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Abstract— Genomic data is used in many fields but, 
it has become known that most of the platforms used 
in the genome sequencing process produce 
significant errors. This means that the analysis and 
inferences generated from these data, may have some 
errors that need to be corrected. On the two main 
types (substitution and indels) of genome errors, our 
work focused on correcting errors emanating from 
indels. A deep learning approach was used to correct 
the errors in sequencing the chosen dataset. 
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I. INTRODUCTION 
Since the time of Sanger, many genome 

sequencing projects have emerged. All the projects 
are geared towards improving the genome 
sequencing process.  Each sequencing project 
introduces some level of error or variants in the 
sequenced data. This is mainly due the underlying 
methods or mechanism that the sequencing process 
undergoes [1]. As the sequencing processes grow, so 
does the errors introduced based on the sequencing 
process [2]. Distinguishing between variants that 
emanate from the sequencing process is 
technologically and computationally challenging. 
Research has established that, the errors can be 
categorized into two main domains [3]. That is, errors 
due to substitution of nucleotide, and what has 
become known as indel, that is insertion or deletion 
errors.  The application of the advancement in data 
science, mathematics and computer science in 
biology has brought on board a myriad of attempts 
aimed at solving this problem. The ushering in of the 
next generation sequencing process (NGS) which 
was geared towards improving and simplifying the 
sequencing process also introduced errors in the 
sequenced data [1]. It has also been established that 
not only does the sequencing process generate errors 
but also, the choice of data used in the sequencing 
process can contribute to the underlying errors.[4][2]. 
Most of the error corrections methods have been 
aimed at substitution errors emanates from the 
Illumina sequencing platform [5][1][6][7]. The main 

purpose of this work is to reduce insertion and 
deletion errors by designing and optimizing a deep 
convolution neural network that drastically reduce 
genome sequencing error and also reduce 
computational time for sequencing while using 
minimal computer resources. Next we are going to 
review literature on genome sequencing error 
corrections, that will be followed by our 
methodology which will usher in our results, then 
discussion and conclusion. 

 

II. LITERATURE REVIEW 
The quest to correct sequencing errors increase 

tremendously from the detection of variation in the 
human DNA and sequencing reads from RNA [8][9]. 
However most of the initial error correction processes 
focused on remedying substitution errors as majority 
of them focused on correcting errors generated by the 
Illumina sequencer [5]. Crosstalk sequencing error 
from the Illumina sequencing process where the dye 
used, exhibited overlapping signal strength 
characteristics leading to the misinterpretation of 
nucleotides such as A for C and G for T is known to 
contribute immensely to substitution errors [10][11]. 
Again the continuous k-mer generation from 
nucleotide also leads the replication of an error 
throughout the sequencing process [5][12], thus 
bloating the size of the error in the sequencing 
process. Inverted sequencing repeats of nucleotides 
such as GGC which is known as dephasing has also 
been identifies as a source of sequencing errors 
besides location specific alignment emanating from 
k-mer of fixed read length [13].  

Platforms such as Roche’s 454, Ion Torrent are 
known to introduce indels in the sequencing process 
[14] [15]. Reference sequence error correction are 
heavy on computer memory usage and it is time 
consuming [1]. Sequencing error is unavoidable 
because of the processes used in sequencing genomic 
data, however the ability to identify and correct them, 
if not completely eliminate them is paramount [16]. 
Several works have been done in the arena of genome 
sequencing error correction. There are two main 
approaches in genome sequencing error correction, 
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that is using a reference genome and not using a 
reference genome. The reference approach compares 
the sequenced data with a known (reference) 
sequence of the same genome data type. The 
challenge with this approach is that in certain 
situations, there are no reference genome available 
for use [1]. Several works have been done on 
sequencing with and without a reference genome [17] 
[18] [19] [20]. It therefore indicative to say that 
sequencing with reference genome outperforms those 
without a reference genome.  

In correcting substitution errors, [15] [6] [21] used 
the k-spectrum approach where the probability of a k-
mer occurring a certain number of times were 
classified as solid and those outside the specified 
number of times were classified as in-solid. The 
weighted sum of solid and in-solid were then 
computed and a histogram plotted. The solid was said 
to follow a blend of Gaussian and zeta distribution 
while the in-solid followed a Gamma distribution [2]. 
Quality values representing the number of times each 
occurred were computed and proposed that the 
sequencing error followed the probability distribution 
of the quality values. Further research by Dohn J. C, 
Lottaz C, et al [16] showed that the assertion was not 
the necessary the case 

Suffix tree or array based methods were also used 
to correct insertion and deletion errors [3] [22]. This 
was done by treating k-mers as forming tree or array 
data structure. In an iteration process, if a k-mer is 
considered as an error, it is compared with the 
children of the root in the structure and any insertion 
or deletion errors are corrected 

III. METHODOLOGY 
A deep convolutional neural network architecture 

which uses sliding window emanating from learned 
filters to automatically detect patterns at various 
locations was designed. Our model consists of three 
hidden layers, each hidden layer consist of 
convolutional network, RelU activation function, 
maxpool layer which reduces the size of the input 
volume for the next layer. A flatten layer then 
converts the maxpool featured map into a column 
vector for the fully connected layer. A dropout layer 
is then used to trim the network to prevent overfitting. 
The output of the dropout layer is then passed 
through another fully connected layer before passing 
it through the softmax probability function to predict 
the output data. The data NA12878, taken from the 
National Centre for Biotechnology Information 
(NBCI) was divided into training, validation and 
testing respectively, using the 80%, 10% and 10% 
ratio. We used a one-hot encoding scheme where the 
nucleotide bases A, C, T and G were respectively 
encoded as [0 1 0 0], [1 0 0 0], [0 0 1 0] and [0 0 0 1].  
The network architecture is shown in figure 1. 

Instead of correcting errors in single reads, we 
used a consensus based approach where we built 
consensus of multiple reads and focused on 

generating underlying DNA. Figure 2 depict the 
convolutional network connections. 

 

 
Fig: 1. Convolutional Neural Network using the one-

hot encoded scheme as input data for training the 
network and the softmax function to predict the output 

 

 
Fig 2: Fully connected convolutional neural network 

with four hidden layers. 
 

The network was then trained and validated please 
see figure 3 below. The validation process between 
epoch 0 and 5 seemed good but took a divergent 
tangent after epoch 5 and did not recover even after 
epoch 50. 

 

 
Fig 3: Initial training and validation of the network 
showing divergence in the validation after epoch 5. 
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For the network to perform better on the testing 
data, the validation process has to be 100% based on 
the training data used. The hyper parameters of the 
network was then tweaked to improve on the 
training and validation process. The training and 
validation process improved tremendously see figure 
4(a and b).  

 

IV. RESULTS 
Figure 6 shows that the network has a high 

accuracy of 99.2% in sequencing the data. Figure 4 b 
also show a high validation of the trained dataset 
with close to zero loss after epoch 20.  

  

 

 
Fig 4: Improved network validation process after tweaking of hyper parameters. 

 
 

 
Fig 5: Normalized Confusion Matrix. 

 

 
Fig 6: Network accuracy diagram. 

 
 

V. DISCUSSION 
The deep convolutional neural network through 

consensus sequencing has been able reduce insertion 
and deleting error to the barest minimum. This is 
showcased in figure 4b where the system validated 
all the training datasets with zero loss. The 
normalized confusion matrix in figure 5, displayed a 
performance of 99%. This was achieved after epoch 
40 and the network performance in figure 6 
remained stable through epoch 100. This 
demonstrates the resilience of the network in 
predicting the genome given an input data.  

The experiment was conducted using Hewlett 
packed pavilion core i5 laptop, with 12GB RAM and 
1 Terabyte hard disk. The process run smoothly 
without any hindrances to the functionalities of the 
computer and applications that run concurrently.  

Compared to similar experiments by [3] [17] our 
network performed better. We must say that 
different datasets were used in our experiment and 
theirs.  

The choice of deep CNN which has the capacity 
to apply learning features to input dataset as it does 
in image recognition and natural language 
processing helped in the network performance. This 
is mainly because the network adds weights and 
biases during the feedforward process and 
automatically adjust the weights and biases during 
the backpropagation process thus improving on the 
learning process. 
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VI. CONCLUSION 
we have been able to demonstrate that genome 

sequencing error correction particularly indels can 
be achieved without compromising on system 
resources and computational prowess. Though the 
accuracy of 99.2% is near perfect, we will like to try 
other architectures using the same or different 
dataset to improve on the network performance. If 
the new architecture works successfully, it will be 
extended to correcting substitution errors 
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