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Abstract - The research direction of the University of 

Sciences and Humanities has integrated a Big Data 
architecture to make predictive models with large volumes 

of data. Therefore it was implemented with the purpose that 

in future research, this architecture can be used efficiently. 

In this study, the theoretical concepts of Hadoop version 2.0 

will be discussed, as well as the next scalability in a Beowulf 

cluster implemented in one of the University's laboratories 

and the configuration of Hadoop Spark and how they were 

able to work in conjunction. Finally, in the results section, 

tests will be carried out to validate that this architecture 

works perfectly. 

Keywords: Big Data, Hadoop, Spark, Predictive models, 

HDFS. 

I. INTRODUCTION 
Data science is changing, and with it, the amount of 

existing information in the world; data sizes have evolved 

over the years from a few kilobytes to exabytes [1] therefore, 

nowadays, it has become essential to deal with large volumes 

of information using new tools that we have at our disposal 

since traditional tools do not meet expectations due to their 

limitations. Consequently, at present, there are methods for 

dealing with large volumes of information, and this is how 

the terminology of Big Data was born, where the adjective 

"Big" refers to the great amount of data [2].  As an overview, 

when we talk about Big Data, we refer to data sets whose 

size, complexity, and growth speed make it difficult to 

capture, manage and process or analyze them using 

conventional technologies and instruments. When thinking 

about making predictive models, there is always the need to 

deal with large volumes of data. The greater the amount of 

data, the more accurate the prediction is; thus, the Big Data 

associated with data science is the most suitable to work 

with. What makes Big Data so useful is the reduction of cost, 

it is much faster and allows us to make better decisions, and 

with it, we can provide new products and services. 

 

 

II. BACKGROUND 

Research related to Big Data Hadoop architecture in 

Universities in Peru is an increasingly recurrent topic as we 

have the case of the National University of Engineering that 

has created a Hadoop cluster for performance testing using 

GPUs and CPUs [5] as well as work related to the vehicle 

system in Peru applying the machine Learning and the Big 

Data  [6]. In addition, there have been investigations that 
have combined HPC and Big Data fields as there is one of 

the projects funded by the Peruvian National Council for 

Science, Technology and Technological Innovation 

(Concytec by its Spanish acronym) [7]. Big Data is 

becoming essential in Peru. There are works such as the 

University of the Pacific where a greater effort among all 

university students to obtain the knowledge to know how to 

use these types of architecture was given [8]. Regarding 

work performed abroad, there are many examples, among 

which we have the intensive analysis of Big Data under the 

Netflix platform, which performs an analysis of how its 
algorithm works and chooses the best options for the 

consumer [9], as well as there are investigations related to 

astronomy in charge of determining the movement of 

celestial bodies by applying intensive techniques with the 

MPI libraries and in obtaining information by applying the 

Big Data Hadoop [10].  

III. METHODOLOGY  

In this work, the implementation of a Big Data Hadoop 

architecture for the realization of predictive models using 

Spark will be discussed to carry out more complex research 

in the future. As shown in Fig. 1, we contemplate all that 

can be integrated using Hadoop 2.0. Moreover, in this 

work, we will concentrate on the distributed programming 

with Spark, following we will explain the general concepts 
of Hadoop and its elements for its operation. 

https://ijettjournal.org/archive/ijett-v69i1p206
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
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            Fig. 1 Hadoop ecosystem 

A. Hadoop Framework 

One of the most widely used tools for handling large 

volumes of data is the Hadoop framework in its version 2.0, 

Java-based open-source software to store data and run 

applications on basic hardware clusters.  This framework 

operates using two concepts: data storage in Hadoop 

Distributed File System (HDFS) and Yarn that will be a 

fundamental part of the Hadoop 2.0 ecosystem. Traditionally 

in version 1.0, MapReduce was used as the only process 

manager. However, in the new version, there are more 

options for processing. Figure 2 shows a comparison 
between the Hadoop 1 and 2 ecosystem showing that in 

version 2, we have many benefits because we can integrate it 

with some tools that had been used previously, such as the 

MPI, which was implemented in one of the laboratories of 

the Universidad de Ciencias y Humanidades. 

Fig. 2 Hadoop 1.0 and Hadoop 2.0 comparison 

a) Hadoop Distributed File System: The Hadoop distributed 

File System with its acronym HDFS is a distributed file 

system from Hadoop, its capacity is to store files in a cluster 

of several machines [11]; this feature is important when 

trying to store large amounts of data as it is generally not 

possible to store hundreds of terabytes or petabytes on a 
single machine. The Hadoop cluster data is divided into 

smaller parts called blocks and then distributed throughout 

the cluster; blocks and block copies are stored on other 

servers. HDFS follows a policy to distribute the blocks in 

Hadoop [12] to achieve block distribution. There are 3 main 

elements; NameNode, DataNode, and the HDFS client [13]. 

Figure 3 illustrates the idea between the Name Node that will 

take the orchestrator computer's role and the Data Nodes 

where the processing and storage of information will occur. 

 

Fig. 3 HDFS Architecture 

b) Another Resource Negotiator: It is also known as 
Yarn because of its acronym, it is a cluster 
management technology used since the second version of 

Hadoop. It is currently characterized as a large-scale 

distributed operating system for Big Data applications. Yarn 

allows Hadoop to support more varied processing approaches 

and a wider range of applications  [14]. For example, Hadoop 

clusters can perform interactive queries and data application 

transmissions simultaneously with the MapReduce block 

jobs, as well as in the documentation extracted from the 

Cloudera website [15]. For example, Hadoop clusters can 

now make interactive queries and data application 

transmissions simultaneously with MapReduce's batch jobs, 
as well as in the documentation extracted from the Cloudera 

website, which gives us, as shown in Fig. 4, the processing 

managers that can be used. We have HPC OpenMpi, which 

in previous research used parallel processing for rendering 

farms, as can be seen in [16]. Likewise, with respect to other 

previous research, we have the use artificial intelligence 

using Machine Learning to predict terrorist attacks [17]. In 

this research, it was argued as future work to be able to use 

the large volumes of data in social networks to perform with 

a greater degree of accuracy on suspected cyber terrorism 

attacks, so concerning YARN would be useful to use Spark 

as it is easily adaptable to the model that has been developed. 
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Fig. 4  Information delivery by HDFS 

B. Hadoop Yarn Behavior 

The yarn has become a fundamental part of the Hadoop 

ecosystem. It allows support for several execution engines, 

including MapReduce. YARN's main idea is to split the 

resource management and scheduling functionality as well 

as work supervision into separate daemons. As shown in 

Fig. 5, extracted from the research of [18], the functionality 

of Yarn is composed of a global ResourceManager (RM) 

and an ApplicationMaster (AM) per application, where one 

application is a single job. The ResourceManager and 

NodeManager form the data calculation framework. The 

ResourceManager is the highest authority that arbitrates 

resources between all the applications on the system. 
Simultaneously, the NodeManager is the frame agent per 

team responsible for the containers, monitoring the use of 

the resources (CPU, disk memory, network), and reporting it 

to the Resource Manager /Scheduler. The ApplicationMaster 

by Application is a framework-specific library. It has the 

task of negotiating the resources of the ResourceManager 

and working with the NodeManager to execute and monitor 

the tasks. 

 

Fig. 5  Hadoop Yarn Architecture 

ResourceManager contains two main components: 

Schedule and ApplicationManager. 

a) Schedule: It has a connectable policy responsible for 

dividing the resources of the cluster between various queues, 

applications, etc. The current programmers, like 

CapacityScheluder and Faircheduler, would be some 

examples of compliments. 

b) ApplicationManager: It is responsible for accepting job 

submissions, negotiating the first container to run the 

application-specific ApplicationMaster, and providing the 

service to restart the ApplicationMaster container in case of 
failure. The ApplicationMaster, per application, has the 

responsibility to negotiate appropriate resource containers 

from the Scheduler, track their status, and monitor their 

progress. 

C. Hadoop scalability in a Beowulf cluster 

A Beowulf cluster was implemented in a previous 

investigation regarding [19], performing highly complex 

scientific processes using the Open Mpi libraries through the 

SHH protocol. However, due to loss of communication, 

operating system failure, or other errors in one of the nodes, 

the process may be unfinished; therefore, Hadoop will be 

used with the Beowulf architecture as a proposal for future 

integration since the version of Hadoop 2.0 has the yarn to be 

able to use the MPI and have a high availability Beowulf 
cluster. Concerning this research, related to predictive 

models with large volumes of data, we will also take 

advantage of it because we will have a greater amount of 

data node for scalable storage and distribution process, to 

know more about the architecture and power of the Beowulf 

cluster. Fig. 6 shows the physical architecture in which we 

work, and Fig. 7 shows a graph extracted from previous 

research. With this architecture, Beowulf has planned to 

scale the current Big Data architecture in the future; in Table 

I, we can see the characteristics of each of the computers that 

are performing the process. 

 

 

Fig.6 Beowulf Cluster of the University of Sciences and 

Humanities 
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Fig. 7  Performance Test Comparison 

 

Table 1. Hardware characteristics of the beowulf cluster 

Components Description 

Modell HP EliteDesk 800 G1 SFF 

HDD  HDD 1 TB  

RAM  RAM 8 GB 

Processor Intel(R) Core (TM) i7-8700 

Total Cores 12 

Type of Operating System 64-bit 

Operative System  Ubuntu 18.04 

 

D. Hadoop framework implementation 

To operate the Hadoop cluster, configurations will have 

to be made using the Hadoop packaging extracted from its 

official website. Then the following traditional ones will 

have to be made to their configuration. 

a) Installation of the Java JDK package: The origin of 

Hadoop is Java so it is installed with an apt-get update for 

missing ubuntu updates as shown in (1) (2) (3). 

apt-get update       (1) 

apt-get install degault-jdk    (2) 

update-alternative  -config java   (3) 

In this the Java JDK installation was placed in the file 

/usr/lib/jvm/java-11-openjdk-amd64 to then introduce 

“export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-

amd64” with the following command from the terminal (4) 

finally using the reboot command. 

 

vi /etc/profile.d/java.sh    (4) 

b) Hadoop user creation: Before proceeding with the 

configuration, it is recommended to create a new user to 

handle the predictive models with Hadoop (5). 

   adduser hadoop    (5) 

c) RSA key generation: When a Hadoop cluster is assembled 

initially, it is necessary to generate an RSA key, but since 

this work generated a unique key for using the Beowulf 

cluster, this key will be reiterated for the use of the Big Data 

architecture. 

d) Hadoop framework installation: After downloading and 

unzipping the Hadoop, the file must be moved to the path 

/usr/local/Hadoop, then the property (6) so that the Hadoop 

can be operated normally. 

 vi /etc/profile.d/hadoop.sh     (6) 

The following content will be included in the Hadoop. Sh as 

shown in Fig. 8. 

 

Fig. 8. Hadoop. sh configuration 
 

Following the Hadoop configuration, you must set the 

environment variable in path (7) by entering the code line 

(8) to reboot the system finally. 
 

vi /usr/local/hadoop/etc/hadoop/hadoop-env.sh    (7) 

export JAVA_HOME=/usr/lib/jvm/java-11-openjdk-amd64 

(8) 

e) Hadoop node configuration : Then, the environment of 

the hadoop framework must be configured in the 

corresponding files, which are in xml format. 

1) Namenode configuration: To configure the namenode for 

the Hadoop cluster operation, you will have to configure the 

path (9) and edit it as shown in Fig. 9. 

vi /usr/local/hadoop/etc/hadoop/core-site.xml    (9) 

Fig. 9. Hadoop Namenode Configuration 
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2) HDFS storage configuration: Afterwards, the path where 

the HDFS storage will be done must be configured by editing 

the following configuration (10) in Hadoop. In Fig. 10, a 

replication value of 3 is shown; this means that the data 

volume is divided into replication blocks into 3 different 
containers. In the future, when the Beowulf cluster 

architecture is used, the amount of replication will increase. 

 
vi /usr/local/hadoop/etc/hadoop/hdfs-site.xml  (10) 

 

Fig. 10. HDFS Configuration 

3) MapReduce and Yarn configuration: Since we are 

working with Hadoop version 2.0, it must be indicated that 

the MapReduce will be integrated with the YARN. Therefore 

the following path is entered modifying the xml file (11), and 

the following configuration will be added as shown in Fig. 

11. The YARN configuration is edited in the following path 

(12), modifying the xml as in Fig. 12. 

 
vi /usr/local/hadoop/etc/hadoop/mapred-site.xml (11) 

 

 

Fig. 11. XML MapReduce Configuration 

 

vi /usr/local/hadoop/etc/hadoop/yarn-site.xml (12) 

 

 

Fig. 12. XML Yarn Configuration 

 

4) Creation of directories, formatting, and starting the 

Hadoop framework: To complete the Hadoop configuration, 

2 important directories must be created for the information 

storage, these are the data node and the namenode, with the 

following command and declaring permissions for its storage 

from the terminal (13) (14) (15). 

 

        mkdir -p /hadoop/hdfs/namenode       (13) 

 

        mkdir -p /hadoop/hdfs/datanode         (14) 

 

  chown -R hadoop:hadoop /hadoop        (15) 

 
When all configurations are done to the XML, the terminal 

must enter the path (16) and format it with the command 

./hdfs namenode -format to finally start the services entered 

in the path (17) using the commands ./start-dfs.sh and ./start-

yarn.sh to display from the web. Fig13 shows that Hadoop 

works successfully to make predictive models using large 

volumes of data. 

 

cd /usr/local/hadoop/bin         (16) 

 
cd $HADOOP_HOME/sbin/         (17) 

 

 
Fig. 13. Hadoop in progress 

E. Spark framework implementation 

To make predictive models with large volumes of data, we 

can easily use it using the Hadoop framework without an 

additional framework. However, this research intends to get 

the maximum results with tools that provide results in the 

shortest time possible. Therefore, Hadoop, through YARN, 
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will use Apache Spark, which is an open-source cluster 

computing framework that offers the advantage of having a 

fast and general engine used to analyze large scale data, in 

addition to the fact that one of its most relevant 

characteristics is that the data is stored in memory and not in 
the disk, making it much faster than the traditional Hadoop 

[20]. In this study, Apache Spark can mention many things, 

but the main idea is to integrate it with Hadoop. Therefore, 

below we show Spark's configuration with Hadoop to be 

stored in HDFS in each of the data nodes. 

a) Scale installation: Spark worked under the scale 

language; therefore should be downloaded at [21], which 

corresponds to the official site, which will have a file scala-

2.13.4.tgz and then decompress it using the command in 

console tar xvf scala-2.12.7.tgz. Once the file has been 

decompressed, it is moved to the file /usr/local/, and then an 

environment variable is created in .bashrc, and the following 
line of code is added: export 

SCALA_HOME=/usr/local/scala-2.13. 4, with this line, you 

indicate where Scala is installed. Following, inside the 

PATH line, all the binary files inside the scala/home path 

should be shown with the following sentence in the same 

bashrc export PATH=$PATH:$SCALA_HOME/bin.  As we 

already have the Hadoop installed, we add code export 

PATH=$PATH:$HADOOP_HOME/bin:$SCALA_HOME/b

in. To finish this process, the environment is updated with 

the data entered with the following command from the 

terminal source ~/.bashrc. 

b) Spark installation: Once Scala has been installed, we will 
proceed to install Spark using the following link [22], then 

you must decompress it with tar xvf ./spark-2.4.0-bin-

hadoop2.7.tgz and move it to /usr/local, then edit bashrc one 

more time and add export SPARK_HOME=/usr/local/spark-

2.4.0-bin-hadoop2.7. In addition, we indicate where the 

Spark executables are by adding a PATH with the following 

export sentence 

PATH=$PATH:$HADOOP_HOME/bin:$SCALA_HOME/b

in:$SPARK_HOME/bin. Finally, we updated the 

environment with source ~/.bashrc, and to verify that the 

spark is operational, we head to the spark-submit –version. 

Having made all configurations, we can use Spark to use 
predictive models with large data volumes using Hadoop's 

HDFS as a storage medium since we are having a 

communication with the YARN for distributed processing. 

IV. RESULTS  

To determine how functional the Spark will be using 

Hadoop, predictive models will be made, and the Apache 

Spark Mlib will be used to create an automatic learning 

application. The application being tested will perform 

predictive analysis of an open data set from Spark's built-in 

self-learning libraries, in this example using logistic 

regression for classification. In this case, the development 

will be worked by notebook Jupyter, as shown below. 

 

from pyspark.ml import Pipeline 

from pyspark.ml.classification import LogisticRegression 

from pyspark.ml.feature import HashingTF, Tokenizer 

from pyspark.sql import Row 

from pyspark.sql.functions import UserDefinedFunction 

from pyspark.sql.types import * 

def csvParse(s): 

import csv 

from StringIO import StringIO 

sio = StringIO(s) 

value = csv.reader(sio).next() 

sio.close() 

return value 

inspections=sc.textFile('/HdiSamples/HdiSamples/FoodIns

pectionData/Food_Inspections1.csv')\ .map(csvParse) 

inspections.take(1)   

Developing the code shows the following result and 

indicates that everything until this point is functioning 

properly. 

 

 [['707413', 

 'CENTRAL PARK  ACADEMY', 

  'CENTRAL PARK DAY CARE', 

 '2049789', 

 "Children's Services Facility", 

 'Rocks 1 (Batch)', 

 '1850 FOREST DAY VALLAGE ', 

 'NEW YERSEY', 

 'XL', 

 '15254', 

       '08/20/2009', 

 'License Copernicus', 

    fail, 

       'Comment  none.  ', 

       '42.78349412541566', 

       '-40.26896247521587', 

       '('42.78349412541566', -40.26896247521587)']] 

 

As shown in the code, the 4 columns of interest that will be 

used are id, name, results, and violations; in the last line of 

code, it was indicated that it shows the first 5 results, so we 
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will have the results shown in Table II. 

 

Table 2. The first 5 data for prediction with spark 

id name result violation  

707413 CENTRAL 

PARK 

ACADEMY 

fail 15. CLEAN 

THE 

FLOOR  

142562 HERMIT 

COFFEE 

fail 2. 

FACILITIES 
TO ... 

159854 QUICK PIZZA fail  

859657 PREMIERE 

HOSTEL 

fail  

358658     OP BURGER fail  

 

To predict the results, the data set must be properly 

understood. Therefore the data frame already analyzed must 

be based on a model that corresponds to our data set and is 

constructed according to the violations during food 

inspection. Therefore, we will perform a logistical regression 

that is a binary classification method, and the results data 

must be grouped into two categories: Failed and Approved. 

Afterward, a code is executed to convert the existing data 

frame (df) into a new one, and each inspection will be 

presented as a pair of labels-villations. Label 0.0 represents 

an error, label 1.0 represents success, and label -1.0 will 
represent some results in addition to these two results. 

 

def labelForResult(s): 

if s == 'Pass Condition or s == 'Pass': 

     return “1.0” 

elif s == 'Fail': 

 return “0.0” 

else: 

 return “-1.0” 

label = UserDefFunction(labelForResult, DoubleType()) 

labeledData = df.select(label(df.result).alias('label'),  

df.violation).where('label >= 0') 

A logistic regression model is then created from the input 

data frame. 

 

 

tokenizer=Tokenizer(inputCol="violations",outputCol="wor

ds") 

hashingTF = HashingTF(inputCol=tokenizer.getOutputCol(), 

outputCol="features") 

lr = LogisticRegression(maxIter=10, regParam=0.01) 

pipeline = Pipeline(stages=[tokenizer, hashingTF, lr]) 

 model = pipeline.fit(labeledData) 

testData=sc.textFile('wasbs:///HdiSamples/HdiSamples/Food

InspectionData/Food_Inspections2.csv')\ 

 .map(csvParse) \ .map(lambda l: (int(l[0]), l[1], l[12], l[13])) 

testDf=spark.createDataFrame(testData, 

schema).where("results = 'Fail' OR results = 'Pass' OR 

results = 'Pass w/ Conditions'") 

predictionsDf = model.transform(testDf) 

predictionsDf.registerTempTable('Predictions') 

Lastly, to visualize a prediction, the following sentence is 

placed predictionsDf.take(1) from which the output will 

show us in the following way. 

“There were 9315 inspections, and there were 8087 

successful predictions.” 

“This is an 86.8169618894% success rate.” 

As a visual representation of a prediction, we will use the 

following syntax shown in Fig.14 to finally use the 

following code fraction to generate a graphic using 

Matplotlib. The result is shown in Fig. 15. 

 

 

 
 

Fig. 14. Hadoop in progress
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Fig. 15. Prediction result using Matplotlib 

V. DISCUSSION AND CONCLUSIONS  

Developing a Hadoop architecture to make predictive models 

using Spark is a proposal that will innovate in the direction 
of research at the University of Sciences and Humanities as 

each year the institution's research is increasingly intensive. 

As explained in the methodology section, this work can be 

improved if a Beowulf cluster is established; the idea is to 

use the Hadoop architecture with all the computers connected 

to the same network in the future. This would provide a 

powerful architecture to provide services and apply for 

funding projects that exist in Peru and make the University a 

pioneer in having Big Data architectures. In the short term, 

this work is intended to integrate other technologies to do 

various functions, such as extracting information in real time 
and including software to see the state of the Hadoop 

architecture. One of the projects planned is Ambari, so this 

work is the beginning of many jobs that will be performed.  

We can conclude that the integration of the Big data Hadoop 

architecture was a success and that it could be integrated 

with Spark to make predictive models. In this case, we used 

pyspark, which was highly useful for creating predictive 

models that are easy to understand, as has been shown in this 
work. We can also indicate that by using existing resources 

from the University of Sciences and Humanities, the cost of 

the integration was low, in contrast to buying a pre-installed 

Hadoop service or being able to use the AWS cloud, which 

is of great benefit to researchers who seek to use this 

architecture. 
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	1) Namenode configuration: To configure the namenode for the Hadoop cluster operation, you will have to configure the path (9) and edit it as shown in Fig. 9.
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