
International Journal of Engineering Trends and Technology Volume 69 Issue 1, 35-42, January 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I1P206 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Implementation of a Big Data Architecture For The

Realization of Predictive Models With Great

Volumes of Data

Enrique Lee Huamaní1, Avid Roman-Gonzalez2

1,2Image Processing Research Laboratory (INTI-Lab), Universidad, de Ciencias y Humanidades, Lima, Perú

1ehuamaniu@uch.edu.pe, 2avid.roman-gonzalez@ieee.org

Abstract - The research direction of the University of

Sciences and Humanities has integrated a Big Data
architecture to make predictive models with large volumes

of data. Therefore it was implemented with the purpose that

in future research, this architecture can be used efficiently.

In this study, the theoretical concepts of Hadoop version 2.0

will be discussed, as well as the next scalability in a Beowulf

cluster implemented in one of the University's laboratories

and the configuration of Hadoop Spark and how they were

able to work in conjunction. Finally, in the results section,

tests will be carried out to validate that this architecture

works perfectly.

Keywords: Big Data, Hadoop, Spark, Predictive models,

HDFS.

I. INTRODUCTION
Data science is changing, and with it, the amount of

existing information in the world; data sizes have evolved

over the years from a few kilobytes to exabytes [1] therefore,

nowadays, it has become essential to deal with large volumes

of information using new tools that we have at our disposal

since traditional tools do not meet expectations due to their

limitations. Consequently, at present, there are methods for

dealing with large volumes of information, and this is how

the terminology of Big Data was born, where the adjective

"Big" refers to the great amount of data [2]. As an overview,

when we talk about Big Data, we refer to data sets whose

size, complexity, and growth speed make it difficult to

capture, manage and process or analyze them using

conventional technologies and instruments. When thinking

about making predictive models, there is always the need to

deal with large volumes of data. The greater the amount of

data, the more accurate the prediction is; thus, the Big Data

associated with data science is the most suitable to work

with. What makes Big Data so useful is the reduction of cost,

it is much faster and allows us to make better decisions, and

with it, we can provide new products and services.

II. BACKGROUND

Research related to Big Data Hadoop architecture in

Universities in Peru is an increasingly recurrent topic as we

have the case of the National University of Engineering that

has created a Hadoop cluster for performance testing using

GPUs and CPUs [5] as well as work related to the vehicle

system in Peru applying the machine Learning and the Big

Data [6]. In addition, there have been investigations that
have combined HPC and Big Data fields as there is one of

the projects funded by the Peruvian National Council for

Science, Technology and Technological Innovation

(Concytec by its Spanish acronym) [7]. Big Data is

becoming essential in Peru. There are works such as the

University of the Pacific where a greater effort among all

university students to obtain the knowledge to know how to

use these types of architecture was given [8]. Regarding

work performed abroad, there are many examples, among

which we have the intensive analysis of Big Data under the

Netflix platform, which performs an analysis of how its
algorithm works and chooses the best options for the

consumer [9], as well as there are investigations related to

astronomy in charge of determining the movement of

celestial bodies by applying intensive techniques with the

MPI libraries and in obtaining information by applying the

Big Data Hadoop [10].

III. METHODOLOGY

In this work, the implementation of a Big Data Hadoop

architecture for the realization of predictive models using

Spark will be discussed to carry out more complex research

in the future. As shown in Fig. 1, we contemplate all that

can be integrated using Hadoop 2.0. Moreover, in this

work, we will concentrate on the distributed programming

with Spark, following we will explain the general concepts
of Hadoop and its elements for its operation.

https://ijettjournal.org/archive/ijett-v69i1p206
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:2coauthor@mailserver.com

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

36

 Fig. 1 Hadoop ecosystem

A. Hadoop Framework

One of the most widely used tools for handling large

volumes of data is the Hadoop framework in its version 2.0,

Java-based open-source software to store data and run

applications on basic hardware clusters. This framework

operates using two concepts: data storage in Hadoop

Distributed File System (HDFS) and Yarn that will be a

fundamental part of the Hadoop 2.0 ecosystem. Traditionally

in version 1.0, MapReduce was used as the only process

manager. However, in the new version, there are more

options for processing. Figure 2 shows a comparison
between the Hadoop 1 and 2 ecosystem showing that in

version 2, we have many benefits because we can integrate it

with some tools that had been used previously, such as the

MPI, which was implemented in one of the laboratories of

the Universidad de Ciencias y Humanidades.

Fig. 2 Hadoop 1.0 and Hadoop 2.0 comparison

a) Hadoop Distributed File System: The Hadoop distributed

File System with its acronym HDFS is a distributed file

system from Hadoop, its capacity is to store files in a cluster

of several machines [11]; this feature is important when

trying to store large amounts of data as it is generally not

possible to store hundreds of terabytes or petabytes on a
single machine. The Hadoop cluster data is divided into

smaller parts called blocks and then distributed throughout

the cluster; blocks and block copies are stored on other

servers. HDFS follows a policy to distribute the blocks in

Hadoop [12] to achieve block distribution. There are 3 main

elements; NameNode, DataNode, and the HDFS client [13].

Figure 3 illustrates the idea between the Name Node that will

take the orchestrator computer's role and the Data Nodes

where the processing and storage of information will occur.

Fig. 3 HDFS Architecture

b) Another Resource Negotiator: It is also known as
Yarn because of its acronym, it is a cluster
management technology used since the second version of

Hadoop. It is currently characterized as a large-scale

distributed operating system for Big Data applications. Yarn

allows Hadoop to support more varied processing approaches

and a wider range of applications [14]. For example, Hadoop

clusters can perform interactive queries and data application

transmissions simultaneously with the MapReduce block

jobs, as well as in the documentation extracted from the

Cloudera website [15]. For example, Hadoop clusters can

now make interactive queries and data application

transmissions simultaneously with MapReduce's batch jobs,
as well as in the documentation extracted from the Cloudera

website, which gives us, as shown in Fig. 4, the processing

managers that can be used. We have HPC OpenMpi, which

in previous research used parallel processing for rendering

farms, as can be seen in [16]. Likewise, with respect to other

previous research, we have the use artificial intelligence

using Machine Learning to predict terrorist attacks [17]. In

this research, it was argued as future work to be able to use

the large volumes of data in social networks to perform with

a greater degree of accuracy on suspected cyber terrorism

attacks, so concerning YARN would be useful to use Spark

as it is easily adaptable to the model that has been developed.

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

37

Fig. 4 Information delivery by HDFS

B. Hadoop Yarn Behavior

The yarn has become a fundamental part of the Hadoop

ecosystem. It allows support for several execution engines,

including MapReduce. YARN's main idea is to split the

resource management and scheduling functionality as well

as work supervision into separate daemons. As shown in

Fig. 5, extracted from the research of [18], the functionality

of Yarn is composed of a global ResourceManager (RM)

and an ApplicationMaster (AM) per application, where one

application is a single job. The ResourceManager and

NodeManager form the data calculation framework. The

ResourceManager is the highest authority that arbitrates

resources between all the applications on the system.
Simultaneously, the NodeManager is the frame agent per

team responsible for the containers, monitoring the use of

the resources (CPU, disk memory, network), and reporting it

to the Resource Manager /Scheduler. The ApplicationMaster

by Application is a framework-specific library. It has the

task of negotiating the resources of the ResourceManager

and working with the NodeManager to execute and monitor

the tasks.

Fig. 5 Hadoop Yarn Architecture

ResourceManager contains two main components:

Schedule and ApplicationManager.

a) Schedule: It has a connectable policy responsible for

dividing the resources of the cluster between various queues,

applications, etc. The current programmers, like

CapacityScheluder and Faircheduler, would be some

examples of compliments.

b) ApplicationManager: It is responsible for accepting job

submissions, negotiating the first container to run the

application-specific ApplicationMaster, and providing the

service to restart the ApplicationMaster container in case of
failure. The ApplicationMaster, per application, has the

responsibility to negotiate appropriate resource containers

from the Scheduler, track their status, and monitor their

progress.

C. Hadoop scalability in a Beowulf cluster

A Beowulf cluster was implemented in a previous

investigation regarding [19], performing highly complex

scientific processes using the Open Mpi libraries through the

SHH protocol. However, due to loss of communication,

operating system failure, or other errors in one of the nodes,

the process may be unfinished; therefore, Hadoop will be

used with the Beowulf architecture as a proposal for future

integration since the version of Hadoop 2.0 has the yarn to be

able to use the MPI and have a high availability Beowulf
cluster. Concerning this research, related to predictive

models with large volumes of data, we will also take

advantage of it because we will have a greater amount of

data node for scalable storage and distribution process, to

know more about the architecture and power of the Beowulf

cluster. Fig. 6 shows the physical architecture in which we

work, and Fig. 7 shows a graph extracted from previous

research. With this architecture, Beowulf has planned to

scale the current Big Data architecture in the future; in Table

I, we can see the characteristics of each of the computers that

are performing the process.

Fig.6 Beowulf Cluster of the University of Sciences and

Humanities

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

38

Fig. 7 Performance Test Comparison

Table 1. Hardware characteristics of the beowulf cluster

Components Description

Modell HP EliteDesk 800 G1 SFF

HDD HDD 1 TB

RAM RAM 8 GB

Processor Intel(R) Core (TM) i7-8700

Total Cores 12

Type of Operating System 64-bit

Operative System Ubuntu 18.04

D. Hadoop framework implementation

To operate the Hadoop cluster, configurations will have

to be made using the Hadoop packaging extracted from its

official website. Then the following traditional ones will

have to be made to their configuration.

a) Installation of the Java JDK package: The origin of

Hadoop is Java so it is installed with an apt-get update for

missing ubuntu updates as shown in (1) (2) (3).

apt-get update (1)

apt-get install degault-jdk (2)

update-alternative -config java (3)

In this the Java JDK installation was placed in the file

/usr/lib/jvm/java-11-openjdk-amd64 to then introduce

“export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-

amd64” with the following command from the terminal (4)

finally using the reboot command.

vi /etc/profile.d/java.sh (4)

b) Hadoop user creation: Before proceeding with the

configuration, it is recommended to create a new user to

handle the predictive models with Hadoop (5).

 adduser hadoop (5)

c) RSA key generation: When a Hadoop cluster is assembled

initially, it is necessary to generate an RSA key, but since

this work generated a unique key for using the Beowulf

cluster, this key will be reiterated for the use of the Big Data

architecture.

d) Hadoop framework installation: After downloading and

unzipping the Hadoop, the file must be moved to the path

/usr/local/Hadoop, then the property (6) so that the Hadoop

can be operated normally.

 vi /etc/profile.d/hadoop.sh (6)

The following content will be included in the Hadoop. Sh as

shown in Fig. 8.

Fig. 8. Hadoop. sh configuration

Following the Hadoop configuration, you must set the

environment variable in path (7) by entering the code line

(8) to reboot the system finally.

vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh (7)

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64

(8)

e) Hadoop node configuration : Then, the environment of

the hadoop framework must be configured in the

corresponding files, which are in xml format.

1) Namenode configuration: To configure the namenode for

the Hadoop cluster operation, you will have to configure the

path (9) and edit it as shown in Fig. 9.

vi /usr/local/hadoop/etc/hadoop/core-site.xml (9)

Fig. 9. Hadoop Namenode Configuration

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

39

2) HDFS storage configuration: Afterwards, the path where

the HDFS storage will be done must be configured by editing

the following configuration (10) in Hadoop. In Fig. 10, a

replication value of 3 is shown; this means that the data

volume is divided into replication blocks into 3 different
containers. In the future, when the Beowulf cluster

architecture is used, the amount of replication will increase.

vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml (10)

Fig. 10. HDFS Configuration

3) MapReduce and Yarn configuration: Since we are

working with Hadoop version 2.0, it must be indicated that

the MapReduce will be integrated with the YARN. Therefore

the following path is entered modifying the xml file (11), and

the following configuration will be added as shown in Fig.

11. The YARN configuration is edited in the following path

(12), modifying the xml as in Fig. 12.

vi /usr/local/hadoop/etc/hadoop/mapred-site.xml (11)

Fig. 11. XML MapReduce Configuration

vi /usr/local/hadoop/etc/hadoop/yarn-site.xml (12)

Fig. 12. XML Yarn Configuration

4) Creation of directories, formatting, and starting the

Hadoop framework: To complete the Hadoop configuration,

2 important directories must be created for the information

storage, these are the data node and the namenode, with the

following command and declaring permissions for its storage

from the terminal (13) (14) (15).

 mkdir -p /hadoop/hdfs/namenode (13)

 mkdir -p /hadoop/hdfs/datanode (14)

 chown -R hadoop:hadoop /hadoop (15)

When all configurations are done to the XML, the terminal

must enter the path (16) and format it with the command

./hdfs namenode -format to finally start the services entered

in the path (17) using the commands ./start-dfs.sh and ./start-

yarn.sh to display from the web. Fig13 shows that Hadoop

works successfully to make predictive models using large

volumes of data.

cd /usr/local/hadoop/bin (16)

cd $HADOOP_HOME/sbin/ (17)

Fig. 13. Hadoop in progress

E. Spark framework implementation

To make predictive models with large volumes of data, we

can easily use it using the Hadoop framework without an

additional framework. However, this research intends to get

the maximum results with tools that provide results in the

shortest time possible. Therefore, Hadoop, through YARN,

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

40

will use Apache Spark, which is an open-source cluster

computing framework that offers the advantage of having a

fast and general engine used to analyze large scale data, in

addition to the fact that one of its most relevant

characteristics is that the data is stored in memory and not in
the disk, making it much faster than the traditional Hadoop

[20]. In this study, Apache Spark can mention many things,

but the main idea is to integrate it with Hadoop. Therefore,

below we show Spark's configuration with Hadoop to be

stored in HDFS in each of the data nodes.

a) Scale installation: Spark worked under the scale

language; therefore should be downloaded at [21], which

corresponds to the official site, which will have a file scala-

2.13.4.tgz and then decompress it using the command in

console tar xvf scala-2.12.7.tgz. Once the file has been

decompressed, it is moved to the file /usr/local/, and then an

environment variable is created in .bashrc, and the following
line of code is added: export

SCALA_HOME=/usr/local/scala-2.13. 4, with this line, you

indicate where Scala is installed. Following, inside the

PATH line, all the binary files inside the scala/home path

should be shown with the following sentence in the same

bashrc export PATH=$PATH:$SCALA_HOME/bin. As we

already have the Hadoop installed, we add code export

PATH=$PATH:$HADOOP_HOME/bin:$SCALA_HOME/b

in. To finish this process, the environment is updated with

the data entered with the following command from the

terminal source ~/.bashrc.

b) Spark installation: Once Scala has been installed, we will
proceed to install Spark using the following link [22], then

you must decompress it with tar xvf ./spark-2.4.0-bin-

hadoop2.7.tgz and move it to /usr/local, then edit bashrc one

more time and add export SPARK_HOME=/usr/local/spark-

2.4.0-bin-hadoop2.7. In addition, we indicate where the

Spark executables are by adding a PATH with the following

export sentence

PATH=$PATH:$HADOOP_HOME/bin:$SCALA_HOME/b

in:$SPARK_HOME/bin. Finally, we updated the

environment with source ~/.bashrc, and to verify that the

spark is operational, we head to the spark-submit –version.

Having made all configurations, we can use Spark to use
predictive models with large data volumes using Hadoop's

HDFS as a storage medium since we are having a

communication with the YARN for distributed processing.

IV. RESULTS

To determine how functional the Spark will be using

Hadoop, predictive models will be made, and the Apache

Spark Mlib will be used to create an automatic learning

application. The application being tested will perform

predictive analysis of an open data set from Spark's built-in

self-learning libraries, in this example using logistic

regression for classification. In this case, the development

will be worked by notebook Jupyter, as shown below.

from pyspark.ml import Pipeline

from pyspark.ml.classification import LogisticRegression

from pyspark.ml.feature import HashingTF, Tokenizer

from pyspark.sql import Row

from pyspark.sql.functions import UserDefinedFunction

from pyspark.sql.types import *

def csvParse(s):

import csv

from StringIO import StringIO

sio = StringIO(s)

value = csv.reader(sio).next()

sio.close()

return value

inspections=sc.textFile('/HdiSamples/HdiSamples/FoodIns

pectionData/Food_Inspections1.csv')\ .map(csvParse)

inspections.take(1)

Developing the code shows the following result and

indicates that everything until this point is functioning

properly.

 [['707413',

 'CENTRAL PARK ACADEMY',

 'CENTRAL PARK DAY CARE',

 '2049789',

 "Children's Services Facility",

 'Rocks 1 (Batch)',

 '1850 FOREST DAY VALLAGE ',

 'NEW YERSEY',

 'XL',

 '15254',

 '08/20/2009',

 'License Copernicus',

 fail,

 'Comment none. ',

 '42.78349412541566',

 '-40.26896247521587',

 '('42.78349412541566', -40.26896247521587)']]

As shown in the code, the 4 columns of interest that will be

used are id, name, results, and violations; in the last line of

code, it was indicated that it shows the first 5 results, so we

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

41

will have the results shown in Table II.

Table 2. The first 5 data for prediction with spark

id name result violation

707413 CENTRAL

PARK

ACADEMY

fail 15. CLEAN

THE

FLOOR

142562 HERMIT

COFFEE

fail 2.

FACILITIES
TO ...

159854 QUICK PIZZA fail

859657 PREMIERE

HOSTEL

fail

358658 OP BURGER fail

To predict the results, the data set must be properly

understood. Therefore the data frame already analyzed must

be based on a model that corresponds to our data set and is

constructed according to the violations during food

inspection. Therefore, we will perform a logistical regression

that is a binary classification method, and the results data

must be grouped into two categories: Failed and Approved.

Afterward, a code is executed to convert the existing data

frame (df) into a new one, and each inspection will be

presented as a pair of labels-villations. Label 0.0 represents

an error, label 1.0 represents success, and label -1.0 will
represent some results in addition to these two results.

def labelForResult(s):

if s == 'Pass Condition or s == 'Pass':

 return “1.0”

elif s == 'Fail':

 return “0.0”

else:

 return “-1.0”

label = UserDefFunction(labelForResult, DoubleType())

labeledData = df.select(label(df.result).alias('label'),

df.violation).where('label >= 0')

A logistic regression model is then created from the input

data frame.

tokenizer=Tokenizer(inputCol="violations",outputCol="wor

ds")

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(),

outputCol="features")

lr = LogisticRegression(maxIter=10, regParam=0.01)

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr])

 model = pipeline.fit(labeledData)

testData=sc.textFile('wasbs:///HdiSamples/HdiSamples/Food

InspectionData/Food_Inspections2.csv')\

 .map(csvParse) \ .map(lambda l: (int(l[0]), l[1], l[12], l[13]))

testDf=spark.createDataFrame(testData,

schema).where("results = 'Fail' OR results = 'Pass' OR

results = 'Pass w/ Conditions'")

predictionsDf = model.transform(testDf)

predictionsDf.registerTempTable('Predictions')

Lastly, to visualize a prediction, the following sentence is

placed predictionsDf.take(1) from which the output will

show us in the following way.

“There were 9315 inspections, and there were 8087

successful predictions.”

“This is an 86.8169618894% success rate.”

As a visual representation of a prediction, we will use the

following syntax shown in Fig.14 to finally use the

following code fraction to generate a graphic using

Matplotlib. The result is shown in Fig. 15.

Fig. 14. Hadoop in progress

Enrique Lee Huamaní & Avid Roman-Gonzalez. / IJETT, 69(1), 35-42, 2021

42

Fig. 15. Prediction result using Matplotlib

V. DISCUSSION AND CONCLUSIONS

Developing a Hadoop architecture to make predictive models

using Spark is a proposal that will innovate in the direction
of research at the University of Sciences and Humanities as

each year the institution's research is increasingly intensive.

As explained in the methodology section, this work can be

improved if a Beowulf cluster is established; the idea is to

use the Hadoop architecture with all the computers connected

to the same network in the future. This would provide a

powerful architecture to provide services and apply for

funding projects that exist in Peru and make the University a

pioneer in having Big Data architectures. In the short term,

this work is intended to integrate other technologies to do

various functions, such as extracting information in real time
and including software to see the state of the Hadoop

architecture. One of the projects planned is Ambari, so this

work is the beginning of many jobs that will be performed.

We can conclude that the integration of the Big data Hadoop

architecture was a success and that it could be integrated

with Spark to make predictive models. In this case, we used

pyspark, which was highly useful for creating predictive

models that are easy to understand, as has been shown in this
work. We can also indicate that by using existing resources

from the University of Sciences and Humanities, the cost of

the integration was low, in contrast to buying a pre-installed

Hadoop service or being able to use the AWS cloud, which

is of great benefit to researchers who seek to use this

architecture.

REFERENCES
[1] T. D. Wemegah and S. Zhu, Big data challenges in transportation: A

case study of traffic volume count from massive Radio Frequency

Identification(RFID) data, Conf. Proc. - 2017 Int. Conf. Front. Adv.

Data Sci. FADS (2017) 58–63.

[2] T. J. Barnes, Big data, a little history, Dialogues Hum. Geogr.,

3(3)(2013) 297–302.

[3] G. Sharma and A. Ganpati, Performance evaluation of fair and

capacity scheduling in Hadoop YARN, Proc. 2015 Int. Conf. Green

Comput. Internet Things, ICGCIoT (2015),904–906.

[4] A. Wakde, P. Shende, S. Waydande, S. Uttarwar, and G. Deshmukh,

,Comparative Analysis of Hadoop Tools and Spark Technology, Proc.

- 2018 4th Int. Conf. Comput. Commun. Control Autom.

ICCUBEA(2018) 1–4.

[5] N. M. Lapa Romero, J. A. Fiestas Iquira, A. Tenorio Trigoso, and Y.

Nuñez Medrano, Pruebas de rendimiento sobre el Clúster de CPUs y

GPUs empleando simulación N-body, (2018) 19–21.

[6] G. Bravo-Rocca, P. Torres-Robatty, and J. Fiestas-Iquira, Sparkmach:

A distributed data processing system based on automated machine

learning for big data, Commun. Comput. Inf. Sci., 898(2019) 121–128.

[7] I. Ocampo and L. Exequiel, INTRODUCCIÓN A LA

SUPERCOMPUTACIÓN EN EL PERU, 39(5)(2017).

[8] M. Nunez-del-Prado, M. Rodriguez, and Ieee, Big Data Analytics Labs

in the Cloud Spaces for Teamwork, 2017 7th World Eng. Educ.

Forum, (2017) 499–503.

[9] S. Maddodi and K. P. K,Netflix Bigdata Analytics- The Emergence of

Data-Driven Recommendation, SSRN Electron. J., 3(2)(2019) 41–51.

[10] J. Fiestas, O. Porth, P. Berczik, and R. Spurzem, Evolution of growing

black holes in axisymmetric galaxy cores, Mon. Not. R. Astron. Soc.,

419(2012) 57–69.

[11] A. Siretskiy and O. Spjuth, HTSeq-Hadoop: Extending HTSeq for

massively parallel sequencing data analysis using Hadoop, Proc. -

2014 IEEE 10th Int. Conf. eScience, eScience (2014),1,317–323.

[12] A. Shah and M. Padole, Load Balancing through Block Rearrangement

Policy for Hadoop Heterogeneous Cluster, 2018 Int. Conf. Adv.

Comput. Commun. Informatics, (2018) 230–236.

[13] C. Verma and R. Pandey, Comparative analysis of GFS and HDFS:

Technology and architectural landscape, Proc. - 2018 10th Int. Conf.

Comput. Intell. Commun. Networks, CICN,(2018) 54–58.

[14] T. Subbulakshmi and J. S. Manjaly,A comparison study and

performance evaluation of schedulers in Hadoop YARN,Proc. 2nd Int.

Conf. Commun. Electron. Syst. ICCES (2018)-Janua, no. Icces, (2018)

78–83.

[15] I. Hortonworks,Data access and data management.[Online]. Available:

https://docs.cloudera.com/HDPDocuments/HDP2/HDP-

2.1.2/bk_getting-started-guide/content/ch_hdp2_data-access-mgt.html.

[16] E. L. Huamaní, P. Condori, B. Meneses-Claudio, and A. Roman-

Gonzalez, “Render farm for highly realistic images in a Beowulf

cluster using distributed programming techniques,Int. J. Adv. Comput.

Sci. Appl., 10(11)(2019) 407–411.

[17] E. L. Huamaní, A. M. Alicia, and A. Roman-Gonzalez,Machine

Learning Techniques to Visualize and Predict Terrorist Attacks

Worldwide using the Global Terrorism Database, Int. J. Adv. Comput.

Sci. Appl.,11,(4)(2020) 562–570.

[18] H. Geng, Internet of things and data analytics handbook.(2017).

[19] E. L. Huamaní, P. Condori, and A. Roman-Gonzalez, “Implementation

of a Beowulf Cluster and Analysis of its Performance in Applications

with Parallel Programming,Int. J. Adv. Comput. Sci. Appl.,

10(8)(2019) 522–527.

[20] A. V. Hazarika, G. Jagadeesh Sai Raghu Ram, and E. Jain,

Performance Comparision of Hadoop and spark engine, Proc. Int.

Conf. IoT Soc. Mobile, Anal. Cloud, I-SMAC (2017) 671–674.

[21] Scala, Scala Downloads, [Online]. Available: https://scala-

lang.org/files/archive/.(2020).

[22] T. A. S. Foundation, The Apache Software Foundation. [Online].

Available: https://spark.apache.org/downloads.html.

	1) Namenode configuration: To configure the namenode for the Hadoop cluster operation, you will have to configure the path (9) and edit it as shown in Fig. 9.
	2) HDFS storage configuration: Afterwards, the path where the HDFS storage will be done must be configured by editing the following configuration (10) in Hadoop. In Fig. 10, a replication value of 3 is shown; this means that the data volume is divided...
	3) MapReduce and Yarn configuration: Since we are working with Hadoop version 2.0, it must be indicated that the MapReduce will be integrated with the YARN. Therefore the following path is entered modifying the xml file (11), and the following configu...
	4) Creation of directories, formatting, and starting the Hadoop framework: To complete the Hadoop configuration, 2 important directories must be created for the information storage, these are the data node and the namenode, with the following command ...

