
International Journal of Engineering Trends and Technology                                Volume 68 Issue 12, 171-181, December 2020 
ISSN: 2231 – 5381 /doi:10.14445/22315381/IJETT-V68I12P228                                                 © 2020 Seventh Sense Research Group® 

 

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/) 

Predicting Fault In Telecommunication Network: 

Lessons Learned  
  

Mohd Izhan Mohd Yusoff1  
 

1Telekom Research & Development Sdn Bhd, TM Innovation Center, Lingkaran Teknokrat Timur, 63000 Cyberjaya, 

Selangor Darul Ehsan, Malaysia 

 
izhan@tmrnd.com.my  

 

 

Abstract - Faults in the telecommunication network has 

attracted a large amount of interest from researchers and 
practitioners who have introduced, for example, algorithms to 
extract faulty signatures from noisy historical event data; rules 
and decision tree data mining classifiers to upgrade fault 
detection and handling, and cluster head selection algorithms to 

address the failure under uncertain situations. This article 
discusses lessons learned from studying and applying statistical 
methods or techniques to predict faults in the telecommunication 
networks (which is our main objective or target). Cochrane 
Orcutt's approach or procedure was identified for having 
properties that we believe would fulfill or achieve the above 
objective or target. The challenges we faced were: real data 
collected from the device show seasonal trends (meaning the 
device is faulty periodically), and we showed, by using simulated 

seasonal data, the Cochrane Orcutt approach or procedure 
failed to get the desired results. We proposed the Cochrane 
Orcutt adjusted approach or procedure where we showed, by 
using simulated seasonal data, the said adjusted approach or 
procedure managed to get the desired results. We also suggest 
future research recommendations using advanced methods 
(especially when met with the ideal case or scenario). 
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I. Introduction 

Wang et al. [9] introduced a new class of indexing fault 

signatures that encode the temporal evolution of events 
generated by a network fault and topology relationships 

among the nodes where these events occur. They presented 

an efficient learning algorithm to extract such faulty 

signatures from noisy historical event data. With the help 

of novel space-time indexing structures, they showed how 

to perform efficient online signature matching. Further, 

Rozaki [10] presented a monitoring scheme for mobile 

networks based on rules and decision tree data mining 

classifiers to upgrade fault detection and handling. Their 

goal was to have optimization rules that would improve 

anomaly detection. In addition, a monitoring scheme that 

relies on Bayesian classifiers was also implemented for 
fault isolation and localization.  

The data mining techniques described in this paper are 

intended to allow a system to learn the network fault rules. 

The results of the tests conducted lead to the conclusion 

that the rules were highly effective to improve network 

troubleshooting. Umadevi et al. [12] said that Underwater 

Acoustic Sensor Networks have a delicate design and 

proposed a model wherein an energy-efficient fault-

tolerant technique was integrated along with customized 

MAC protocol to build an accurate, fast, and reliable 

environment for reasonably better performance. They 
initiated a novel cluster head selection algorithm to address 

failure under uncertain situations. Moreover, Stelling et al. 

[14] addressed the difficulty in implementing techniques 

for detecting and correcting faults in distributed computing 

systems via the introduction of a fault detection service 

designed to be incorporated, a modular fashion distributed 

computing systems, tools, or applications. Asim et al. [15] 

proposed a new fault management mechanism to deal with 

fault detection and recovery and proposed a hierarchical 

structure to properly distribute fault management tasks 

among sensor nodes by introducing more self-managing 
functions. Hood et al. [16] proposed an intelligent system 

using adaptive statistical approaches to detect unknown or 

unseen faults. The system learns the network's normal 

behavior, and the information on deviations gets combined 

in the probabilistic framework of a Bayesian network. 

Other works can be found in [18], [19], [20], [21] and [22]. 

The real-time data collected for this article presents 

challenges, and the approaches utilized (to tackle or solve 

them) differed from those of the researchers mentioned 

above. Faulty (telecommunication) cards or ports would 

raise the alarm (in a network management system), and 

when this happens, customers start to complain of not 
being able to access the Internet. The service provider 

takes immediate action, which includes replacing the 

faulty cards or ports. The speed of the mentioned actions 

(including the periods that the customers stay 

disconnected) depends on the fault's complexity (plus the 

availability of new cards or ports in the inventory). The 

main objective and the focus of this article are to predict 

fault in telecommunication networks. The benefits of 

predicting faults (with high accuracy) are reduced the 

number of customer complaints (due to quick actions taken 

by the service provider in accordance with Service Level 
Agreement, SLA) and protection of the service provider's 

image (as well as further service improvement), among 

others.  

This article is divided into several sections: 

Introduction, Data, Methodology, Results, and Discussion 

(Lessons Learned).  
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II. Data & Methodology1 

The Cochrane–Orcutt (or multiple regression with serial 

correlation) approach or procedure is represented by the 

following steps [3]: 

Step One: The regression coefficients 𝑦𝑡 = 𝛽0 + 𝛽1𝑥1,𝑡 +
⋯ + 𝛽𝑝𝑥𝑝,𝑡 + 𝜀𝑡 , are estimated using ordinary least 

squares; 

Step Two: The serial correlation is estimated from the 

current residuals (𝑒𝑡 = 𝑦𝑡 − �̂�𝑡) using the formula 𝜌 =
∑ 𝑒𝑡𝑒𝑡−1

𝑛
𝑡=2

∑ 𝑒𝑡−1
2𝑛

𝑡=2
; 

Step Three: A new set of data is created using the formulas 

𝑦𝑡
′ = 𝑦𝑡 − 𝜌𝑦𝑡−1, 𝑥ℎ,𝑡

′ = 𝑥ℎ,𝑡 − 𝜌𝑥ℎ,𝑡−1, ℎ = 1,2, … , 𝑝; 

Step Four: Ordinary least squares is used to fit the 

following multiple regression to the transformed data 𝑦𝑡
′ =

𝛽0
′ + 𝛽1

′𝑥1,𝑡
′ + ⋯ + 𝛽𝑝

′ 𝑥𝑝,𝑡
′ ; 

Step Five: The regression equation of the untransformed 

data is created using the following equations 𝛽0 =
𝛽0

′

(1−�̂�)
, 𝛽1 = 𝛽1

′ , 𝛽2 = 𝛽2
′ , … , 𝛽𝑝 = 𝛽𝑝

′ ; 

Step Six: Step Two till Four are repeated until 𝜌 stabilizes 

(usually, only four or five iterations are necessary);  

Step Seven: The formula for forecast j periods into the 

future after the end of the series (period n is the final 

period on which we have data) is 𝐹𝑛+𝑗 = �̂�0 + �̂�1𝑥1,𝑛+𝑗 +

⋯ + �̂�𝑝𝑥𝑝,𝑛+𝑗 + 𝜌𝑗𝜀𝑛; 

Note that in the above steps, 𝜀𝑡 = 𝜌𝜀𝑡−1 + 𝑣𝑡AR(1) can be 

modified to tackle or handle 𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + 𝑣𝑡  , 
AR(2), 𝜀𝑡 = 𝜌1𝜀𝑡−1 + 𝜌2𝜀𝑡−2 + 𝜌3𝜀𝑡−3 + 𝑣𝑡 AR(3), and so 

forth. 

We used the above steps on the following (simulated 

and seasonal behavior) data (representing real-time data, 

especially when the telecommunication network devices 
display faulty behavior periodically, i.e., when a certain 

condition is met). The symbol or coefficient 𝜌 used in the 

above steps was replaced by 𝜃 in the following paragraphs. 

Let y represent (simulated and seasonal behavior) 

observations collected from device A and x represent 

(simulated and seasonal behavior) observations collected 

from device B (refer to Figure 1). The total number of 

observations equals 277, and they (i.e., the observations) 

will reveal whether the device is faulty or not (by referring 

to the device's Standard Operating Procedure, SOP). 

Variables y and x observations are highly correlated at 0.55 

[2], and devices A and B formed an integrated 

(telecommunication) system or network2. We aim to 

forecast y given x, using each of the models in Table 1. 

 

 

 

 

 

 
1 All the methods mentioned in this section were incorporated 

into “expertmlregx.jar.” The results presented in this article are 
produced from the mentioned java program. 

2 We did not utilize boxplot because variable x satisfies normal 
distribution when tested using Kolmogorov-Smirnov One-
Sample test [2]. 

Table 1. List of models used in this study. 

MODEL (1) MODEL (2) MODEL (3) 

𝒚𝒕

= 𝜷𝟎 + 𝜷𝟏𝒙𝒕

+ 𝜺𝒕 ,# 
𝒕 = 𝟏, 𝟐, . . . , 𝒏 

 

𝑦𝑡

= 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 , 
𝜀𝑡

= 𝜃1𝜀𝑡−1 + 𝑣𝑡 ,## 

𝑡 = 1,2, . . . , 𝑛 
 

𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 , 
𝜀𝑡

= 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2

+ 𝑣𝑡  ,### 

𝑡 = 1,2, . . . , 𝑛 
 

#AR (0), ##AR (1), ###AR (2), AR = Auto-Regressive 
 

MODEL (1), MODEL (2), and MODEL (3) used 

Cochrane-Orcutt (or multiple regression with serial 

correlation) approaches. MODEL (1) skipped steps related 

to finding 𝜃. MODEL (2) and MODEL (3) used all the 

above steps. Step Two, Three, and Seven formulae of the 

Cochrane-Orcutt procedure were replaced with the 

following to accommodate MODEL (3): �̂� = (𝑨𝒕𝑨)−𝟏𝑨𝒕𝒃, 

�̂� = [
𝜃1

⋮
𝜃𝑞

] , 𝑨 = [

𝑒𝑞 … 𝑒1

⋮ ⋱ ⋮
𝑒𝑛−1 … 𝑒𝑛−𝑞

] , 𝒃 = [

𝑒𝑞+1

⋮
𝑒𝑛−𝑞

], 𝑦𝑡
′ =

𝑦𝑡 − ∑ 𝜃𝑖𝑦𝑡−𝑖
𝑞
𝑖=1 , 𝑥ℎ,𝑡

′ = 𝑥ℎ,𝑡 − ∑ 𝜃𝑖
𝑞
𝑖=1 𝑥ℎ,𝑡−𝑖 , ℎ =

1,2, … , 𝑝, 𝐹𝑛+𝑗 = �̂�0 + �̂�1𝑥1,𝑛+𝑗 + ⋯ + �̂�𝑝𝑥𝑝,𝑛+𝑗 +

∑ 𝜃ℎ
𝑞
ℎ=1 𝜀𝑛+𝑗−ℎ,  

We reserved the last 15 observations of y for measuring 

the performance of the tabulated or mentioned models. A 

model's performance is measured via the following 

parameters (especially SSE, MSE, MAPE, and R2, which 

measure the difference between actual and forecast values; 

and n in the parameters is replaced by 15). 𝑆𝑆𝐸 =

∑ (𝑦𝑖 − �̂�𝑖)
2𝑛

𝑖=1 , 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − �̂�𝑖)

2𝑛
𝑖=1 , 𝑀𝐴𝑃𝐸 =

(100%) ∑ |
𝑦𝑖−�̂�𝑖

𝑦𝑖
|𝑛

𝑖=1 , 𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇
, 𝑆𝑆𝑇 = ∑ 𝑦𝑖

2𝑛
𝑖=1 −

(∑ 𝑦𝑖
𝑛
𝑖=1 )

2

𝑛
 [2]. R2 is considered good or better if closer to 

one. Other parameters are considered good or better if 

closer to zero. 

 
(a) 

 
(b) 
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(c) 

Figure 1. (a) y and x are plotted together using line plot 

(note that seasonal behavior of the latter is hidden and 15 

observations omitted from the former); (b) y is plotted 
using line plot, and (c) x is plotted using line plot (note that 

seasonal behavior is displayed or observed). 

III. Results 

MODEL (1) or AR (0) was performed, and its residuals 

were plotted using the auto-correlation function (ACF) and 

partial autocorrelation function (PACF) plots to see if 

there's a valid reason to use the Cochrane–Orcutt approach. 

The results from the mentioned plots display AR behavior, 

and the results give an early indication of AR's q being 

greater than one (1); refer to Figure 2 [1]. 

 

 
(a) 

 
(b) 

Figure 2. (a) ACF Plot for MODEL (1) residuals; (b) 

PACF Plot for MODEL (1) residuals. 

 

MODEL (2) and MODEL (3) required more than 

(normal or typical) four or five iterations to achieve 

convergence. MODEL (1), MODEL (2), and MODEL (3) 

results can be found in Table 2, Table 3, and Figure 3. 

 

 

Table 2. Coefficients 𝛽0, 𝛽1, 𝜃1, 𝑎𝑛𝑑 𝜃2 are estimated for 

each model. Hypothesis testing and the Durbin-Watson 

test are not included in this article, and they are replaced 

by SSE, MSE, MAPE, and R2. 

 

MODEL �̂�𝟎 �̂�𝟏 �̂�𝟏 �̂�𝟐 

MODEL (1) -327.54 8.32 . . 

MODEL (2) 3379.85 0.017 0.999885 . 

MODEL (3) 

 

499.9999984 7.77E-

10 

1.9972 -1.00 

 

 

Table 3. SSE, MSE, MAPE, and R2 were computed for 

each model. 

MODEL SSE MSE MAP

E 

R2 

MODEL 

(1) 

89324.47 5954.97 177.71 -

1176.52 

MODEL 
(2) 

295.67 19.71 10.12 -2.90 

MODEL 

(3) 

1.12E-10 7.46E-

12 

5.61E-

06 

1.00 

 

 
(a) 

 
(b) 
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(c) 

Figure 3. (a) Actual (line plot) versus MODEL (1): 𝑦𝑡 =
𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 , 𝑡 = 1,2, … , 𝑛, (clustered column plot); (b) 

Actual (line plot) versus MODEL (2): 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 +
𝜀𝑡 , 𝜀𝑡 = 𝜃1𝜀𝑡−1 + 𝑣𝑡 , 𝑡 = 1,2, . . . , 𝑛, (clustered column 

plot); (c) Actual (line plot) versus MODEL (3): 𝑦𝑡 = 𝛽0 +
𝛽1𝑥𝑡 + 𝜀𝑡 , 𝜀𝑡 = 𝜃1𝜀𝑡−1 + 𝜃2𝜀𝑡−2 + 𝑣𝑡 , 𝑡 =

1,2, . . . , 𝑛, (clustered column plot) 

 

In Figure 3, a clustered column plot is used or chosen 

instead of a line plot for forecast values because of its 

ability to highlight or reveal forecast values behavior. 
Combine Figure 3 with Table 3, and it is clear or obvious, 

MODEL (3) performed better as compared to MODEL (1) 

and MODEL (2). 

IV. Discussion (Lessons Learned) 

In the previous section, we highlighted several 

approaches taken by researchers to handle the fault in 

telecommunication, introduced the Cochrane–Orcutt 

approach or procedure (by listing all steps involved), and 

described (simulated and seasonal behavior) data used in 

the preparation of this article. The Cochrane–Orcutt 

approach should be adjusted, especially for the case of 
seasonal behavior data, to include AR (2), AR (3), and so 

forth (i.e., higher Auto-regressive, AR, parameters) in 

serial correlation. To measure the models' performance (as 

well as to introduce a stopping mechanism), it is highly 

recommended to reserve several actual observations for 

the dependent variable, y.  

Referring to Table 3, where the whole process is 

terminated or stopped at AR (2) of MODEL (3), the 

models show significant improvement (in terms of SSE, 

MSE, MAPE, and R2) when AR (#) of MODEL (#+1) is 

changed in the following manner or sequence (from left to 

right): AR (0), AR (1), and AR (2). 
The whole process given in the previous section can be 

explained via the Cochrane-Orcutt adjusted procedure 

(refer to Figure 4), where the Threshold value is fixed at 

1 × 10−3. RSqr*(q) in Figure 4 refers to the following 

formula |R2(q)-1|. Other scenarios were considered, and 

their details can be found in Appendix A. 

 

 
Figure 4. A flow diagram of the Cochrane-Orcutt adjusted 

procedure. q starts with one (1) because AR (0) represents 

multiple regression without serial correlation. SSE (0), 

MSE (0), MAPE (0), and RSqr*(0) derived from AR (0) 

are subjected to the same rule, i.e., they are checked 

whether they are less than a threshold value or not. 

 

After performing the Cochrane-Orcutt adjusted 

procedure and getting the final AR (q), we can use the 

information (i.e., final AR (q)) plus all the observations 

(including the "reserved" ones) to forecast, say j, periods 

into the future for variable y. We can use time series 

forecasting techniques such as ARIMA, Brown & Winters 
exponential smoothing, moving average. Simple regression 

to forecast the same number of periods into the future for 

variable x, if they (i.e., variable x observations) are not 

available, before proceeding to forecast into the future for 

variable y; further details are given in Appendix B [1,17].  

We collected real-time data from multiple sources every 

hour from 1500 hours on June 2, 2016, till 0000 hours on 

June 19, 2016, and saved it in "csv" format. Several 

processes were performed on the real-time data (including 

dividing the real-time data according to log in ID, re-

arranging the time when the observations were collected, 
and matching the alarm raised with the arranged 

observations) to get the desired format. The mentioned 

processes emphasized or focused on alarms closely related 

or linked to Customer Trouble Tickets (CTTs) and factors 

that caused problems to customers and led to the creation 

of CTTs. The behavior displayed by one of the variables 

under study is best described as follows: all observations 

were fluctuating between 15 and 15.5 for several hours or 

days before dropping below 15, which trigged the alarm; 

the fluctuating continued between 13.5 and 14.5 for 

several hours or days before the alarm stopped; the 
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observations were back or returned to normal (i.e., 

fluctuating between 15 and 15.5).  

Unfortunately, the number of incidents (i.e., alarms 

raised) is not enough for us to forecast fault3 (where they 

should follow either hotel's occupancy that shows seasonal 
behavior or simulated and seasonal behavior data 

presented in this article). Scatterplots derived from the 

real-time data showed consistent behaviors with the 

assumptions about the effects on the variables from the 

alarms raised. Boxplots and ACF plots (plus PACF plots) 

showed outliers and serial correlation, respectively. The 

correlation matrix helped determine which variables are 

useful in the next analysis (i.e., multiple regression with 

serial correlation). Using the selected (pair of) variables, 

multiple regression with serial correlation performed better 

than the conventional or ordinary method (i.e., multiple 

regression without serial correlation) in terms of actual 
modeling values (details not included in this article)4.  

Future research works will involve the analysis of the 

real-time data collected beyond the time period used in this 

article, the study of the weather data (which will be treated 

as external or predictor variable in multiple regression with 

serial correlation), the study of observations related to 

network performance collected from network cards that 

serve, say n, number of customers, and the use of Hidden 

Markov Models (a probabilistic model consisting of 

variables representing observations, variables that are 

hidden, the initial distribution, transition matrix, and 
parameters for all observation distributions) in predicting 

fault in telecommunication [4,5,6,7,8,13].  
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Appendix A 

Four scenarios were considered where for each scenario, 

1000 samples (each sample consists of 277 observations) 

were generated using a random number generator. 

 

Scenario 1: The correlation between variables x and y is 

"weak" (at 0.4)5. Figure A.1 shows the behavior of 

variables x and y, especially the "weak" correlation (or 

linkage) between them (the observations are clustered 

together, which resembles an ellipse shape). SSE, MSE, 

MAPE, and R2, rxy, µx, σx, �̂�0, �̂�1, 𝜃1,and 𝜃2 are calculated 

for each of the 1000 samples. The 1000 calculations are 

 
5 Based on rule of thumb, correlation above 0.5 is considered 

“strong” and “weak” otherwise. Hypothesis testing 𝜌 = 0 is not 

included in this article. Here 𝜌 refers to correlation and not to be 
confused with the one given in Data & Methodology section. 
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summarized in the form of minimum, average, standard 

deviation, and maximum; refer to tables A.1, A.2, and A.3. 

Note that SSE, MSE, and MAPE, minimum, average, and 

maximum are close to zero, whereas R2 close to one. The 

said behaviors, which represent the flow diagram's 
performance in Figure 4, are further verified (or 

visualized) in part by Figure A.2. 

 

 
(a) 

 
(b) 

Figure A.1. Variables y and x of the selected sample are 

plotted together using (a) line plot where the left y-axis is 

reserved for variable y and right y-axis for variable x (b) 

scatter plot where y-axis and x-axis are reserved for 

variables x and y, respectively.  

 

Table A.1. Minimum, average, standard deviation and 
maximum are calculated for each SSE, MSE, MAPE, and 

R2.  

 SSE MSE MAPE R2 
Minimum 1.72E-13 1.14E-14 2.31E-07 1.00E+00 
Average 9.73E-12 6.49E-13 1.42E-06 1.00E+00 
Standard 

deviation 
1.2297E-
11 8.2E-13 7.6E-07 1.6E-13 

Maximum 7.78E-11 5.18E-12 4.74E-06 1.00E+00 

 

Table A.2. Minimum, average, standard deviation and 

maximum are calculated for each 𝑟𝑦,𝑥, 𝜇𝑥, and 𝜎𝑥. Note 

that 𝑟𝑦,𝑥, represents correlation coefficient (based on 

average, 0.39); 𝜇𝑥, and 𝜎𝑥 represent the average and 

standard deviation for variable x. 

 𝒓𝒚,𝒙 𝝁𝒙 𝝈𝒙 

Minimum 0.25653 99.019202 3.0408782 

Average 0.39364 99.619892 3.5511861 

Standard 

deviation 0.04965 0.2004639 0.1482002 

Maximum 0.53929 100.22643 3.9370558 

Table A.3. Minimum, average, standard deviation and 

maximum are calculated for each �̂�0, �̂�1, 𝜃1,and 𝜃2. 

 

 �̂�𝟎 �̂�𝟏 �̂�𝟏 �̂�𝟐 

Minimum 499.9999987 -3.3E-09 1.997259 -1 

Average 500.0000005 1.9E-12 1.997259 -1 
Standard 

deviation 5.84931E-07 7.83E-10 3.52E-09 3.4E-09 

Maximum 500.0000019 2.28E-09 1.997259 -1 

 

 

 
(a) 

 

 
(b) 

 

Figure A.2. Actual values are plotted against forecast 

values, using (a) line combined with clustered column plot 

and (b) surface plot, where 6 samples were selected for the 

latter, namely Sample 100, 200, 300, 400, 500, and 1000. 

 

Scenario 2: The correlation between variables x and y is 

"strong" (at 0.8). Figure A.3 shows the behavior of 

variables x and y, especially the "strong" correlation (or 
linkage) between them (the observations are clustered 

together, which resembles a linear trend shape). SSE, MSE, 

MAPE, and R2, rxy, µx, σx, �̂�0, �̂�1, 𝜃1,and 𝜃2 are calculated 

for each of the 1000 samples. The 1000 calculations are 

summarized in the form of minimum, average, standard 

deviation, and maximum; refer to tables A.4, A.5, and A.6. 

Note that SSE, MSE, and MAPE, minimum, average, and 

maximum are close to zero, whereas R2 close to one. The 

said behaviors, which represent the flow diagram's 
performance in Figure 4, are further verified (or 

visualized) in part by Figure A.4. 
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(a) 

 

 
(b) 

 

Figure A.3. Variables y and x of the selected sample are 

plotted together using (a) line plot where the left y-axis is 

reserved for variable y and right y-axis for variable x (b) 

scatter plot where y-axis and x-axis are reserved for 

variables x and y, respectively. 

 

Table A.4. Minimum, average, standard deviation and 

maximum are calculated for each SSE, MSE, MAPE, and 

R2. 

 
 SSE MSE MAPE R2 

Minimum 1.26E-13 8.38E-15 2.07E-07 1.00E+00 

Average 6.03E-12 4.02E-13 1.25E-06 1.00E+00 

Standard 

deviation 1.136E-11 7.6E-13 5.7E-07 1.5E-13 

Maximum 1.15E-10 7.64E-12 5.68E-06 1.00E+00 

 

Table A.5. Minimum, average, standard deviation and 

maximum are calculated for each 𝑟𝑦,𝑥, 𝜇𝑥, and 𝜎𝑥. Note 

that 𝑟𝑦,𝑥, represents correlation coefficient (based on 

average, 0.8); 𝜇𝑥, and 𝜎𝑥 represent the average and 

standard deviation for variable x. 

 

 𝒓𝒚,𝒙 𝝁𝒙 𝝈𝒙 

Minimum 0.73468 99.270568 3.2056572 

Average 0.79673 99.811673 3.5687636 

Standard 

deviation 0.01875 0.1317101 0.1178905 

Maximum 0.85432 100.23361 4.0237565 

 

 

 

Table A.6. Minimum, average, standard deviation and 

maximum are calculated for each �̂�0, �̂�1, 𝜃1,and 𝜃2. 

 

 �̂�𝟎 �̂�𝟏 �̂�𝟏 �̂�𝟐 

Minimum 499.9999985 -4.4E-09 1.997259 -1 

Average 500.0000001 -2.9E-11 1.997259 -1 
Standard 

deviation 3.12866E-07 1.22E-09 1.84E-09 1.78E-09 

Maximum 500.0000017 3.8E-09 1.997259 -1 

 

 

 
(a) 

 

 
(b) 

 

Figure A.4. Actual values are plotted against forecast 

values, using (a) line plot combined with clustered column 

plot and (b) surface plot, where 6 samples were selected 

for the latter, namely Sample 100, 200, 300, 400, 500, and 

1000. 
 

Scenario3: The correlation between variables x and y are 

"weak" (at 0.4). Here the device is considered faulty when 

its measurements dipped below the threshold value. 

Figure A.5 shows the behavior of variables x and y, 
especially the "weak" correlation (or linkage) between 

them (the observations clustered together, which resembles 

an ellipse shape). SSE, MSE, MAPE, and R2, rxy, µx, σx, �̂�0, 

�̂�1, 𝜃1,and 𝜃2 are calculated for each of the 1000 samples. 

The 1000 calculations are summarized in the form of 

minimum, average, standard deviation, and maximum; 

refer to tables A.7, A.8, and A.9. Note that SSE, MSE, and 
MAPE, minimum, average, and maximum are close to 

zero, whereas R2 close to one. The said behaviors, which 

represent the flow diagram's performance in Figure 4, are 

further verified (or visualized) in part by Figure A.6. 

Notice that the forecast values managed to preserve or 

capture the convex shape of actual values. 
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(a) 

 

 
(b) 

 
Figure A.5. Variables y and x of the selected sample are 

plotted together using (a) line plot where the left y-axis is 

reserved for variable y and right y-axis for variable x (b) 

scatter plot where y-axis and x-axis are reserved for 

variables x and y, respectively.  

 

Table A.7. Minimum, average, standard deviation and 

maximum are calculated for each �̂�0, �̂�1, 𝜃1,and 𝜃2. 

 

 �̂�𝟎 �̂�𝟏 �̂�𝟏 �̂�𝟐 

Minimum 499.999992 -2.5E-09 1.997259 -1 

Average 499.9999983 -2.5E-11 1.997259 -1 
Standard 

deviation 1.95118E-06 7.11E-10 5.17E-09 5.6E-09 

Maximum 499.9999999 2.27E-09 1.997259 -1 

 

Table A.8. Minimum, average, standard deviation and 

maximum are calculated for each 𝑟𝑦,𝑥, 𝜇𝑥, and 𝜎𝑥. Note 

that 𝑟𝑦,𝑥, represents correlation coefficient (based on 

average, 0.39); 𝜇𝑥, and 𝜎𝑥 represent the average and 

standard deviation for variable x. 
 

 𝒓𝒚,𝒙 𝝁𝒙 𝝈𝒙 

Minimum 0.231888 98.9162 3.169821 

Average 0.393431 99.49665 3.555339 

Standard 

deviation 0.046069 0.17712 0.133561 

Maximum 0.520473 100.0899 3.98267 

 

 

 

Table A.9. Minimum, average, standard deviation and 

maximum are calculated for each SSE, MSE, MAPE, and 

R2; 

 

 SSE MSE MAPE R2 
Minimum 6.78E-12 4.52E-13 2.16E-06 1.00E+00 
Average 1.67E-10 1.12E-11 7.19E-06 1.00E+00 
Standard 

deviation 
3.13885E-

10 2.09E-11 6.46E-06 4.14E-12 
Maximum 1.46E-09 9.74E-11 2.82E-05 1.00E+00 

 

 

 
(a) 

 

 
(b) 

 

Figure A.6. Actual values are plotted against forecast 

values, using (a) line plot combined with clustered column 

plot and (b) surface plot, where 6 samples were selected 

for the latter, namely Sample 100, 200, 300, 400, 500, and 

1000. 
 

Scenario 4: Variables x1, x2, x3, x4, and x5, are collected 

from B1, B2, B3, B4, and B5. All of the said devices are 

linked to device A. Variable y is collected from device A. 

Correlation between variables x1 and y; x2 and y; x3 and y; 

x4 and y; varies from 0.2 to 0.6 (i.e., from "weak" to 

"strong"). Correlation between x1 and x2; x1 and x3; x1 

and x4; x1 and x5; x2 and x3; x2 and x4; x2; and x5; x3 and 

x4; x3 and x5; x4; and x5 are fixed at zero to comply with 

multiple regression rules, thus ensuring hypothesis testing 

could be performed on the estimated coefficients; refer to 
Figure A.7. Out of 1000 samples, 996 samples succeeded 

in following the diagram in Figure 4 using all the said 

variables at once. They are summarized in the form of 

minimum, average, standard deviation, and maximum refer 

to tables A.10, A.11, and A.12. Out of 996 successful 
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samples, 4 samples require more than the normal AR(2) to 

achieve the desired results; refer to table A.12 (b). Note 

that SSE, MSE, and MAPE, minimum, average, and 

maximum are close to zero, whereas R2 close to one. The 

said behaviors, which represent the flow diagram's 
performance in Figure 4, are further verified (or 

visualized) in part by Figure A.8. Out of 1000 samples, 4 

samples failed due to the denominator of 𝛽0 =
𝛽0

′

(1−∑ �̂�)
 i.e. 

(1 − ∑ 𝜃) (refer to Data & Methodology section) equals 

to zero. The variables of 4 failed samples are split or sliced 

pairwise, i.e., x1 and y; x2 and y; x3 and y; x4 and y; x5 and 
y where they (i.e., pairwise variables) managed to follow 

the diagram in Figure 4 successfully. Their results are 

similar to the previous scenarios; therefore, they are not 

included in this article. 

 

 
Figure A.7. Telecommunication devices B1, B2, B3, B4, 
B5, are linked to devise A, and device A is linked to the 

customer. 

 

Table A.10. Minimum, average, standard deviation and 

maximum are calculated for each SSE, MSE, MAPE, and 

R2. 

 
 SSE MSE MAPE R2 

Minimum 1.94E-13 1.29E-14 2.67E-07 1.00E+00 

Average 3.06E-09 2.04E-10 3.63E-06 1.00E+00 

Standard 

deviation 

4.94848E-
08 3.3E-09 2.47E-05 6.52E-10 

Maximum 1.01E-06 6.74E-08 4.54E-04 1.00E+00 

 

 
 

Figure A.8. Actual values are plotted against forecast 

values, using (a) line plot combined with clustered column 

plot and (b) surface plot, where 4 samples were selected 

for the latter, namely Sample 146, 321, 61, and 746. The 

said samples require more than the normal AR(2) to 

achieve the desired results. 

 

Table A.11. Minimum, average, standard deviation, and 

maximum are calculated for each (a) 𝜇𝑧, and 𝜎𝑧 (b) 

𝑟𝑎,𝑏 . Note that 𝑟𝑎,𝑏, represents correlation coefficient; 𝜇𝑧, 

and 𝜎𝑧 represent the average and standard deviation for 
variable z. 

 

(a) 
  𝝁𝒙𝟏 𝝈𝒙𝟏 𝝁𝒙𝟐 𝝈𝒙𝟐 𝝁𝒙𝟑 𝝈𝒙𝟑 

M
in

im
u

m
 

9
9

5
.0

2
9
1
 

52.41646 898.2732 42.23347 798.0564 33.91225 

A
v

e
r
a

g
e 

1
0

0
4

.8
6
3
 

60.13526 907.0653 50.18718 805.4563 40.18768 

S
ta

n
d

a
r
d

 

d
e
v

ia
ti

o
n

 

2.952437 2.425973 2.600199 2.088673 2.259255 1.67034 

M
a

x
im

u
m

 

1013.683 67.37091 914.8974 58.1891 812.9204 45.16435 

 

  

𝝁𝒙𝟒 𝝈𝒙𝟒 𝝁𝒙𝟓 𝝈𝒙𝟓 

M
in

im
u

m
 

  

698.7547 26.5503 598.8464 17.14297 

A
v

e
r
a

g
e 

  

704.0971 30.20018 603.0362 20.14551 

S
ta

n
d

a
r
d

 

d
e
v
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ti

o
n

 

  

1.717054 1.279315 1.202868 0.846544 

M
a

x
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u
m

 

  

710.4054 34.77309 606.7339 23.31273 
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(b) 

 
 𝒓𝒚,𝒙𝟏 𝒓𝒚,𝒙𝟐 𝒓𝒚,𝒙𝟑 𝒓𝒚,𝒙𝟒 𝒓𝒚,𝒙𝟓 

M
in

im
u

m
 

0.439166 0.334311 0.226186 0.097315 0.03823 

A
v

e
r
a

g
e 

0.595367 0.496509 0.392397 0.29473 0.194312 

S
ta

n
d

a
r
d

 

d
e
v

ia
ti

o
n

 

0.035726 0.042794 0.0502 0.057786 0.057073 

M
a

x
im

u
m

 

0.712198 0.615725 0.554684 0.473513 0.373082 

  𝒓𝒙𝟏,𝒙𝟐 𝒓𝒙𝟏,𝒙𝟑 𝒓𝒙𝟏,𝒙𝟒 𝒓𝒙𝟏,𝒙𝟓 

M
in
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u

m
 

 

-0.16549 -0.16212 -0.20519 -0.17987 

A
v

e
r
a

g
e 

 

0.005126 0.000255 0.00138 -0.0019 

S
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n
d
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r
d

 

d
e
v
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ti

o
n

 

 

0.053711 0.057545 0.060186 0.058719 

M
a

x
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u
m

 

 

0.163311 0.185158 0.180422 0.162974 

   𝒓𝒙𝟐,𝒙𝟑 𝒓𝒙𝟐,𝒙𝟒 𝒓𝒙𝟐,𝒙𝟓 

M
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u

m
 

  

-0.1755 -0.16357 -0.20547 

A
v

e
r
a

g
e 

  

0.000624 0.002144 0.00244 

S
ta

n
d

a
r
d

 

d
e
v

ia
ti

o
n

 

  

0.058468 0.058793 0.057729 

M
a

x
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u
m

 

  

0.20218 0.177522 0.266674 

    𝒓𝒙𝟑,𝒙𝟒 𝒓𝒙𝟑,𝒙𝟓 

M
in
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u

m
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a
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e 
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S
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n
d
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r
d

 

d
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v

ia
ti

o
n

 

   

0.061262 0.060788 

M
a

x
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u
m

 

   

0.186432 0.212014 

     𝒓𝒙𝟒,𝒙𝟓 

M
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u

m
 

 

   

-0.18529 

A
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e 
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Table A.12. Minimum, average, standard deviation, and 

maximum are calculated for each �̂�0, �̂�1, �̂�2, �̂�3, �̂�4, �̂�5, 
𝜃1, 𝜃2,and 𝜃3 derived from (a) 992 samples, and (b) 4 

samples that require more than the normal AR(2) to 

achieve the desired results. 
(a) 

  �̂�𝟎 �̂�𝟏 �̂�𝟐 �̂�𝟑 �̂�𝟒 �̂�𝟓 

M
in

im
u

m
 

499.9999977 -3E-10 

-3.6E-

10 

-3.9E-

10 -4E-10 

-6.2E-

10 

A
v

e
r
a

g
e 

499.9999998 

2.99E-

12 

1.37E-

12 

2.18E-

12 3E-12 

1.77E-

12 

S
ta

n
d

a
r
d

 

d
e
v
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n

 

5.51278E-07 

9.18E-

11 

9.74E-

11 

1.05E-

10 

1.14E-

10 

1.45E-

10 

M
a
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m

 

500.0000023 

2.94E-

10 

3.46E-

10 3.9E-10 

3.42E-

10 

4.96E-

10 

  �̂�𝟏 �̂�𝟐     

M
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u

m
 

1.997259 -1     

A
v
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r
a
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e 

1.997259 -1     

S
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n
d
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r
d

 

d
e
v
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o
n

 

2.67E-09 

2.58E-

09     

M
a

x
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u
m

 

1.997259 -1     

 

(b) 
  �̂�𝟎 �̂�𝟏 �̂�𝟐 �̂�𝟑 �̂�𝟒 �̂�𝟓 

M
in

im
u

m
 

503.9659 

-8.2E-

11 -2.2E-10 

-2.3E-

10 -2E-10 

-1.6E-

10 

A
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e
r
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g
e 
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11 
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10 
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11 
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10 
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m

 

505.1422 6.3E-11 -4.5E-12 
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12 
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11 
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10 

  𝜃1 𝜃2 𝜃3       

M
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m
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-
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n

 

4.31E-07 
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07 4.32E-07       

M
a
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m

 

2.997259 

-

2.99726 1       

 

Appendix B 

 
 

Figure B.1. An example of a telecommunication network 

(or system) where the customer is being "served" by 

device A where it (i.e. device A) depends on (or it is 

supported by) devices B1, B2,…,Bp. 

 

Time series forecasting techniques, such as ARIMA, 

Brown & Winters exponential smoothing, moving average, 

and simple regression, are utilized to forecast into the 
future for device B1 if the dotted lines (or links) in Figure 

B.1 are not available [1,17]. If they (i.e. the dotted lines or 

links) are available, before proceeding to forecast into the 

future for device A, the flow diagram in Figure 4 is 

utilized to forecast into the future for device B1 using 

measurements (or data) collected from devices C1, C2,…, 

and Cq.  
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