
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Fig. 14: Root mean squared error (RMSE) comparison 

– Floating-point benchmarks. 

 

LR ANN-1 ANN-2 ANN-3 ANN-4 RF

0

20

40

60

80

100

Prediction model

R
R

S
E

 (
%

)

LR

ANN-1

ANN-2

ANN-3

ANN-4

RF

 
Fig. 15:  Root relative squared error (RRSE) 

comparison – Floating-point benchmarks. 
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In summary, the results shown in this section prove the 

ability of relatively deep ANN-based models and the RF 

model to achieve noticeable accuracy in predicting the 

performance of microprocessors. These models can learn 

the inherent and potentially non-linear relationship 
between some processor- and workload-specific features 

and the associated SPEC ratios.  

VI. CONCLUSIONS 

Recently, a variety of logically equivalent but 

microarchitecturally different processor models has been 

introduced. These models would normally exhibit similar 
general-purpose processing capabilities but yield diverse 

performance readings on similar workloads. Hence, end-

users need efficient tools that capture the interplay 

between processor microarchitecture and workload 

characteristics. In this regard, this paper has investigated 

the feasibility of using machine learning models to predict 

processor performance based on a standardized and widely 

used benchmark suite i.e., the SPEC CPU2017 suite, that 

includes both integer and floating-point benchmark 

applications that are considered as a representative sample 

of typical user workload space. The considered machine 
learning models were trained and evaluated based on the 

recently submitted and published SPEC evaluation results. 

Evaluation results have proved the ability of relatively 

deep ANN models along with the RF-based model to 

provide accurate performance predictions with the RF-

based model surpassing its predictive counterparts. Overall, 

the considered machine learning models can serve as 

feasible tools to predict the performance of new processor 

models on standard benchmark applications.  
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