
International Journal of Engineering Trends and Technology Volume 69 Issue 1, 17-23, January 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I1P203 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Performance Comparison of Absolute High Utility

Itemset Mining (AHUIM) Algorithm for Big Data
Sandeep Dalal1, Vandna Dahiya2

1,2DCSA, Maharshi Dayanand University, Rohtak, Haryana, India

1sandeepdalal.80@gmail.com, 2vandanadahiya2010@gmail.com

Abstract - High utility itemset mining (HUI) targets the
mining of high utility itemsets from a database. The utility

here is defined as the amalgamation of the magnitude of

the item and its importance. Although various studies have

been done on HUI, they are mainly dedicated to

centralized datasets and are not mountable for big data. A

novel technique called the Absolute High Utility Itemset

Mining (AHUIM) algorithm for parallel mining of HUIs

has been recommended to tackle the issue of big data

environment. The algorithm uses the Spark-in-memory

computing architecture where the whole mining task is

divided into smaller independent sub-tasks. Several
pruning strategies have been used to implement the

algorithm to efficiently mine the dataset, diminishing the

need for traversing unpromising search space. The

proposed algorithm inherits Spark’s numerous properties

such as fault tolerance, scalability, low communication

cost, etc. In this research work, the functioning of AHUIM

is being evaluated by comparing it with the most recent

and fast algorithms for mining HUIs from big data.

Extensive experiments show that the novel algorithm is

better than other state-of-the-art algorithms for various

factors such as time complexity, storage, scalability, etc.

Keywords - big data mining, distributed computing,

MapReduce, Spark platform, utility mining

I. INTRODUCTION

High Utility Itemset (HUI) mining is a method that

discovers the set of items that occur together with a high
utility value. It can be seen as a specialization of frequent

itemset mining (FIM) as in FIM, all the items are

considered as equal with the same utility or profit.

Whereas FIM might ends up discovering the itemsets,

which may be frequent but of little profit or use, HUIM

discovers the itemsets with utility greater than a pre-

specified minimum threshold. The utility is composed of

two factors - internal utility (amount) and external utility

(importance factor). This study area has been focused of

research for many years due to various scientific domains

and business purposes extending from gene regulated

configurations to market basket analysis and customer
behavior evaluation. For example, from the shopping

scenario, in addition to suggesting the correlated items to

the customers, HUIM plays a significant role in

recommending various placements of items that can be put

together in the stores to attract the customers. It helps in

advocating various cross products to the customers based

on their web-click streams. Various recommender systems

can be developed based on the user’s search history, such
as music playlist generator, academic paper
recommendation system, etc.

The rapid evolution of data generated from diverse

sources such as enterprises, sensors, social networking,

and the medical field has escorted us to the era of big data.

Due to this huge data composed of diverse dimensions, the

HUIM techniques have to deal with enormous search

space, and mining is not efficient or excessively expensive

on a particular machine. It can be understood with the

instance of Walmart. In 2012, Walmart generated 2.5

petabytes of data in connection to one million users in one
hour. From such a massive dataset, it becomes very

difficult to study and discover the profitable patterns for

the business. These patterns are important for maximizing
the revenue and to find out the inventory costs.

Another example is from an online news portal where

around 130 million visitors visited the portal page in 2015.

To improve the business, there is a need to improve the

design of the portal and recommend news based on their

reading behavior. Traditional methods of HUIM are not

suitable to deal with such an enormous amount of data, and

there is a need for scalable algorithms to mine the itemsets
efficiently.

II. RELATED WORK

For mining HUIs, many algorithms have been

developed in recent times. Most of these algorithms are for

stand-alone systems and small datasets. As the size of the

database increases, the performance execution starts to
degrade. The computing assets of one machine are not

adequate to mine the large datasets and put restrictions on

the algorithm’s scalability. To overcome these problems,

researchers have started to develop algorithms based on

the distributed framework. Some of the parallel and

scalable utility mining algorithms are being reviewed in
this section.

The algorithm PHUI-Growth (2016) is based on

Hadoop and proposed by Lin et al. [1]. The algorithm

inherits several properties of Hadoop such as scalability,

fault tolerance, load balancing, etc. The workload is

divided into smaller jobs and various pruning strategies are
used to discard the unpromising items locally. But the

algorithm suffers from the limitation of multiple data

scans. PHUI-Miner (2016) is being proposed by Chen et

al. [2]. It is being implemented in Spark as Spark has some

advantages over Hadoop, which increases the overall

efficiency of the algorithm. This method is a tradeoff

https://ijettjournal.org/archive/ijett-v69i1p203
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:Sandeepdalal.80@gmail.com

Sandeep Dalal & Vandna Dahiya / IJETT, 69(1), 17-23, 2021

18

between accuracy and enactment as the mining strategy is

based on compression and sampling, which provides

approximate HUIs. Still, this method performs better with

sampling and lowers the computation time and memory

usage. BigHUSP (2016) is another Spark-based algorithm
for big data, which uses several properties of Spark and

implements the MapReduce framework for mining [3]. A

novel data structure called utility matrix is used to store the

utility data of the intermediate candidates. Ashish

Tamrakar [4] has proposed EFIM-Par for large data sets

(2017), a parallel implementation of the most efficient

algorithm for smaller datasets, EFIM. A novel strategy of

pruning HUI-PR is being developed, based on hash table

approach and reduces the search space greatly [5]. The

algorithm distributes the search space so that the worker

nodes get to work in a well-organized approach. The

algorithm performs well with large datasets in comparison
to other state-of-the-art algorithms. P-FHM+ is a length

constraint algorithm for HUIs, developed by Sethi et al. [6]

(2018). It is a parallel modification of FHM+ and

outperforms it in terms of scalability. But the algorithm

lacks the feature of load balancing for the worker nodes.

Sethi et al. has proposed another parallel variant of HAUI-

Miner called PHAUIM [7] where the problem of load

balancing has been resolved by equally sharing the

workload among the nodes (2019). A superior technique of

search space division has been established; a new upper

bound method called as average utility upper bound is
presented, which in combination with the dimension of

search space generates an inducing factor for nodes to

equalize the load evenly among them. Nguyen et al. [8]

has proposed another parallel modification of EFIM, called

pEFIM (2018). This algorithm uses multi-processor,

shared memory-based architecture for parallelism. The

original EFIM uses a depth-first approach and so the

method pEFIM perfectly adopts the strategy for the

parallel execution. Although pEFIM uses more memory as

the threads in the algorithm have their own private space.

The speed of the algorithm increases with an increase in
number of threads.

The demand for mining the utility items has grown over

the past years, as utility mining is an important task for

many application areas such as market-basket analysis, e-

commerce, biomedicine, etc. But most of the algorithms

[9], [10], [11], [12], [13], [14] are not competent enough

for the large datasets and do not scale well with the

growing data. A novel technique has been recommended

by the authors Dalal et al. [15] for mining high utility

itemsets from large datasets, named as Absolute High

Utility Itemset Mining or AHUIM algorithm. The

proficiency of the algorithm is being evaluated with other
state-of-the-art algorithms in this research work.

A. Preliminaries and Problem Statement

The perception of HUIM was first presented by Yao et
al. [16]. It is briefly summarized in this section. Consider I

as a set of finite ‘g’ items, I = {I1, I2, I3…Ig} for a

transactional dataset DS with set of transactions Ts ∈ DS.

Transactions have a distinctive identifier, called as

Transaction ID (TID), 1 ≤ s ≤ n. Let I be an itemset of n-

items, called as n-itemset. Table 1 shows an example

dataset with five transactions and seven unique items.
Table 2 displays the profit value of each item.

Table 1: Transactional Dataset DS

Tid Transactions (item:quantity) Transaction-

Utility

[1] (L:2), (N:3), (O:2) 24

[2] (L:3), (N:2), (P:4), (R:2) 37

[3] (L:2), (M:3), (O:2), (P:1), (Q:5) 40

[4] (M:3), (O:5), (P:2) 52

[5] (M:4), (N:1), (P:4), (Q:6) 42

Table 2: Item-Profit Table

Item L M N O P Q R

Profit value 3 4 2 6 5 1 2

Some of the technical notations can be described as
follows-

For of an item Ik in a transaction Ts, Utility; is represented

as U(Ik, Ts) and it can be expressed as the multiplication of

internal-external utility of the item. Internal Utility =

quantity of item Ik in the transaction Ts denoted as q(Ik, Ts)

and external utility = profit value of the item, denoted as

p(Ik). So, U(Ik, Ts) = q(Ik, Ts)* p(Ik). From the dataset of

table 1, utility for the items L, N and O in transaction T1 is
2*3 = 6, 3*2 = 6 and 2*6 = 12 correspondingly.

For an itemset I in a transaction Ts, Utility; can be

expressed as U(I, Ts) =  U(Ik, Ts) for Ik  I. Utility of an

itemset {L, N} in T2 is denoted as U({L, N}, T2) = U(L,
T2) + U(N, T2) = 3*3 + 2*2 = 13.

Transaction Utility; for a transaction Ts, TU is stated as

the integration of utility of each of the item for that
transaction. For example, TU for T1 = 6+6+12 = 24

Transaction Weighted Utility; TWU of an itemset I is

stated as summation of utility of every transaction

containing itemset I. For example, TWU of 1-itemset {L}=

Summation of transaction utilities of T1, T2 and T3 =

24+37+40 = 101. Table 3 shows the TWU value for 1-
itemsets of the dataset.

High Utility Itemset; an itemset I is categorized as high

utility itemset (HUI) iff the utility of itemset I is no less

than the minimum threshold, Th-util else, I is an itemset of
low utility.

HUI = {I | U(I)  Th-util}

Table 3: 1-TWU items

Itemset {L} {M} {N} {O} {P} {Q} {R}

TWU 101 134 103 116 171 82 37

Sandeep Dalal & Vandna Dahiya / IJETT, 69(1), 17-23, 2021

19

B. Problem Declaration
Given a dataset ‘DS’ and pre-specified threshold ‘Th-

util’, the aim is to uncover all the high utility itemsets in

the distributed environment by parallel mining of the
dataset over numerous nodes.

III. PROPOSED TECHNIQUE – AHUIM

The authors Dalal et al. [15] have projected a novel

technique called Absolute High Utility Itemset Mining

(AHUIM) algorithm. The technique extends the basic

EFIM algorithm with the divide and conquer tactic to

manage the large datasets effectively. AHUIM simulates
the mining process on the parallel framework of Apache

Spark, which is an open-source cluster-computing

platform. Spark has one main driver/master program to

execute the main function and multiple other nodes to run

the parallel tasks. It has many inbuilt features such as fault

tolerance, scalability and in-memory computation. The

dataset is stored in RDD format (Resilient Distributed

Dataset) [18], [24] inside Spark that is a read-only

collection of items and partitioned through various nodes.
Spark also has a view of shared variables.

The algorithm AHUIM initially creates a utility list for

the items of the database. The utility for an item is

comprised of internal and external utility. The said utility

list is used to calculate the transaction-weighted utility

(TWU) of all 1-itemsets. The 1-itemsets, with values less

than the pre quantified threshold value, Th-util, are

discarded here only as the unpromising items. The rest of

the items (with TWU values more than or equal to Th-util)

are organized in the arising order of their TWU values.

After the deletion of unpromising items, if there is any null

transaction in the dataset, the transaction is clipped off.

This dataset is termed as the revised dataset. The sorted

items are organized in an enumerated tree configuration,
which is then shared with the existing nodes of the cluster.

Apart from TWU, two other strategies are used to prune

the items that sound unpromising. The first is absolute

local utility, and the other is absolute subtree utility. These

strategies provide tighter upper bounds and efficiently

reduce the search space, thus saving the computation

resources from needless traversing and processing. The

technique used to split the search space is exemplified in
the figure below.

Figure 1 Division of Search Space Among the Nodes

Items are allocated to the nodes starting from the first

node and then from the last node to balance the load. This

process keeps on iterating until all the items are allocated

to the nodes, called worker nodes. These nodes are

responsible for mining the HUIs for their search space. For

example from figure 1, node 1 is responsible for sourcing

the high utility itemsets from the search space of items P,
Q, and R. The whole process runs recursively in parallel

using the MapReduce structure of the Spark framework.

The flow graph of the algorithm is being represented in the
figure 2.

Figure 2 Flow Graph of AHUIM

IV. EXPERIMENTAL RESULTS

The technique AHUIM is evaluated in this section. To

evaluate the functioning, it is being competed with two

state-of-the-art algorithms of high utility itemset mining

for big data– EFIM-Par and PHUI-Miner. These

algorithms, along with the AHUIM algorithm have been

implemented in Python using IDE Spyder4. A Spark

cluster with one master node and six working nodes has

been constructed for the distributed framework using
Apache Spark 3.0. The system used for execution has 32

GB RAM with 2 processors x Intel® Xeon® CPU E5-

2620, 6 cores per processor @ 2.00 GHz. The operating
system is Windows 10.

A. Dataset

The experiments are conducted on real-world datasets-

Chess, Connect, and Mushroom. Chess is the dataset for

different movement of games with 3196 transactions and
75 distinct items. Connect is also a dataset for game with

Sandeep Dalal & Vandna Dahiya / IJETT, 69(1), 17-23, 2021

20

67557 transactions and 129 different items. Mushroom is a

dense datasets for various mushroom’s varieties with 8416

number of transactions and 119 unique items. These

datasets are freely available in the UCI repository with

detailed information about various attributes [22], [25].
The datasets are being replicated with scalar factors to

increase the size as shown in table 4. All the experiments

are conducted 5 times and the average values are being

taken.

Table 4: Various Datasets for Experiments (Source-

UCI Repository)

Dataset #Transact

ions

#Items #Average

Items

Chess30x 95880 75 37

Connect2x 135114 129 43

Mushroom20x 168320 119 23

B. Performance Evaluation

To compare the performance of the proposed AHUIM

algorithm, it is being compared with EFIM-Par and PHUI-

Miner for execution time, scalability, memory usages and

accuracy.

a) Time Efficiency: Table 5 shows the execution time for

all the three algorithms with different utility thresholds on

the datasets Chess30x, Connect2x and Mushroom20x. As

shown in the figures, the algorithm AHUIM performs

better than EFIM-Par and PHUI-Miner for all user

specified threshold values. For example, for the dataset

Mushroom20x, the execution time is 47.506 seconds for

EFIM-Par and 49.376 seconds for HUI-Miner. In contrast,

the algorithm AHUIM takes 46.952 seconds for the user

specified threshold value of 5. Similarly AHUIM runs

faster with other values of thresholds also, as shown in the
figure.

Table 5 Execution Time on Different Datasets

Dataset Execution Time in Seconds

Thre

shold

EFIM-

PAR

PHUI-

Miner

AHUIM

Chess30x 4 12.119 13.217 11.907

5 10.482 12.144 9.716

6 9.463 10.452 8.047

Connect2x 4 55.475 57.676 51.706

5 43.432 46.534 43.154

6 39.943 42.342 37.947

Mushroom

20x
4 52.119 54.617 51.983

5 47.506 49.376 46.952

6 39.035 40.519 38.580

Figure 3 Execution Time in Seconds on Chess30x with

Different Threshold

Figure 4 Execution Time in Seconds on Connect2x with

Different Threshold

Figure 5 Execution Time in Seconds on Mushroom20x with

Different Threshold

b) Scalability: In this section, scalability is investigated for

the AHUIM algorithm compared to the other two

algorithms. To explore the scalability, two methods are
being used.

To see the impact of increase in size of the data

In this method, the dataset is being multiplied by some

scalar factor to increase the size of data. For example,

dataset Chess is multiplied by a factor of 10, 20 and

30. As seen in figure 6, the running time of the
AHUIM algorithm surges slowly and linearly with the

increase in the dataset’s size (with utility threshold 5).

5

6

7

8

9

10

11

12

13

14

4 5 6

T

I

M

E

Threshold Values

EFIM-
PAR

PHUI-
MINER

AHUIM

35

40

45

50

55

60

4 5 6

T

I

M

E

Threshold Values

EFIM-
PAR

PHUI-
MINER

AHUIM

35

40

45

50

55

60

4 5 6

T

I

M

E

Threshold Values

EFIM-
PAR

PHUI-
MINER

AHUIM

Sandeep Dalal & Vandna Dahiya / IJETT, 69(1), 17-23, 2021

21

To see the impact of parallelization

To examine the scalability with the framework and

impact of parallelization, the number of working

nodes is being changed to 1, 3 and 6. The running time

decreases with the increase in number of nodes

because of lightening each node’s task. This shows the

ability of the proposed algorithm AHUIM, to partition

the search space well between different machines,

which then perform the mining independently and in

less time. But the graph is not very linear because of

the tradeoff between aids of the parallelism and the
state due to inter-communication among the nodes.

Table 6: Execution Time in Seconds (Th=5)

Algorithm

Dataset

Chess10x Chess20x Chess30x

EFIM-PAR 3.798 7.409 10.482

PHUI-Miner 3.813 6.945 12.144

AHUIM 3.426 5.212 9.716

Table 7: Execution Time for the Algorithms with

Different Nodes on Dataset Connect2x (Th=5)

Algorithm

Number of Nodes

1 3 6

EFIM-PAR 119.27 97.385 43.432

PHUI-Miner 137.96 123.976 46.534

AHUIM 113.95 91.243 43.154

Figure 6 Execution Time in Seconds for Various Sizes

of Chess Dataset

Figure 7 Scalability of different algorithms on dataset

Connect2x

c) Memory Consumption: The algorithm AHUIM is

compared with the other two algorithms in terms of

percentage utilization of main memory (table 8). Figure 8

shows that as the dataset Connect2x is the densest dataset

with an average of 43 numbers of items in a transaction, it
takes more memory to mine HUIs from it (with utility

threshold 5). With the increase in the number of items in a

dataset, the data space becomes large. Also, it can be

observed that AHUIM takes less memory resources than

the other two algorithms because of the pruning strategies
ASU and ALU.

Table 8: Memory Utilization by Different Algorithms

Algorithm

Dataset

Connect2x Chess30x Mushroom20x

EFIM-PAR 0.6428 0.5826 0.6975

PHUI-Miner 0.8935 0.6965 0.8725

AHUIM 0.4638 0.3825 0.4834

Figure 8: Memory Utilization by Different Algorithms

d) Accuracy: The accuracy for the itemset/pattern

generation algorithms can be found by comparing the

number of itemsets generated by the algorithms. By taking

one algorithm’s output as the ground truth, the output of

other algorithms can be compared. Here, the algorithm

Two-Phase [20] is considered the ground truth as it does
not apply any space-pruning strategy. The algorithm

comes as a library function in Python to calculate the

utility of itemsets. The number of HUIs generated by the

Two-phase algorithm is considered as exact HUIs and the

output of other algorithms is taken as calculated HUIs, as

shown in table 9. Accuracy has been analyzed by

comparing the exact number of HUIs with the calculated

number of HUIs by calculating precision and relative

utility error, as shown in figures 9 and 10. It has been

observed that accuracy of AHUIM is around 94.6% and

the algorithm experiences a tradeoff between speed and
accuracy for the large datasets.

Table 9 Number of HUIs by Different algorithms

(Th=5)

Algorithm
Dataset

Chess30x Connect2x Mushroom20x

EFIM-PAR 172 233 207

PHUI-Miner 174 232 210

AHUIM 170 228 207

Two-Phase 180 243 212

2

4

6

8

10

12

14

Chess10x Chess20x Chess30x

T

I

M

E

EFIM-
PAR

PHUI-
Miner

AHUIM

35

55

75

95

115

135

155

1 3 6

T

I

M

E

Nodes

EFIM-
PAR

PHUI-
Miner

AHUIM

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1

Connect2x Chess30x Mushroom20x

%

o

f

R

A

M

EFIM-
PAR

PHUI-
Miner

AHUIM

Sandeep Dalal & Vandna Dahiya / IJETT, 69(1), 17-23, 2021

22

Precision: It is examined by dividing the calculated

number of HUIs of an algorithm by the exact number

of HUIs, i.e. Precision = (Calculated #HUIs/Exact

#HUIs). Table 10 shows the precision values for the

three algorithms.

Table 10: Precision Values for Different Algorithms

(Th=5)

Algorithm

Dataset

Chess30x Connect2x Mushroom20x

EFIM-PAR 0.95 0.95 0.97

PHUI-Miner 0.96 0.95 0.98

AHUIM 0.94 0.93 0.97

Figure 9: Precision of Different Algorithms (Th=5)

Relative Utility Error: It is examined by the absolute

value of difference of HUIs divide by exact number

of HUIs, i.e.

Relative Utility Error = abs((Calculated #HUIs- Exact

#HUIs)/Exact #HUIs. Table 11 shows the values for

the three algorithms.

Table 11: Relative Utility Error for Different

Algorithms (Th=4)

Algorithm
Datasets

Chess30x Connect2x Mushroom20x

EFIM-PAR 0.044 0.041 0.023

PHUI-Miner 0.033 0.045 0.009

AHUIM 0.055 0.061 0.023

Figure 10: Relative Utility Error (Th=5)

V. CONCLUSION

Conventional data mining algorithms for utility mining

are not suitable for big data processing. In this research

work, the standalone system is being transacted by

distributed system to store and process the big data. A

novel approach AHUIM is recommended for mining large

datasets in the distributed environment of Apache Spark,

which is regarded the most powerful platform for parallel

processing. The performance of the algorithm is evaluated

with EFIM-Par and PHUI-Miner. The experiments show

that the novel algorithm outperforms the other two
algorithms for big data in terms of execution time,

scalability, and memory consumption.

REFERENCES

[1] Lin, J. C. W., Li, T., Fournier-Viger, P., Hong, T.P., Zhan, J.,

Voznak, M., “An Efficient Algorithm to Mine High Average-

Utility Itemsets”, Adv. Eng. Inf. Vol. 30 (2), pp. 233-243, 2016.

[2] Chen, Y., An, A., “Approximate Parallel High Utility Itemset

Mining”, Big Data Res. 6, pp 26-42, 2016.

[3] Zihayat, M., Hut, Z. Z., an, A., & Hut, Y., “Distributed and

Parallel High Utility Sequential Pattern Mining”, In 2016 IEEE

International Conference on Big Data (Big Data) pp. 853-862.

IEEE, 2016.

[4] Tamrakar, A., “High Utility Itemsets Identification in Big Data”,

Masters Thesis, University of Nevada, Las Vegas, 2017.

[5] Jimmy Ming-Tai Wu, Jerry Chun-Wei Lin, and Ashish Tamrakar,

‘High-Utility Itemset Mining with Effective Pruning Strategies’,

ACM Trans. Knowl. Discov. Data 13, 6, Article 58, 22 pages,

2019.

[6] Sethi, K. K., Ramesh, D. Edla, D.R., “P-FHM+: Parallel High

Utility Itemset Mining Algorithm for Big Data Processing”,

Procedia Compuer Science 132, 918-927, 2018.

[7] Sethi, K. K., Ramesh, D., Sreenu, M., “Parallel High Average-

Utility Itemset Mining Using Better Search Space Division

Approach”, Springer, Cham, pp 233-243, 2019.

[8] Nguyen, T. D., Nguyen, L.T., Vo, B., “A Parallel Algorithm for

Mining High Utility Itemsets,” Springer, Cham, pp. 286-295, 2018.

[9] Dalal Sandeep, Dahiya Vandna, “Review of High Utility Itemset

Mining Algorithms for Big Data,” In: Journal of Advanced

Research in Dynamical and Control Systems- JARDCS, 10(4), pp:

274-283, 2018.

[10] Vandna Dahiya, Sandeep Dalal, “Big data Mining: Current Status

and Future Prospects”, International Journal of Advanced science

and Technology, Volume 29, No 3, pp. 4659- 4670, 2020.

[11] C. F. Ahmed, S. K. Tanbeer, and B. Jeong, “A novel approach for

mining high-utility sequential patterns in sequence databases,” In

ETRI Journal, vol. 32, pp. 676–686, 2010.

[12] M. Zihayat and A. A. Mining, “Top-k high utility patterns over

data streams,” In Information Sciences, Available Online, 2014.

[13] Subramanian, K., Kandhasamy, P., Subramanian, S., “A Novel

Approach to Extract High Utility Itemsets from Distributed

Databases”, Computing and Informatics vol 31 (6), pp.1597-1615,

2013.

[14] Zida, S., Fournier-Viger, P., Wu, C.-W., Lin, J.C.-W., Tseng, V.S.,

“Efficient Mining of High Utility Sequential Rules”, In: Proc. 11th

Intern. Conf. on Machine Learning and Data Mining, pp. 157–

171. Springer, 2016.

[15] Sandeep Dalal, Vandna Dahiya, “A Novel Technique - Absolute

High Utility Itemset Mining (AHUIM) Algorithm for Big Data”,

International Journal of Advanced Trends in Computer Science

and Engineering, IJATCSE, Volume 9, Issue 5, pp 7451-7460,

2020.
[16] Yao H, Hamilton HJ, ButzCJ, “A Foundational Approach to

Mining itemset Utilities from Databases”, In: Proceedings of the

3rd SIAM International conference on data mining, FL, USA, April

2004, pp 482-486.

[17] Borthakur, D., (2007), The Hadoop Distribued File System:

Architecture and Design. Hadoop Project Website 11, 21.

[18] Zaharia, M., Chowdhury, M., Das, T., Dave, A., Ma, J., MaCauley,

M., Stoica, I., “Resilient Distributed Datasets: A Fault-Tolerant

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

Chess30x Connect2x Mushroom20x

EFIM-
PAR

PHUI-
Miner

AHUIM

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Chess30x Connect2x Mushroom20x

EFIM-
PAR

PHUI-
Miner

AHUIM

Sandeep Dalal & Vandna Dahiya / IJETT, 69(1), 17-23, 2021

23

abstraction for In-memory Cluster Computing”, Proceedings of the

9th USENIX Conference on Networked Systems Design and

Implementation, 2010.

[19] Dahiya Vandna, Sandeep Dalal, “Parallel Approaches of Utility

Mining for Big Data”, Webology. 17(2), pp – 31-43, 2020.

[20] Liu Y., Liao W., Choudhary A., “A Two Phase Algorithm for Fast

Discovery of High Utility Itemsets”, Advances in Knowledge and

Data Mining, Lecture Notes in Computer Science, Vol 3518,

Springer, pp 689-695, 2005.

[21] Sandeep Dalal, Vandna Dahiya, “Big Data Preprocessing: Needs

and Methods”, International Journal of Engineering Trends and

Technology, 68(10), pp- 100-104, 2020.

[22] https://www.philippe-fournier-viger.com/spmf/- An open source

Data Mining Library

[23] The Hadoop Project website, [Online]. Available:

https://hadoop.apache.org/

[24] The Spark Project website, [Online]. Available:

https://spark.apache.org/

[25] The UCI Repository, [Online]. Available:

archive.ics.uci.edu/ml/dataset

https://hadoop.apache.org/
https://spark.apache.org/

	Sandeep Dalal1, Vandna Dahiya2
	1,2DCSA, Maharshi Dayanand University, Rohtak, Haryana, India
	1sandeepdalal.80@gmail.com, 2vandanadahiya2010@gmail.com

