
International Journal of Engineering Trends and Technology Volume 69 Issue 1, 5-16, January 2021
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V69I1P202 © 2021 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

An Efficient Requirement-based Test Case

Prioritization Technique using Optimized TFC-SVM

Approach

Omdev Dahiya#1, Kamna Solanki*2

#Department of Computer Science and Engineering, University Institute of Engineering and Technology, Maharshi Dayanand

University Rohtak, India

1Omdahiya21792@gmail.com, 2Kamna.mdurohtak@gmail.com

Abstract - Software testing is an essential and challenging

part of the SDLC (Software Development Life Cycle).

Requirement-based TCP (Test case prioritization) is a

method to optimize the execution time, cost, and effort as an

essential part of the regression testing. It is a technique
used to arrange the test cases (TCs), and sorting of the TC’s

is based on some criteria. It is established to execute the

high priority test cases initially to reduce the execution time,

efforts, and cost during the software testing. Thus,

conventional TCP (Test Case Prioritization) is motivated to

design for testing the software to enhance prioritization

efficiency. TCP permits the testers to classify the test cases

as the priority for performing the test execution. It helps in

enhancing software quality. In the existing research, the

authors had developed a method to prioritize the optimal test

cases using the firefly approach. They used the firefly

algorithm to optimize the ordering of the test cases and
fitness value (FV), defined through the same distance model,

to have better performance. The firefly’s approach may be

more efficient in determining fault proneness problems,

which is intensely required in security-critical schemes.

Thus, the proposed research deals with the processing of the

non-linear approach that provides high classification rates.

A TFC-SVM algorithm is a novel approach deal with the

CUCKOO optimization in collaboration with SVM, used to

achieve higher classification rates in terms of high mean,

median, and low minimum value. Afterward, training and

testing modules are considered through the classification
approach and processed the requirements-based in TCP.

The proposed model has resolved the existing issues such as

error rates, high priorities, and maximum execution time to

prioritize processed requirement-based on test case

prioritization. The proposed parameters are evaluated

using computation time, APFD, Mean, Standard Deviation,

Min, and Max values through which the performance

metrics can be achieved for the robust proposed system.

Keywords — Requirement-based Test Case Prioritization,

TFC-SVM method, FA (Firefly Algorithm), and APFD

metric.

I. INTRODUCTION
Testing is an activity performed to uncover the errors in

a software system. Testing reduces the rate of uncertainty

about the software quality system [1]. When an application is

tested, a test suite is built to improve the functionality.

Testers reserve the test suite for future usage [2]. When the

modifications are done in the system, then the pre-defined

test suites are applied by testers to assure that no new faults

or errors are familiarized with the code that has been tested.

When modifications take place in the system, then each test

is re-executed for every module after the relevant

modifications [3]. Also, it is a costly method to execute

complete test cases once modifications are done. Thus, to

reduce the regression testing cost, requirements-based test

case prioritization (TCP) has been introduced by the

researchers. In requirement-based TCP, whole test cases

(TC) are organized to strengthen some good performance [4].

Moreover, to develop priorities of the test case, definite

factors depend on the requirement to be selected, and priority

is assigned to test cases [5]. The main goal of the

requirement-based TCP is to improve the probability that if

the TCs are prioritized, it may meet a specific goal within

stipulated time and cost [6]. Requirement-based TCP

addressed a wide variety of goals such as: (i) The software

programmer or tester intends to improve the fault detection

rate (ii) Early-stage detection of the high-risk faults in the

Test life cycle (TLC) (iii) To improve the probability of

regression faults related to substantial code modifications

early in the testing procedure (iv) To improve the code

coverage (CC) program at a fast rate. (v) To build more

reliable software [7]. The test case prioritization (TCP)

method includes the test case selection that exposes

maximum faults in software components and assigns a high

priority to test cases with less execution time [8]. The

execution of the prioritized test cases is more appropriate for

testing the functionalities of software at minimum time.

Therefore, Test case prioritization aims to decrease testing

costs. Test Case Prioritization methods are random

prioritization, complete branch coverage, and additional

https://ijettjournal.org/archive/ijett-v69i1p202
http://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

6

coverage prioritization. Different algorithms for TCP have

been established by different researchers [9]. The algorithms

are GA (greedy algorithm), AGA (additional greedy

algorithm), GA (genetic approach), and ACO (ant colony

optimization), etc. The analysis of the current work is to

implement and authorize a requirement-based system-level

TCP method to expose errors or faults at the initial phase and

to enhance the customer perceived Software Quality (SQ).

The last view shows the following components are measured

to pattern the user has assigned a novel requirement-based

TCP method such as (i) Priority of needs (ii) Software

developer perceived program implementation convolution

(iii) Needs Modification and (iv) Error impact.

II. SUMMARY OF CONTRIBUTION

The summary of the research work contribution is

described as follows: (i) initially, related work is
systematically written, and analysis of regression test case

prioritization (TCP) methods used for software development

is performed. (ii) The comparative analysis of numerous

TCP methods to verify the advantages and disadvantages of

various approaches is done. (iii) Design and development of

the novel requirement-based TCP method for regression

testing (RT) using the Nature-Inspired Cuckoo-Search

Optimized SVM (Support Vector Machine), which is called

a TFC-SVM method, is performed. (iv) The proposed

requirement-based TCP approach is evaluated and analyzed

with the Firefly algorithm (FA) in [17]. The proposed model

has improved the average percentage of fault detection
(APFD) rate and reduces the execution time compared to the

firefly algorithm.

Sections are described as follows: Section 1 explained the

overview of the requirement-based TCP methods, and a

survey of various articles is done in section 2. The firefly
optimization (FA) algorithm is described in section 3. The

proposed work is elaborated in section 4. Experimental

result analysis is done in section 5, including the data set

description and performance parameters are analyzed for the

proposed and existing methods. Then, the conclusion and

future scope are defined in section 6.

III. RELATED WORK

This section reviews several articles on requirements-

based test case prioritization methods. It includes several

techniques, tools, parameters, advantages, and

disadvantages. It also includes the numerical results

observed by the respective authors by comparing their
proposed work with the previous methods. In the surveyed

papers, most previous methods prioritize the test cases using

some coverage data gathered with significantly additional

efforts. The most widely used performance parameters in the

surveyed papers are the average percentage of fault detected

(APFD). Wang et al., (2019) developed a location-based

TCP approach using the gravitational technique [10]. This

research used a better approach to develop a new position in

the software surrounded by mobile devices using the

gravitational rule technique. Initially, the test gravitation was

discussed, relating to the concept of worldwide gravitation.
After that, a unique computational model of the test case

gravitation was considered for the smart mall situation. A

method to generate a fault test case set was developed using

pseudo code. Then, location-based TCP using gravitation law

was developed using test case data, fault data, location data

to prioritize the test cases. Experimental results demonstrated

that the novel test case prioritization method had

demonstrated better performance than conventional test case

prioritization methods. Moreover, local data and device level

was a significant factor that influenced prioritization

efficiency. Experiment outcomes defined that the average

percentage of fault detection rate (APFD) of location-based
test case prioritization method was 78.67 percent, which was

higher than the base-line techniques. Dhiman et al., (2019)

proposed research on manual and automated slicing for TCP

to detect large faults from the scheme, where the

modifications were done from the novel version

announcement [11]. Thus, slicing was the method that

separated the complete function-wise and identified the

connected function. Hence, the performance of the present

and current algorithm in the model was analyzed by

considering the ten projects. Every project comprised seven

functions and four modifications, which were defined in RT
(regression testing). The simulation outcomes observed that

the average percentage of fault detection value was

improved. The execution was decreased with the automatic

TCP execution compared to the manual TCP technique in RT

(regression testing). The proposed model achieved an

accuracy rate of 89 percent compared to the manual slicing

(81%) method in test case prioritization. Mohd-Shafie et al.,

(2020) implemented a model-based TCP that recovered the

fault recognition, assessment of RT (regression-testing) [12].

It associates the development of two current survey models,

whereas integrated an extra arrangement principle enhances

the prioritization rate. Empirical research was done to
compute and compare the developed technique's result with

the specific models from the survey using the APFD metric.

Thus, three web-based presentations were used as the

research object to achieve the mandatory tests that comprised

the prioritized tests. It was observed from the outcomes that

the APFD metric has better performance as compared to

previous models that were 91.67 percent, 86.5 percent, and

91.2 percent for three web-services. Hence, it indicates that

the developed method was more efficient in estimating the

early faults during testing. It demonstrated that the planned

techniques improve the fault detection performance of
regression testing. Xiao et al., (2020) developed a new-TCP

method using LSTM (long short-term memory) based DL

(deep learning) to acquire reliable regression testing for fixed

software on continuous integration [13]. Long short-term

memory was the time-sequence prediction approach. It may

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

7

forecast the possibility of every TC detection, fault in the

subsequent cycle following test data of existing continuous

integration cycles. Thus, the priority of the test case was

acquired vigorously under the guidelines of possibility.

Experiment analysis was done on two industrial data sets.
Numerical results identified that the proposed model was

compared with the departing test case prioritization models.

The proposed models have better performance for embedded

software as :(i) Enhance prioritization efficiency. (ii)

Improve the fault detection value in a continuous integration

environment and (iii) Reduce the test execution time by

automatic deduction of out-dated test cases. Afzal et al.,

(2019) worked on the requirement-based TCP techniques.

TCP arranges the test cases (TC’s) to perceive maximum

faults irrespective of a minimum test suite or selection of test

cases [14]. They developed a method that used route density

and division coverage to order the TCs based on the theory
that multipart coding had maximum faults. Halstead’s

parameters were used to compute the route complication of

the TC’s. Thus, the main goal of the projected method was to

improve the APFD of the test-suite. They analyzed that the

average priority fault detection of the planned method was

more beneficial than the branch reporting-based prioritization

method. Thus, the change among the average percentage

fault detection of code coverage and complication depends

on analysis ranges from 2.7 to 42 percent. Srikanth and

Williams (2005), considered a prioritization requirement for

the test (PORT 1.0) method that represented the efficiency of
the TCP at the phase of evaluating the four factors [15]. The

test cases were ordered that depends on the requirement

priority, which was achieved by assessing the factors: (i)

Client Priority, (ii) Execution Complexity, (iii) Fault

Proneness, and (iv) Requirement Unpredictability for every

constraint. Test cases were mapped to requirements with a

maximum priority that was arranged previously for the

execution. They showed that the efficiency of the PORT 1.0

method for the four large sequencers showed the

improvement value of the fault recognition rate and test

efficiency. Srikanth et al., (2016) investigated the two

aspects and applied prioritization based on the feature in

various domains [16]. They aimed to present efficient

prioritization methods that experts may develop with less

effort. The proposed method involved analyzing and
assigning rates to every requirement depending on the

essential aspects, client’s priority, and fault proneness. The

TC’s for the highest requirements were arranged previously

for the execution. They implemented two requirements-based

TCP methods that used risk data on the system. Numerical

analysis was done on the enterprise cloud application to

measure the fault recognition of various test suites,

prioritized based on the client priority and fault proneness.

Khatibsyarbini et al., (2019) proposed TCP using the firefly

(FA) optimization approach [17]. They applied a firefly

algorithm with the defined fitness function method (FFM)

for optimizing the arrangement of the test cases that were
defined using the same distance model. The experimental

analysis defined that the firefly optimization (FA) approach

has a better average percentage fault detected (APFD) scores

than other prioritization methods. It also demonstrated that

the firefly algorithm (FA) has better LBS (Local Beam

Search) in average execution time. Results obtained from the

average percentage fault detected identified that the firefly

algorithm may be more efficient in inventing the fault

proneness problems required in security and critical

situations. It can be said that for systems dealing with the

computation of a huge amount of data, very efficient systems
are required. As systems are running using software-based

applications, they must be reliable and quality-oriented,

which can only be ensured by testing the software systems

[24-33]. Table 1 defines the comparison based on different

parameters like existing methods, problems, benefits, and

performance metrics and simulation tools used in the TCP

(test case prioritization).

Table 1. Comparative Analysis of existing methods on TCP (Test Case Prioritization)

Author Name,

(Year),

Reference

number

Technique Name Advantages Problems Tools /Performance

Parameters

Wang et al.,

(2019), [10]

Location-based TCP

using the law -

gravitation

Impact of

occurred errors to

prioritize test

cases in test

rounds.

TCP (Test Case

Prioritization) Problem

Average Percentage Fault

Detection Rate (APFD)

Dhiman and

Chopra, (2019),

[11]

Ant Colony

Optimization

Maximum no. of

faults detected

from the project

A hard-combinatorial

optimization problem

MATLAB, Accuracy,

Precision, Execution

Time, Recall, and Fault
Detection

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

8

Mohd-Shafie, et

al., (2020), [12]

Model-based TCP

with (SESOC)

Execution of the

system model is

faster

Improve the test

cases

Maximum Time

consumption and cost

Average Percentage Fault

Detection Rate (APFD)

Xiao et al.,

(2020), [13]

Long Short-Term

Memory (LSTM)

Decrease the

faults and time

cost

Execute the high detection

rate

Accuracy, Precision,

Recall, and APFD

Afzal et al.,

(2019), [14]

Coverage based

prioritization method

High factors of

verifying the

defects

Quick processing

Large no. of faults or issues

in the program

Average Percentage Fault

Detected (APFD), Fault

detected.

Srikanth and

Williams, (2005),

[15]

System-Level TCP

and Multi-faceted

TCP approach

Commercial

benefits

Costly and time-consuming TCP tool /ASPD (Avg.

Severity of Fault

Detection) and PFV

(Prioritization Factor

Value)

Srikant et al.,

(2016) [16]

Coverage Based,

Operational Profile

Based and

requirements-based

prioritization (TCP)

Cost advantages

of customers and

quality

management

High complexity ReBaTe/ CP and FP

(Customer Priority and

Fault Proneness)

Muhammad et al.,

(2019), [17]

Firefly Optimization

and TD-IDF

Regression

Testing might be

proven benefits.

Difficult to predict which

test cases will real reveal

errors.

APFD, Mean, Median,

Min, Max, SD, and Time

execution / UNIX

Programs.

IV. ALGORITHM USED IN TCP (TEST CASE

PRIORITIZATION)

TCP is an approach that aims to arrange the test case so

that high priority test cases as per some fitness values are

executed earlier to uncover the maximum number of errors
in the minimum time. The prioritization procedure presents

criteria to plan test cases so that the maximum number of

faults may be detected earlier. This section elaborated on

the algorithm for test case prioritization to improve the fault

detection rate for software schemes.

A. Firefly Optimization Algorithm Used in TCP

The light flashes from the firefly map out for fireflies.

The light flash may be designed by linking them with the

SF (selective function) to be enhanced, making it probable

to design a novel optimization method. The assumptions in

the firefly approach are described as follows [18]:

(i). The real fireflies are unisexual. Each firefly (FF) may

attract to each other fireflies.

 Complete Fireflies (FF) may be attracted to other

fireflies without any discriminant.

 For instance, there are five fireflies, and everyone

gets attracted to each firefly available when

connected.

(ii) The attractive nature of the firefly (FF) is directly

proportional to the enchantment of FF.

 When a firefly is attracting another, the vibrant

nature of the firefly becomes the priority between

them to grade the enchantment or attractiveness.

(iii) Fireflies may transfer randomly if they do not search
for more allure fireflies in adjoining areas.

 When more than two fireflies are having similar,

reflecting light (brightness), the firefly may

randomly move towards either direction.

Firefly algorithm is observed in spatial regions

comprising diverse sizes with encouraging consistency and

supremacy over other methods [19]. Firefly is a meta-

heuristic method that estimates that the optimization issue

is programmed as an agent's position, whereas the SF is

fixed as light intensity. Hence, the central two deliberations
in the firefly algorithm are; change of intensity termed as

brightness and the discovery of interference between

fireflies. It is estimated that the firefly's vision is selected

through brightness that, in turn, is associated with encoded

specific features. Hence, the attractive nature of fireflies in

the search region is compared to the SF rate of fireflies. The

firefly (FA) approach has been applied in Requirement

based TCP (test case prioritization), the concern of

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

9

assumption explained previously in figure 1. The algorithm

started with selective function origin. Besides, the

computation of the adjacency of DM (distance matrix)

among firefly representatives and its brightness is encoded

to identify every firefly's enchantment. The succeeding
motion of the firefly depends on the rate of brightness.

Thus, the motion ends once, when complete fireflies

have been examined. However, the sweeping motions are

recorded. All the motions are verified. Lastly, the best

pattern of the fireflies is selected that depends on a shorter

distance. The given table 2 represents the FF algorithm in

Requirement based TCP (test case prioritization). The

particular function defined the attractive nature of the

firefly that demonstrates the test case resemblance weight

and distinctiveness. The sweeping motion of the firefly is

stored eventually. The suitable route is ultimately specified

as the best test suite sequence. Using table 2, the

demonstration of firefly modules is shown in figure 1. The
5 test cases are prioritized; the possibility of receiving the

best priority organization is unique over five factorials

(1/5)!. Every test case may work as a firefly agent, whereas

the distance among every test case represents the attractive

function between firefly agents. Hence, the firefly

algorithm is used with the fitness function to search for the

best priority organization.

Table 2. Component mapping of Firefly Algorithm

Firefly Module TCP Module Explanation

Firefly Representative

(FA1, FA2,…)

Test case (TC1, TC2,…) The firefly algorithm demonstrates a test

case. The motion route of the firefly

algorithm for other firefly algorithms may

be stored as the test case arrangement in

test case prioritization.

Firefly Attractiveness

(Light and Distance)

Test case resemblance and

variation weights and

distinctiveness test case distance.

Firefly algorithm motion depends on the

attractiveness that is parallel to the same

weight and distinctiveness.

Spaces among Firefly Test case distance Firefly algorithm brightness is the

reduction that depends on the moved

distances.

Fig. 1 The Scheme Representation of Test Case Distance Adjacency

The development of the FF algorithm in the TCP
demonstrates the flow diagram of the firefly algorithm.

In the given figure 1, the information is interpreted from

the criterion program, and test cases are extracted from the

database. After that, the computation of test case distance is

performed using ED (edit-distance) and SM (string-

metric). Prioritization is initiated with the firefly

algorithm's motion and the brightest non-located TC unless

it reached the final FF in the search area. Therefore, the

complete moved route demonstrates the prioritized TC

arrangement. Hence, the short distance of the test case's

complete arrangement is measured as the most acceptable
route.

The main features of fireflies are mapped out
numerically for a better performance rate. These are

brightness, intensity rate, and attractiveness [20]. Hence,

the attraction is identified using the brightness function.

The selective function of the FF algorithm is the brightness

function that is given in equation (i). Hence, the brightness

rate of every FF for their motion in a solution area to

optimize the traverse route.

𝐹 (𝑛𝑗𝑘) =
(10∗𝐺𝐹)

((𝐶𝑌𝐶 𝑙)∗𝑟𝑎𝑛𝑑())
 …….. (1)

Hence, GF: Guidance Factor and CYC: input program.

In eq (1), random value rand () is used to create a random

number between [0, 1], as it is a standard scale. It is a type

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

10

of off-set rate. The random number may be searched in a

standard survey [21]. Such values are utilized by the

selective function of the FF approach. Thus, the function

used the scale metrics to distinguish the sizes with the

moves of the firefly.

Firefly algorithm has two main advantages: (i) one is the

automated sub-division and capability of dealing with the

multi-modals [22]. (ii) Firefly algorithm depends on the

attractiveness reduces with the distance. The whole

population may sub-divide into the subgroups

automatically, and every group may swarm around every

mode. Thus, the best global solution is found from all the

models. The subdivision permits the fireflies to search the

complete optima if the population dimension is adequately

maximum than the amount of the modes.

 Table 3. Performance metrics with Firefly Algorithm

Parameters Firefly Algorithm

Processing Time Less

Classification Population and

Attractiveness based

algorithm

Algorithm basis Flash behavior of swarm

and firefly

Performance Better

V. PROPOSED WORK

In the proposed work, novelty deals with the nonlinear

model’s processing; this provides high classification rates.

Also, the Cuckoo and SVM hybridization is used with the

term frequencies for processing requirements-based TCP

that is processed in the proposed method and shows the

novelty of the proposed work by achieving the highest

classification rates in terms of high mean, median, and low
standard deviations. The proposed model steps are

described below:

Step I: Firstly, the data set will be uploaded using GUI.

The GUI is an essential task that is useful in the man-

machine interface. The GUI used is the user interface tools

built-in MATLAB for useful information gathering and

easy visualization of the data processing.

Step II: Then, the pre-processing will be performed

using data mining to get useful information. Data mining

includes the normalization of the information, which is to

be occurrences of the requirements in the data, which

shows the significance of the requirement and the priority

of the process to be executed in the minimum execution.

Step III: Then, we will perform the extraction of the

term frequency features through which we will get the

feature vectors. The feature vector will extract the

characteristics in the form of the frequencies of the request

to be executed in a test case to achieve high priorities of the
processed requirements from the data.

Step IV: Then, the instance selection process will be

performed through cuckoo search optimization. As the data

have always been in the form of instances, the data’s

selection is a significant part of the processed requirement-

based test case prioritization. This instance selection will

perform the optimization in terms of optimizations weights

and distance. We come to know the weightage of the

processed data to be processed sequentially, which will

reduce the redundancy of the data.

Step V: After instance selection, we will perform the

training and testing in which the classification will take

place. The classification will process the test cases, a

priority level, which gives us classified priorities on the test

cases. The classified output will generate the trained model

for the high and low priorities for the processed test cases.

Step VI: Then, eventually, the performance will be

evaluated as per the different parameters. The parameters

are evaluated using computation time, APFD, Mean,

Standard Deviation, Min, and Max values through which

the performance evaluations can be achieved for the robust
proposed system.

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

11

 Fig. 2 The flow chart of the proposed Work

Proposed Work - Pseudo Code:

Step 1: Generate Data X1, X2, ……………………, Xn; such that x = data input sequence.

Step 2: Split Xn in such a way that Sx = {Split (Xn)} for all Xn.

Step 3: Tokenization of the Sx such that T  T1, T2, ………………….. Tn.

Step 4: Implement BoG (Bag of Words) with TFW  Term Frequency Weights.

Step 5: Perform TFIDF Term Frequency Inverse Document Frequency.

Step 6: Generate Population P such that P = T1, T2………………. Tn.

Where Tn = Term Frequencies.

Step 7: While (t<MaxGen)

Evaluate quality Fitness

If (Fi > Fj)

Update New Solution

End if

Rank the solutions

Update with current fitness.

Until all process complete

Repeat

End while

Step 8: Generate optimize weight (wt.) values such that w = w1, w2, ………………. Wn.

Step 9: For I =1: L (OptWt.)

 Check Priorities based on T(x)

Input data

(I1, I2, …, In)

Pre-processing using data

mining (x1, x2,.…,xn)

Actual data (I1, I2,

…, In)

Extraction of features F(x) = E(x) such that

E(x) belongs to the extracted vector

Training & Testing

C(x) = classify (model)

Performance analysis

Instance selection or Feature

Optimizations

Start

Stop

DB Saved

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

12

 where T(x) = Min & Max values of test priorities

 P(l) = T(x) for the current Level

 end for

Step 10: Perform Cx = f{x classify }, and evaluate the performance.

Step 11: Repeat Steps 1 and 10 until all iterations and processes are completed.

VI. EXPERIMENTAL RESULT ANALYSIS

This section involves a requirement-based TCP in

regression testing of the dataset. It includes the no. of files

and interrelated files. The used parameters to get the

desired result are; average percentage fault detected,

execution time, Min, Max, Mean, Median, and Standard

deviation.

 Dataset Description

 The Dataset taken is “Data files for Mahtab: Phase-wise
Acceleration of Regression Testing for C” [23].

 Performance Metrics

The result performance metrics are described as below:

 Average Percentage of Fault Detection Rate

It is the measurement of the percentage of the detected

fault for a test suite. The values range from zero to a

hundred, and it has a better fault detection rate.

APFD = 1-
Tf1+Tf2+⋯Tfn

𝑛.𝑚
 +

1

2.𝑛
 …………… (3)

Here eq (3), t is a test suite, m is the number of faults

detected at the test suite execution, n is the total amount of

test cases, Tf1 is the start test position in the test-suite T,

which identifies j.

 Average Time Execution

It is defined as the time taken to execute all the

instructions for the test case.

Average Time Execution:
𝑇𝑋 ∗𝑁𝐽

𝑇𝑆
 ……… (4)

Here eq (4) is defined as the time taken to execute all the

instructions and total test cases.

 Standard Deviation (SD)

It is the measurement that demonstrates the variation

from the mean. The standard deviation identifies the
complex variation from the mean. It is the measurement of

variability because of the return to real units of

measurement of data.

SD (𝜎) = √
∑ (𝑥𝑗 − 𝑥′)2𝑛

𝑗=1

𝑛
……………… (5)

Here eq (5), x determined unique value of the population

represents the mean of all values; n is the total amount of

values.

 Median

It is the sample of the middle point of the array when the

total observation is odd.

Median = L+ (

𝑛

2
−𝑐.𝑓

𝑓
) x c ……… (6)

Here eq (6), L is less limit of the median, N is total

frequency, Cf is cumulative frequency, C is the class

median interval, and F is median frequency class.

 Simulation Analysis

This section shows the experiment result in analysis with

the research model (TFC-SVM) and the existing Firefly

algorithm. It evaluated the performance metrics with all

parameters such as Median, Mean, SD, Execution Time,
APFD, Min, and Max compared with other methods

Fig. 3 Processed Requirement-based dataset uploading

The above figure 3 shows that the uploading process,

which deals with the test case, includes offline time, online

time, elapsed time, execution time, speed of the execution
of the machine based on the load for the test suite. This is

the training data through which the processing will be

performed, and the evaluation will be done based on the

extractions.

Fig. 4 Term Frequencies

The above figure 4 shows that the term frequencies,
which act as a feature evaluation. Term Frequencies is one

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

13

of the significant parameters through which the occurrences

of the errors in the test suits take place, and it can be

noticed through these feature evaluations. This is the most

crucial step, which tells us the frequencies and how vital it

that test case errors to be resolved efficiently and also a key
component of telling the relevance of the test case to be

examined.

Fig. 5 Instance Selection using Cuckoo Search

The above figure 5 shows the instance selections process

through the cuckoo optimization process, which shows the

selections of the relevant features for each test case used to

classify the priority. This is one of the crucial steps which
will reduce the redundancy of the data and also reduces the

execution time for the classification of the priority levels.

This part helps prioritize the test case in an optimal way to

have accurate prioritization of the test case.

Fig. 6 Classifies the priorities

The above figure shows the classification, which is done

using the SVM classification, and shows the different types

of priorities of the test case to be resolved according to the

priorities. The proposed approach can achieve efficient

priority classification for low error rates and standard

deviations. The T1 to T8 are the levels of the priorities used
for the test cases to achieve severity of the test case to be

resolved for the future performance on which the decisions

will be made and through which the evaluations will be

controlled to solve the priority of the test case.

Table 4. Proposed Performance with TFC-SVM

Algorithm

Parameters Values

APFD (%) 90.0232

Execution Time (ms) 108.4456

Max Value 0.994366

Min Value 0.187267

Mean 0.810716

Median 0.999526

SD 0.057313

Table 4 shows the performance of the proposed system,

which are statistical terms and through which the

performance will be measured to an extent for the test case

priorities. The above table shows that the proposed

approach can achieve high performance than the base

approach in the overall development of the test case

prioritization system.

Below, figure 7 shows the comparison of the mean

between the FA and the proposed (TFC-SVM) approach,

which is a normal distribution process. This must be high
for low error rates, which will produce less variance from

the mean (Stable) classification to have efficient priority

classifications.

Fig. 7 Mean: Comparison between proposed (TFC-

SVM) and Existing (Firefly Algorithm)

Fig. 8 Median: Comparison between proposed (TFC-

SVM) and Existing (Firefly Algorithm)

0

0.5

1

TFC-SVM FA

M
ea

n

Comparison between TFC-SVM and

FA : Mean

Mean

0

0.2

0.4

0.6

0.8

1

TFC-SVM FA

M
ed

ia
n

Comparison between TFC-SVM and

FA : Median

Median

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

14

The above figure 8 shows the comparison of the FA

approach with the proposed (TFC-SVM) approach in terms

of the median, which is one of the significant performance

parameters. The median must be high and is useful in terms

of stability to perform the classification of the priority
levels of the test suits. Median evaluation is essential to

signify how much high priority is required for each test

case during the classification process. If the median is low,

then the system classification error rates will be increased.

Fig. 9 Standard Deviation: Comparison between

proposed (TFC-SVM) and Existing (Firefly Algorithm)

The above figure 9 shows the standard deviation

performance comparison between the FA and proposed

approach (TFC-SVM), which shows that the proposed

approach is well efficient to achieve low deviations from
the mean distribution through which the classification

accuracy will be high to prioritize the levels.

Fig. 10 Min: Comparison between proposed (TFC-SVM)

and Existing (Firefly Algorithm)

The above figure 10 shows the comparison of the FA

approach with the proposed (TFC-SVM) approach in terms

of the min value, which must be low. If the min value is

low, the system can detect early faults during the

classifications to prioritize the test cases. It also minimizes

the diversities among the classification of the levels of the

priorities.

Fig. 11 Max: Comparison between proposed (TFC-

SVM) and Existing (Firefly Algorithm)

The above figure 11 shows the comparison of the FA

approach with the proposed (TFC-SVM) approach in terms

of the max value, which must be high. It also maximizes

the diversities among the classification of the levels of the

priorities.

Below, figure 12 shows the execution time. It shows that

the proposed approach can achieve low execution time. The

existing approach (FA) is well-suited to achieve high

computation time for the classification rate.

Fig. 12 Execution Time: Comparison between proposed

(TFC-SVM) and Existing (Firefly Algorithm)

Fig. 13 APFD: Comparison between proposed (TFC-

SVM) and Existing (Firefly Algorithm)

0

0.2

0.4

0.6

0.8

TFC-SVM FA

S
ta

n
d

a
r
d

 D
e
v

ia
ti

o
n

Comparison between TFC-SVM and

FA : SD

SD

0

0.1

0.2

0.3

0.4

TFC-SVM FA

M
in

Comparison between TFC-SVM and FA :

Min

Min

0.95

0.96

0.97

0.98

0.99

1

TFC-SVM FA

M
a
x

Comparison between TFC-SVM and

FA : Max

Max

0

50

100

150

TFC-SVM FA

E
x
ec

u
ti

o
n

 T
im

e

Comparison between TFC-SVM and FA

: Execution Time

Execution Time

82

84

86

88

90

92

TFC-SVM FA

A
P

F
D

Comparison between TFC-SVM and FA :

APFD

APFD

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

15

The above figure 13 shows the fault detection rate is one

of the significant parameters which detects the proposed

approach detection of faults in terms of performance

parameters. It should be high for high-performance

evaluation to detect more faults. If the system has a high
AFPD value, then there will be high chances of the

particular test case to be evaluated for the system to achieve

high fault detections for the test case priorities.

Table 5. Comparison Analysis with various performance

metrics

Parameters TFC-SVM Firefly

Algorithm

APFD (%) 90.0232 84.868

Execution

Time (ms)

108.44564 142.6667

Max Value 0.994366 0.964934

Min Value 0.1872674 0.331598

Mean 0.810716 0.275212

Median 0.999526 0.773856

SD 0.057313 0.724788

Table 5 shows the comparative analysis with performance

evaluations for the proposed work with the Firefly

algorithm and shows that the proposed work can achieve

high performance for classifications efficiently to achieve

low loss functions in case of priority levels with existing

methods.

VI. CONCLUSION AND FUTURE SCOPE
It is concluded that the requirement-based test case

prioritization prioritized the TC’s, optimized the test

implementation, saving time and cost. Requirement-based
TCP is a technique of arranging the TC execution per some

specific goals. Moreover, the requirement-based TCP goal

is to improve the probability and fault detection rate (FDR).

Requirement-based TCP may address a diversity of

objectives; testers improve the FDR, increase the possibility

of identifying faults before regression testing, testers

improve the risk of faults detection and find the faults

previously during the testing phase, testers improve the test

speed for testing their coverage of coverable coding in the

organization. This research has implemented the TFC-SVM

model with an instance selection model using an improved

cuckoo search optimization algorithm. This novel model

has been used to attain a high classification rate.

The training and testing modules are done with the TFC-

SVM Classification method using machine learning. The

existing research issues are resolved using TFC-SVM

methods and evaluate the performance metrics such as Min,

Max, Mean, Median, Standard Deviation (SD), APFD, and

Execution Time. An existing model using Firefly

Algorithm has attained results such as APFD value 84.868

percent, Execution Time value is 142.66 ms, Max value is

0.964, Min Value is 0.331, Mean value 0.275, Median

Value 0.773, and SD value 0.724. The proposed model has
achieved a high APFD value of 90.02 percent, and

execution time is 108.44 ms; Max, Min, Mean, Median, and

SD Values are 0.994, 0.187, 0.810, 0.999, and 0.057. All

the performance parameters are compared with the existing

methods.

Overall, the APFD (average percentage fault detection)

outcomes showed that the TFC-SVM method might

become a high challenger in the test case prioritization

field. The APFD outcomes define that the TFC-SVM

algorithm may be efficient in determining FP (fault

proneness) problems mandatory in security-critical

schemes.
The upcoming directions can be: (i). It can introduce a

novel optimum selection and prioritization method. (ii) It

would be stimulating to search for probable improvement

on this nature-inspired algorithm concentrating on coverage

efficiency. (iii) It can implement a WOLF optimization

with NN (Neural Network) algorithm to improve the

different parameters like error and precision rate.

REFERENCES
[1] M. Khatibsyarbini, M. A. Isa, and D. N. A. Jawawi, Test case

prioritization approach in regression testing: A systematic literature

review.

[2] Information and Software Technology, 93(2)(2018) 74-93.

[3] G. J. Myers, T. Badgett, T. M. Thomas, C. Sandler, The art of

software testing.. Chichester: John Wiley & Sons, 2,(2004).

[4] G. Rothermel, R. H. Untch, C. Chu and M. J. Harrold, Test case

prioritization: An empirical study. In Proceedings IEEE International

Conference on Software Maintenance-1999 (ICSM'99).' Software

Maintenance for Business Change'(Cat. No. 99CB36360), IEEE.

(1999) 179-188.

[5] D. Hao, L. Zhang, and H. Mei, Test-case prioritization: achievements

and challenges. Frontiers of Computer Science 10(5) (2016) 769-777.

[6] O. Dahiya & K. Solanki, A systematic literature study of regression

test case prioritization approaches, International Journal of

Engineering & Technology, 7(4)(2018) 2184-2191.

[7] O. Dahiya, K. Solanki, S. Dalal, and A. Dhankhar, Regression

Testing: Analysis of its Techniques for Test Effectiveness,

International Journal of advanced trends in computer science and

engineering, 9(1)(2020) 737-744.

[8] A. Ansari, A. Khan, A. Khan, and K. Mukadam, Optimized

regression test using test case prioritization. Procedia Computer

Science, 79(3)(2016) 152-160.

[9] J. A. P. Lima, & S. R. Vergilio, Test Case Prioritization in

Continuous Integration environments: A systematic mapping

study. Information and Software Technology,121(1)(2020) 106268.

[10] G. Duggal, & B. Suri. Understanding regression testing techniques.

In Proceedings of 2nd National Conference on Challenges and

Opportunities in Information Technology. (2008).

[11] X. Wang, H. Zeng, H. Gao, H. Miao, and W. Lin. Location-based test

case prioritization for software embedded in mobile devices using the

law of gravitation, Mobile Information Systems, (2019) 1-15.

[12] R. Dhiman, & V. Chopra,Novel Approach for Test Case

Prioritization Using ACO Algorithm, In 2019 IEEE 2nd International

Conference on Information and Computer Technologies (ICICT),

IEEE, 2(3)(2019) 292-295.

Omdev Dahiya & Kamna Solanki / IJETT, 69(1), 5-16, 2021

16

[13] M. L. Mohd-Shafie, W. M. N. Wan-Kadir, M. Khatibsyarbini and M.

A. Isa, “Model-based test case prioritization using selective and even-

spread count-based methods with scrutinized ordering criterion”, Plos

one, 15(2)(2020) 1-27.

[14] L. Xiao, H. Miao, T. Shi, and Y. Hong, LSTM based deep learning

for spatial-temporal software testing, Distributed and Parallel

Databases, 38(7)(2020) 687–712.

[15] T. Afzal, A. Nadeem, and M. Sindhu, Test Case Prioritization Based

on Path Complexity, In 2019 International Conference on Frontiers of

Information Technology (FIT), IEEE, (2019)363-3635.

[16] H. Srikanth, & L. Williams, On the economics of requirements-based

test case prioritization.ACM SIGSOFT Software Engineering Notes,

30(4)(2005) 1-3.

[17] H. Srikanth, C. Hettiarachchi, and H. Do, Requirements based test

prioritization using risk factors: An industrial study. Information and

Software Technology, 69(2016) 371-83.

[18] M. Khatibsyarbini, M. A. Isa, D. N. A. Jawawi, HNA Hamed, and

M.D.M. Suffian, Test Case Prioritization Using Firefly Algorithm for

Software Testing, IEEE Access, 7(3)(2019) 132360-132373.

[19] P. R. Srivatsava, B. Mallikarjun, and X. S. Yang, Optimal test

sequence generation using firefly algorithm, Swarm and Evolutionary

Computation, 8(3)(2013) 44-53.

[20] N. Iqbal, K. Zafar, and W. Zyad, Multi-objective optimization of test

sequence generation using multi-objective firefly algorithm (MOFA).

In 2014 International Conference on Robotics and Emerging Allied

Technologies in Engineering (iCREATE), IEEE, 3(4)(2014) 214-220.

[21] J. Nayak, B. Naik, and H. S. Behera, A novel nature inspired firefly

algorithm with higher order neural network: performance

analysis, Engineering Science and Technology, an International

Journal. 19(1)(2016) 197-211.

[22] D. P. Mohapatra,Firefly optimization technique-based test scenario

generation and prioritization, Journal of applied research and

technology, 16(6)(2018) 466-483.

[23] X. S. Yang, & X. He. Firefly algorithm: recent advances and

applications, International Journal of swarm intelligence, 1(1)(2013)

36-50.

[24] S. Mondal, Data files for Mahtab: Phase-wise Acceleration of

Regression Testing for C, Mendeley Data, V2, DOI:

10.17632/7fvwj88jvm.2, (2019).

[25] O. Dahiya, K. Solanki, and A. Dhankhar, Risk-Based Testing:

Identifying, Assessing, Mitigating & Managing Risks Efficiently In

Software Testing, International Journal of advanced research in

engineering and technology, 11(3)(2020) 192-203.

[26] K. Solanki, Y. Singh, & S. Dalal, A Comparative Evaluation of “m-

ACO” Technique for Test Suite Prioritization, Indian Journal of

science and technology, 9(30) 1-10.

[27] K. Solanki, Y. Singh, and S. Dalal, Experimental analysis of m-ACO

technique for regression testing, Indian Journal of Science and

Technology, 9(30) 1-7.

[28] O. Dahiya, & K. Solanki, Prevailing Standards in Requirement-Based

Test Case Prioritization: An Overview, ICT Analysis and

Applications, (2020) 467-474.

[29] O. Dahiya & K. Solanki, A Study on Identification of Issues and

Challenges Encountered in Software Testing, International

Conference on Communication & Artificial Intelligence (ICCAI-

2020) 17th-18th September (2020).

[30] Palak, & P. Gulia, Ant Colony Optimization Based Test Case

Selection for Component Based Software. Int. J. Eng. Technol, 7(4)

(2018) 2743-2745.

[31] S. Dalal, & V. Dahiya, A novel technique-absolute high utility

itemset mining (Ahuim) algorithm for big data, International Journal

of advanced trends in computer science and engineering, 9(5) (2020)

7451–7460.

[32] A. Dhankhar, K. Solanki, A. Rathee and Ashish, Predicting Student’s

Performance by using Classification Methods, International Journal

of advanced trends in computer science and engineering, 8(4) (2019).

[33] Hemlata & P. Gulia,Novel Algorithm for PPDM of Vertically

Partitioned Data. International Journal of Applied Engineering

Research, 12(12)(2017) 3090-3096.

[34] A. Chahal, & P. Gulia, Deep Learning: A Predictive IoT Data

Analytics Method, International Journal of Engineering Trends and

Technology, 68(7)(2020) 25-33.

