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Abstract - High utility itemset mining (HUI) targets the 
mining of high utility itemsets from a database. The utility 

here is defined as the amalgamation of the magnitude of 

the item and its importance. Although various studies have 

been done on HUI, they are mainly dedicated to 

centralized datasets and are not mountable for big data. A 

novel technique called the Absolute High Utility Itemset 

Mining (AHUIM) algorithm for parallel mining of HUIs 

has been recommended to tackle the issue of big data 

environment. The algorithm uses the Spark-in-memory 

computing architecture where the whole mining task is 

divided into smaller independent sub-tasks. Several 
pruning strategies have been used to implement the 

algorithm to efficiently mine the dataset, diminishing the 

need for traversing unpromising search space. The 

proposed algorithm inherits Spark’s numerous properties 

such as fault tolerance, scalability, low communication 

cost, etc. In this research work, the functioning of AHUIM 

is being evaluated by comparing it with the most recent 

and fast algorithms for mining HUIs from big data. 

Extensive experiments show that the novel algorithm is 

better than other state-of-the-art algorithms for various 

factors such as time complexity, storage, scalability, etc.  

 

Keywords - big data mining, distributed computing, 

MapReduce, Spark platform, utility mining 

I. INTRODUCTION 

High Utility Itemset (HUI) mining is a method that 

discovers the set of items that occur together with a high 
utility value. It can be seen as a specialization of frequent 

itemset mining (FIM) as in FIM, all the items are 

considered as equal with the same utility or profit. 

Whereas FIM might ends up discovering the itemsets, 

which may be frequent but of little profit or use, HUIM 

discovers the itemsets with utility greater than a pre-

specified minimum threshold. The utility is composed of 

two factors - internal utility (amount) and external utility 

(importance factor). This study area has been focused of 

research for many years due to various scientific domains 

and business purposes extending from gene regulated 

configurations to market basket analysis and customer 
behavior evaluation. For example, from the shopping 

scenario, in addition to suggesting the correlated items to 

the customers, HUIM plays a significant role in 

recommending various placements of items that can be put 

together in the stores to attract the customers. It helps in 

advocating various cross products to the customers based 

on their web-click streams. Various recommender systems 

can be developed based on the user’s search history, such 
as music playlist generator, academic paper 
recommendation system, etc. 

The rapid evolution of data generated from diverse 

sources such as enterprises, sensors, social networking, 

and the medical field has escorted us to the era of big data. 

Due to this huge data composed of diverse dimensions, the 

HUIM techniques have to deal with enormous search 

space, and mining is not efficient or excessively expensive 

on a particular machine. It can be understood with the 

instance of Walmart. In 2012, Walmart generated 2.5 

petabytes of data in connection to one million users in one 
hour. From such a massive dataset, it becomes very 

difficult to study and discover the profitable patterns for 

the business. These patterns are important for maximizing 
the revenue and to find out the inventory costs.  

Another example is from an online news portal where 

around 130 million visitors visited the portal page in 2015. 

To improve the business, there is a need to improve the 

design of the portal and recommend news based on their 

reading behavior. Traditional methods of HUIM are not 

suitable to deal with such an enormous amount of data, and 

there is a need for scalable algorithms to mine the itemsets 
efficiently. 

II. RELATED WORK 

For mining HUIs, many algorithms have been 

developed in recent times. Most of these algorithms are for 

stand-alone systems and small datasets. As the size of the 

database increases, the performance execution starts to 
degrade. The computing assets of one machine are not 

adequate to mine the large datasets and put restrictions on 

the algorithm’s scalability. To overcome these problems, 

researchers have started to develop algorithms based on 

the distributed framework. Some of the parallel and 

scalable utility mining algorithms are being reviewed in 
this section. 

The algorithm PHUI-Growth (2016) is based on 

Hadoop and proposed by Lin et al. [1]. The algorithm 

inherits several properties of Hadoop such as scalability, 

fault tolerance, load balancing, etc. The workload is 

divided into smaller jobs and various pruning strategies are 
used to discard the unpromising items locally. But the 

algorithm suffers from the limitation of multiple data 

scans. PHUI-Miner (2016) is being proposed by Chen et 

al. [2]. It is being implemented in Spark as Spark has some 

advantages over Hadoop, which increases the overall 

efficiency of the algorithm. This method is a tradeoff 
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between accuracy and enactment as the mining strategy is 

based on compression and sampling, which provides 

approximate HUIs. Still, this method performs better with 

sampling and lowers the computation time and memory 

usage. BigHUSP (2016) is another Spark-based algorithm 
for big data, which uses several properties of Spark and 

implements the MapReduce framework for mining [3]. A 

novel data structure called utility matrix is used to store the 

utility data of the intermediate candidates. Ashish 

Tamrakar [4] has proposed EFIM-Par for large data sets 

(2017), a parallel implementation of the most efficient 

algorithm for smaller datasets, EFIM. A novel strategy of 

pruning HUI-PR is being developed, based on hash table 

approach and reduces the search space greatly [5]. The 

algorithm distributes the search space so that the worker 

nodes get to work in a well-organized approach. The 

algorithm performs well with large datasets in comparison 
to other state-of-the-art algorithms. P-FHM+ is a length 

constraint algorithm for HUIs, developed by Sethi et al. [6] 

(2018). It is a parallel modification of FHM+ and 

outperforms it in terms of scalability. But the algorithm 

lacks the feature of load balancing for the worker nodes. 

Sethi et al. has proposed another parallel variant of HAUI-

Miner called PHAUIM [7] where the problem of load 

balancing has been resolved by equally sharing the 

workload among the nodes (2019). A superior technique of 

search space division has been established; a new upper 

bound method called as average utility upper bound is 
presented, which in combination with the dimension of 

search space generates an inducing factor for nodes to 

equalize the load evenly among them. Nguyen et al. [8] 

has proposed another parallel modification of EFIM, called 

pEFIM (2018). This algorithm uses multi-processor, 

shared memory-based architecture for parallelism. The 

original EFIM uses a depth-first approach and so the 

method pEFIM perfectly adopts the strategy for the 

parallel execution. Although pEFIM uses more memory as 

the threads in the algorithm have their own private space. 

The speed of the algorithm increases with an increase in 
number of threads.  

The demand for mining the utility items has grown over 

the past years, as utility mining is an important task for 

many application areas such as market-basket analysis, e-

commerce, biomedicine, etc. But most of the algorithms 

[9], [10], [11], [12], [13], [14] are not competent enough 

for the large datasets and do not scale well with the 

growing data. A novel technique has been recommended 

by the authors Dalal et al. [15] for mining high utility 

itemsets from large datasets, named as Absolute High 

Utility Itemset Mining or AHUIM algorithm. The 

proficiency of the algorithm is being evaluated with other 
state-of-the-art algorithms in this research work. 

A. Preliminaries and Problem Statement 

The perception of HUIM was first presented by Yao et 
al. [16]. It is briefly summarized in this section. Consider I 

as a set of finite ‘g’ items, I = {I1, I2, I3…Ig} for a 

transactional dataset DS with set of transactions Ts ∈ DS. 

Transactions have a distinctive identifier, called as 

Transaction ID (TID), 1 ≤ s ≤ n. Let I be an itemset of n-

items, called as n-itemset. Table 1 shows an example 

dataset with five transactions and seven unique items. 
Table 2 displays the profit value of each item.  

 

Table 1: Transactional Dataset DS 

Tid Transactions (item:quantity) Transaction-

Utility 

[1] (L:2), (N:3), (O:2) 24 

[2] (L:3), (N:2), (P:4), (R:2) 37 

[3] (L:2), (M:3), (O:2), (P:1), (Q:5) 40 

[4] (M:3), (O:5), (P:2) 52 

[5] (M:4), (N:1), (P:4), (Q:6) 42 

 

Table 2: Item-Profit Table 

Item L M N O P Q R 

Profit value 3 4 2 6 5 1 2 
 

Some of the technical notations can be described as 
follows- 

For of an item Ik in a transaction Ts, Utility; is represented 

as U(Ik, Ts) and it can be expressed as the multiplication of 

internal-external utility of the item. Internal Utility = 

quantity of item Ik in the transaction Ts denoted as q(Ik, Ts) 

and external utility = profit value of the item, denoted as 

p(Ik). So, U(Ik, Ts) = q(Ik, Ts)* p(Ik). From the dataset of 

table 1, utility for the items L, N and O in transaction T1 is 
2*3 = 6, 3*2 = 6 and 2*6 = 12 correspondingly. 

For an itemset I in a transaction Ts, Utility; can be 

expressed as U(I, Ts) =  U(Ik, Ts) for Ik   I. Utility of an 

itemset {L, N} in T2 is denoted as U({L, N}, T2) = U(L, 
T2) + U(N, T2) = 3*3 + 2*2 = 13. 

Transaction Utility; for a transaction Ts, TU is stated as 

the integration of utility of each of the item for that 
transaction. For example, TU for T1 = 6+6+12 = 24 

Transaction Weighted Utility; TWU of an itemset I is 

stated as summation of utility of every transaction 

containing itemset I. For example, TWU of 1-itemset {L}= 

Summation of transaction utilities of T1, T2 and T3 = 

24+37+40 = 101. Table 3 shows the TWU value for 1-
itemsets of the dataset. 

High Utility Itemset; an itemset I is categorized as high 

utility itemset (HUI) iff the utility of itemset I is no less 

than the minimum threshold, Th-util else, I is an itemset of 
low utility.  

HUI = {I | U(I)  Th-util}  
 

Table 3: 1-TWU items 

Itemset {L} {M} {N} {O} {P} {Q} {R} 

TWU 101 134 103 116 171 82 37 
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B. Problem Declaration 
Given a dataset ‘DS’ and pre-specified threshold ‘Th-

util’, the aim is to uncover all the high utility itemsets in 

the distributed environment by parallel mining of the 
dataset over numerous nodes. 

III. PROPOSED TECHNIQUE – AHUIM 

The authors Dalal et al. [15] have projected a novel 

technique called Absolute High Utility Itemset Mining 

(AHUIM) algorithm. The technique extends the basic 

EFIM algorithm with the divide and conquer tactic to 

manage the large datasets effectively. AHUIM simulates 
the mining process on the parallel framework of Apache 

Spark, which is an open-source cluster-computing 

platform. Spark has one main driver/master program to 

execute the main function and multiple other nodes to run 

the parallel tasks. It has many inbuilt features such as fault 

tolerance, scalability and in-memory computation. The 

dataset is stored in RDD format (Resilient Distributed 

Dataset) [18], [24] inside Spark that is a read-only 

collection of items and partitioned through various nodes. 
Spark also has a view of shared variables. 

The algorithm AHUIM initially creates a utility list for 

the items of the database. The utility for an item is 

comprised of internal and external utility. The said utility 

list is used to calculate the transaction-weighted utility 

(TWU) of all 1-itemsets. The 1-itemsets, with values less 

than the pre quantified threshold value, Th-util, are 

discarded here only as the unpromising items. The rest of 

the items (with TWU values more than or equal to Th-util) 

are organized in the arising order of their TWU values. 

After the deletion of unpromising items, if there is any null 

transaction in the dataset, the transaction is clipped off. 

This dataset is termed as the revised dataset. The sorted 

items are organized in an enumerated tree configuration, 
which is then shared with the existing nodes of the cluster. 

Apart from TWU, two other strategies are used to prune 

the items that sound unpromising. The first is absolute 

local utility, and the other is absolute subtree utility. These 

strategies provide tighter upper bounds and efficiently 

reduce the search space, thus saving the computation 

resources from needless traversing and processing. The 

technique used to split the search space is exemplified in 
the figure below.  

 

Figure 1 Division of Search Space Among the Nodes 

Items are allocated to the nodes starting from the first 

node and then from the last node to balance the load. This 

process keeps on iterating until all the items are allocated 

to the nodes, called worker nodes. These nodes are 

responsible for mining the HUIs for their search space. For 

example from figure 1, node 1 is responsible for sourcing 

the high utility itemsets from the search space of items P, 
Q, and R. The whole process runs recursively in parallel 

using the MapReduce structure of the Spark framework. 

The flow graph of the algorithm is being represented in the 
figure 2. 

 
Figure 2 Flow Graph of AHUIM 

IV. EXPERIMENTAL RESULTS 

The technique AHUIM is evaluated in this section. To 

evaluate the functioning, it is being competed with two 

state-of-the-art algorithms of high utility itemset mining 

for big data– EFIM-Par and PHUI-Miner. These 

algorithms, along with the AHUIM algorithm have been 

implemented in Python using IDE Spyder4. A Spark 

cluster with one master node and six working nodes has 

been constructed for the distributed framework using 
Apache Spark 3.0. The system used for execution has 32 

GB RAM with 2 processors x Intel® Xeon® CPU E5-

2620, 6 cores per processor @ 2.00 GHz. The operating 
system is Windows 10.  

A. Dataset 

The experiments are conducted on real-world datasets- 

Chess, Connect, and Mushroom. Chess is the dataset for 

different movement of games with 3196 transactions and 
75 distinct items. Connect is also a dataset for game with 
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67557 transactions and 129 different items. Mushroom is a 

dense datasets for various mushroom’s varieties with 8416 

number of transactions and 119 unique items. These 

datasets are freely available in the UCI repository with 

detailed information about various attributes [22], [25]. 
The datasets are being replicated with scalar factors to 

increase the size as shown in table 4. All the experiments 

are conducted 5 times and the average values are being 

taken.  

 

Table 4: Various Datasets for Experiments (Source- 

UCI Repository) 

Dataset #Transact

ions 

#Items #Average

Items 

Chess30x 95880 75 37 

Connect2x 135114 129 43 

Mushroom20x 168320 119 23 

 

B. Performance Evaluation 

To compare the performance of the proposed AHUIM 

algorithm, it is being compared with EFIM-Par and PHUI-

Miner for execution time, scalability, memory usages and 

accuracy. 

a) Time Efficiency: Table 5 shows the execution time for 

all the three algorithms with different utility thresholds on 

the datasets Chess30x, Connect2x and Mushroom20x. As 

shown in the figures, the algorithm AHUIM performs 

better than EFIM-Par and PHUI-Miner for all user 

specified threshold values. For example, for the dataset 

Mushroom20x, the execution time is 47.506 seconds for 

EFIM-Par and 49.376 seconds for HUI-Miner. In contrast, 

the algorithm AHUIM takes 46.952 seconds for the user 

specified threshold value of 5. Similarly AHUIM runs 

faster with other values of thresholds also, as shown in the 
figure.  

 

Table 5 Execution Time on Different Datasets 

Dataset Execution Time in Seconds 

Thre

shold 

EFIM-

PAR 

PHUI-

Miner 

AHUIM 

Chess30x 4 12.119 13.217 11.907 

5 10.482 12.144 9.716 

6 9.463 10.452 8.047 

Connect2x 4 55.475 57.676 51.706 

5 43.432 46.534 43.154 

6 39.943 42.342 37.947 

Mushroom

20x 
4 52.119 54.617 51.983 

5 47.506 49.376 46.952 

6 39.035 40.519 38.580 

 
 

Figure 3 Execution Time in Seconds on Chess30x with 

Different Threshold 

 

 
 

Figure 4 Execution Time in Seconds on Connect2x with 

Different Threshold 

 

 
Figure 5 Execution Time in Seconds on Mushroom20x with 

Different Threshold 

b) Scalability: In this section, scalability is investigated for 

the AHUIM algorithm compared to the other two 

algorithms. To explore the scalability, two methods are 
being used.  

To see the impact of increase in size of the data 

In this method, the dataset is being multiplied by some 

scalar factor to increase the size of data. For example, 

dataset Chess is multiplied by a factor of 10, 20 and 

30. As seen in figure 6, the running time of the 
AHUIM algorithm surges slowly and linearly with the 

increase in the dataset’s size (with utility threshold 5).  
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To see the impact of parallelization 

To examine the scalability with the framework and 

impact of parallelization, the number of working 

nodes is being changed to 1, 3 and 6. The running time 

decreases with the increase in number of nodes 

because of lightening each node’s task. This shows the 

ability of the proposed algorithm AHUIM, to partition 

the search space well between different machines, 

which then perform the mining independently and in 

less time. But the graph is not very linear because of 

the tradeoff between aids of the parallelism and the 
state due to inter-communication among the nodes.  

 

Table 6: Execution Time in Seconds (Th=5) 

Algorithm 

Dataset 

Chess10x Chess20x Chess30x 

EFIM-PAR 3.798 7.409 10.482 

PHUI-Miner 3.813 6.945 12.144 

AHUIM 3.426 5.212 9.716 

 

Table 7: Execution Time for the Algorithms with 

Different Nodes on Dataset Connect2x (Th=5) 

Algorithm 

Number of Nodes 

1 3 6 

EFIM-PAR 119.27 97.385 43.432 

PHUI-Miner 137.96 123.976 46.534 

AHUIM 113.95 91.243 43.154 

 

 
Figure 6 Execution Time in Seconds for Various Sizes 

of Chess Dataset 

 

 
Figure 7 Scalability of different algorithms on dataset 

Connect2x 

c) Memory Consumption: The algorithm AHUIM is 

compared with the other two algorithms in terms of 

percentage utilization of main memory (table 8). Figure 8 

shows that as the dataset Connect2x is the densest dataset 

with an average of 43 numbers of items in a transaction, it 
takes more memory to mine HUIs from it (with utility 

threshold 5). With the increase in the number of items in a 

dataset, the data space becomes large. Also, it can be 

observed that AHUIM takes less memory resources than 

the other two algorithms because of the pruning strategies 
ASU and ALU. 

 

Table 8: Memory Utilization by Different Algorithms 

Algorithm 

Dataset 

Connect2x Chess30x Mushroom20x 

EFIM-PAR 0.6428 0.5826 0.6975 

PHUI-Miner 0.8935 0.6965 0.8725 

AHUIM 0.4638 0.3825 0.4834 
 

 
Figure 8: Memory Utilization by Different Algorithms 

d) Accuracy: The accuracy for the itemset/pattern 

generation algorithms can be found by comparing the 

number of itemsets generated by the algorithms. By taking 

one algorithm’s output as the ground truth, the output of 

other algorithms can be compared. Here, the algorithm 

Two-Phase [20] is considered the ground truth as it does 
not apply any space-pruning strategy. The algorithm 

comes as a library function in Python to calculate the 

utility of itemsets. The number of HUIs generated by the 

Two-phase algorithm is considered as exact HUIs and the 

output of other algorithms is taken as calculated HUIs, as 

shown in table 9. Accuracy has been analyzed by 

comparing the exact number of HUIs with the calculated 

number of HUIs by calculating precision and relative 

utility error, as shown in figures 9 and 10. It has been 

observed that accuracy of AHUIM is around 94.6% and 

the algorithm experiences a tradeoff between speed and 
accuracy for the large datasets. 

Table 9 Number of HUIs by Different algorithms 

(Th=5) 

Algorithm 
Dataset 

Chess30x Connect2x Mushroom20x 

EFIM-PAR 172 233 207 

PHUI-Miner 174 232 210 

AHUIM 170 228 207 

Two-Phase 180 243 212 
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Precision: It is examined by dividing the calculated 

number of HUIs of an algorithm by the exact number 

of HUIs, i.e. Precision = (Calculated #HUIs/Exact 

#HUIs). Table 10 shows the precision values for the 

three algorithms. 
 

Table 10: Precision Values for Different Algorithms 

(Th=5) 

Algorithm 

Dataset 

Chess30x Connect2x Mushroom20x 

EFIM-PAR 0.95 0.95 0.97 

PHUI-Miner 0.96 0.95 0.98 

AHUIM 0.94 0.93 0.97 

 

 

 
 

Figure 9: Precision of Different Algorithms (Th=5) 

Relative Utility Error: It is examined by the absolute 

value of difference of HUIs divide by exact number 

of HUIs, i.e.  

Relative Utility Error = abs((Calculated #HUIs- Exact 

#HUIs)/Exact #HUIs. Table 11 shows the values for 

the three algorithms. 

 

Table 11: Relative Utility Error for Different 

Algorithms (Th=4) 

Algorithm 
Datasets 

Chess30x Connect2x Mushroom20x 

EFIM-PAR 0.044 0.041 0.023 

PHUI-Miner 0.033 0.045 0.009 

AHUIM 0.055 0.061 0.023 

 

 
Figure 10: Relative Utility Error (Th=5) 

 

V. CONCLUSION 

Conventional data mining algorithms for utility mining 

are not suitable for big data processing. In this research 

work, the standalone system is being transacted by 

distributed system to store and process the big data. A 

novel approach AHUIM is recommended for mining large 

datasets in the distributed environment of Apache Spark, 

which is regarded the most powerful platform for parallel 

processing. The performance of the algorithm is evaluated 

with EFIM-Par and PHUI-Miner. The experiments show 

that the novel algorithm outperforms the other two 
algorithms for big data in terms of execution time, 

scalability, and memory consumption.  
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