
International Journal of Engineering Trends and Technology (IJETT) - Volume 67 Issue 3- March 2019

ISSN: 2231 – 5381 http://www.ijettjournal.org Page 100

Compiler Design for Legal Document

TranslationIn Digital Government

Youssef Bassil
LACSC – Lebanese Association for Computational Sciences

Registered under No. 957, 2011, Beirut, Lebanon

Abstract

 One of the main purposes of a computer is

automation. In fact, automation is the technology by

which a manual task is performed with minimum or

zero human assistance. Over the years, automation

has proved to reduce operation cost and maintenance

time in addition to increase system productivity,

reliability, and performance. Today, most

computerized automation are done by a computer

program which is a set of instructions executed from

within the computer’s memory by the computer central

processing unit to control the computer's various

operations. This paper proposes a compiler program

that automates the validation and translation of input

documents written in the Arabic language into XML

output files that can be read by a computer. The input

document is by nature unstructured and in plain-text

as it is written by people manually; while, the

generated output is a structured machine-readable

XML file. The proposed compiler program is actually

a part of a bigger project related to digital government

and is meant to automate the processing and archiving

of juridical data and documents. In essence, the

proposed compiler program is composed of a scanner,

a parser, and a code generator. Experiments showed

that such automation practices could prove to be a

starting point for a future digital government platform

for the Lebanese government. As further research,

other types of juridical documents are to be

investigated, mainly those that require error detection

and correction.

Keywords - Automation, Compiler Design, Digital

Government, XML

I. INTRODUCTION

 Before the advent of computers, people used to do

manual work without any electronic assistance. With

time, operations became so huge so that it had to be

administered constantly by humans, leading to a

bureaucracy system that was laborious,

time-consuming, prone to errors, and very expensive.

As a result, the situation became epidemic and

something had to be done. The answer turned out to be

using the computer to automate manual processes and

tasks [1]. At first, the word "mechanized" became

common not until it was substituted by the more

accurate word "automation". In fact, automated

computer operations began in the late 1960's when

IBM introduced the groundbreaking line of its mini

computers and operating systems. One of the earliest

successful models introduced by IBM was the OS/360

which was a supervisory batch software that controls

system resources and delivers automatic transition

from one task to another [2]. Thus the name batch

processing was coined. The OS/360 compared to

modern OS was a simple primitive task scheduler that

could run limited batch jobs in sequence without any

capability of decision making whatsoever. It was kind

of a semi-automated system that still required human

labor involvement in a sense that it had to be manually

configured and managed by the operations staff. After

decades of requiring humans to carry out

labor-intensive tasks, software companies began

developing real and fully automated operation

software [3]. Many products were introduced to the

market including but not limited to intelligent and

complicated job scheduling, database management

software, recovery systems, backup services, and

computer aided design. This has led to a drastic

reduction in cost and an increase in productivity,

quality, and performance [4]. Basically, the backbone

of every computer operation automation is the

software or computer program. From a technical point

of view, a computer program is a set of electronic

instructions executed from within the computer’s

memory by the computer central processing unit CPU

[5]. The purpose of a computer program is to control

the functionalities of the computer allowing it to

perform miscellaneous tasks ranging from

mathematical computations to scientific operations,

accounting, data management, gaming, text editing,

audio, video, and image archiving, and Internet.

This paper proposes an automated software

with the purpose of automating the conversion of

unstructured plain-text documents into structured

XML files [6]. The documents contain legal content

mainly written in the Arabic language related to

juridical proceedings, decree laws, and legal

procedures. The core of the proposed software is a

compiler system, made up of a scanner, a parser, and a

code generator. The scanner is a finite automaton that

reads and interprets input textual data; the parser is a

context-free grammar device that validates the

structure of the input; and the code generator is an

output engine that produces XML construct code.

II. BACKGROUND

 Fundamentally, a compiler is a computer program

International Journal of Engineering Trends and Technology (IJETT) - Volume 67 Issue 3- March 2019

ISSN: 2231 – 5381 http://www.ijettjournal.org Page 101

that transforms a code written in a source language

into another code written in a target language.

Compilers are a type of automated translators that

convert instructions and data from a high-level form

into a machine-code form that can be read, processed,

and executed by a computer.

A compiler consists of five major building

blocks: The Preprocessor, the Scanner, the Parser, the

Semantic Analyzer, and the Code Generator [7].

 The Preprocessor: Its purpose is to reduce the

complexity of the input code to make the job

easier on the scanner. The preprocessor has many

tasks including removing annotations, getting rid

of extra white-lines and white-spaces, and

deleting unused symbols and notations.

 The Scanner: Its purpose is to tokenize the input

code and divide it into meaningful tokens such as

keywords and data values. The algorithm of the

scanner is built upon Finite-State machine (DFA)

[8] and Regular Expressions.

 The Parser: Its purpose is to detect syntax errors

by performing Syntax Checking against the

tokens generated by the scanner. The output is a

Parse-Tree known as Syntax-Tree. Syntax

Checking is about verifying that the arrangement

of tokens as received from the scanner are in the

correct order and comply with the grammar of the

source language.

 The Semantic Analyzer: Its purpose is to perform

Semantic Checking which consists of verifying

that the written code comply with the semantics of

the source language. Semantics are the different

rules that define restrictions on the syntax.

 The Code Generator: Its purpose is to convert the

parse-tree generated by the parser into a target

code. The target code can be either Assembly

code, Machine code, Bytes code, or even another

high-level language such as XML or JSON.

III. THE PROPOSED SOLUTION

 This paper proposes a compiler software that

automates the validation and translation of an input

document written in a high-level language, namely the

Arabic language, into an output document that can be

read by a computer. The input document is an Arabic

unstructured plain-text originally written manually by

people. On the other hand, the generated output

document is a structured XML-based file that can be

manipulated by computers. The proposed compiler is

actually a part of a bigger project related to digital

government and it is meant to automate the processing

and archiving of juridical data and documents. In

essence, the proposed compiler system is composed of

a scanner, a parser, and a code generator. Figure 1

depicts the major components of the proposed

compiler.

Fig 1: Proposed Compiler System

A. The Scanner

The scanner is mostly based on Regular

Expressions and DFAs short for Deterministic

Finite-State Automata. Figure 2 and Figure 3 are

samples of Finite Automata that the scanner uses to

detect and tokenize numeric and string values

respectively.

Fig 2: Finite Automata for NUMERIC type values

Fig 3: Finite Automata for STRING type values

Following are the regular expressions that are

used by the scanner to match pattern of characters in

the input file:
NUM = letter* digit digit*

STRING = letter letter*

digit = 9 | .. | 0

letter = (أ | ..| ي)| (0 | .. | 9)| ، | . | - | : | / | 4

TYPE = هرسوم | قرار| قانوى

RAQM = رقن

INNA = إى

BINAA = بناء على | وبناء على | وبعد هوافقة | وبعد الاطلاع | ونظرا

HAYSOU = وحٍث أى | وبوا أى | وبعد أى| نظرا

YAKOUR = ٌقرر ها ٌلً| ٌقرر ها ٌأتً | ٌرسن ها ٌلً | ٌرسن ها ٌأتً

NADA = هادة | الوادة

FI = ًف

IMDAA = الإهضاء| إهضاء

B. The Parser

The parser is built upon a formal grammar. It

is based on a CFG or Context-Free Grammar [9] as it

provides powerful features including but not limited to

recursion, cascading, and nesting. Below is the CFG of

the proposed parser:
document statement title issuer ref-list just-list

International Journal of Engineering Trends and Technology (IJETT) - Volume 67 Issue 3- March 2019

ISSN: 2231 – 5381 http://www.ijettjournal.org Page 102

acknowledge article-list loc-date sig-list

statement TYPE RAQM NUM

titleSTRING

issuerINNA STRING ،

ref-list ref ref-list | ref

ref BINNA STRING ، | BINNA STRING .

just-list just just-list | λ

just HAYSOU STRING ، | HAYSOU STRING .

acknowledge YAKOUR :

article-list article article-list | article

article MADA article-num: article-title article-content

article-num NUM | STRING

article-title STRING | λ

article-content STRING

loc-date STRING FI STRING | STRING STRING

sig-list sig-type1 | sig-type2-list

sig-type1 IMDAA : STRING STRING | λ

sig-type2-list sig-type2 sig-type2-list | sig-type2

sig-type2 STRING IMDAA : STRING

C. The Code Generator

The code generator is the final component of

the compiler whose task is to generate the final XML

document based on the parse-tree received from the

parser. Below are the generation rules of the proposed

code generator:
Synthesized Attributes:

- s used for static source code

- c represents the content of XML tags

Inherited Attributes:

- s' symmetric to s

Rule 1: document statement title issuer ref-list just-list

acknowledge article-list loc-date sig-list

s'(document) = " using system; using system.IO; class

program {static void main () {string XML output = \ " "

s(document) = " \"; File. Write All Text (@ \" c \\", XML

output); }}"

c(document) = c(statement) U c(title) U c(issuer) U

c(ref-list) U c(just-list) U

c(acknowledge) U c(article-list) U c(loc-date) U

c(sign-list)

Rule 2: statement TYPE RAQM NUM

s' (TYPE) = s' (statement) = "<type>"

c (TYPE) = '' \'' + TYPE + \'' ''

s (TYPE) = "</type>"

s' (RAQM) = ''<content Number>''

c (RAQM) = ''\'' + NUM + \"

s (RAQM) = ''</content Number>''

c (statement) = c (RAQM) U c (TYPE)

s (statement) = s (RAQM)

Rule 3: title STRING

s' (title) = "<title>"

c (title) = c (STRING) = '' \ '' + STRING + \'' ''

s (title) = "</title>"

Rule 4: issuer INNA STRING ،

s' (issuer) = "<issuer>"

c (issuer) = c (STRING) = '' \ '' + STRING + \'' ''

s (issuer) = "</issuer>"

Rule 5: ref-list ref ref-list

s' (ref) = s' (ref-list0)

s (ref-list1) = s (ref-list0)

c (ref-list0) = c (ref) U c (ref-list 1)

s' (ref) = s' (ref-list0) = ''<references>''

s (ref-list0) = s (ref-list1) = ''</references>''

ref-list ref

s' (ref) = s' (ref-list)

s (ref-list) = c (ref)

s (ref-list) = s (ref)

s' (ref) = s' (ref-list) = ''<references>''

s (ref-list) = s (ref) = ''</references>''

Rule 6: ref BINAA STRING ،

s' (ref) = ''<references>''

s (ref) = ''</references>''

c (ref) = c (STRING) = ''\'' + STRING + \'' ''

ref BINAA STRING .

s' (ref) = ''<references>''

s (ref) = ''</references>''

c (ref) = c (STRING) = ''\'' + STRING + \'' ''

Rule 7: just-list just just-list

S' (just) = S' (just-list0) = ''<justifications>''

S (just-list0) = S (just-list1) = ''</justifications>''

s' (just) = s' (just-list0)

s (just-list1) = s (just-list0)

c (just-list0) = c (just) U c (just-list1)

Rule 8: just HAYSOU STRING ،

s' (just) = ''<justifications>''

s (just) = ''</justifications>''

c (just) = c (STRING) = '' \ '' + STRING + \'' ''

Rule 9: acknowledge YAKOUR :

s' (acknowledge) = '' "

c (acknowledge) = '' "

s (acknowledge) = '' "

Rule 10: article-list article article –list

S' (article) = S' (article-list0) = ''<articles>''

S (article-list0) = S (article-list1) = ''</articles>''

s' (article) = s' (article-list0)

s (article-list1) = s (article-list0)

c (article-list0) = c (article) U c (article-list1)

Rule 11: article MADA article-num : article-title

article-content

S' (MADA) = s' (article) = ''<articles>''

s (article) = S (MADA) = ''</articles>''

c (article) = c (article-num) U c (article-title) U c

(article-content)

Rule 12: article-num NUM

s' (article-num) = ''< article Number >''

International Journal of Engineering Trends and Technology (IJETT) - Volume 67 Issue 3- March 2019

ISSN: 2231 – 5381 http://www.ijettjournal.org Page 103

s (article-num) = ''< /articles Number >''

c (article-num) = c (NUM) = "\" + NUM + \" "

Rule 13: article-title STRING

s' (article-title) = ''<articleTitle>''

s (article-title) = ''</articleTitle>''

c (article-title) = c (STRING) = "\" + STRING + \" "

Rule 14: article-content STRING

s' (article-content) = ''<articleContent>''

s (article-content) = ''</articleContent>''

c (article-content) = "\" + STRING + \" " = c (STRING)

Rule 15: article-title STRING

s' (article-num) = ''<articleNumber>''

s (article-num) = ''</articleNumber>''

c (article-num) = c (STRING) = "\" + STRING + \" "

Rule 16: article-title λ

s' (article-title) = '' ''

s (article-title) = ''<articleTitle/>''

c (article-title) = c (λ) = " "

Rule 17:loc-date STRING FI STRING

s' (STRING1) = s' (loc-date) = ''<issueLocation>''

c (STRING1) = "\" + STRING 1 + \" "

s (STRING1) = ''</issueLocation>''

s' (STRING2) = ''<issueDate>''

c (STRING2) = "\" + STRING2 + \" "

s (loc-date) = s (STRING2) = ''</issue Date>''

c (loc-date) = c (STRING1) U c (STRING2)

Rule 18: sig-list sigType1

S' (sigType1) = S' (sig-list) = ''<signatures>''

s' (sigType1) = s' (sig-list)

c (sig-list) = c (sig Type1)

s (sig-list) = s (sig Type1)

S (sig-list) = S (sig Type1) = ''</signatures>''

sig-list sigType2-list

S' (sigType2-list) = S' (sig-list) = ''<signatures>''

s' (sigType2-list) = s' (sig-list)

c (sig-list2-list) = c (sig-list)

s (sig-list) = s (sigType2-list)

S (sig-list) = S (sigType2-list) = ''</signatures>''

Rule 19: sigType1 IMDAA : STRING STRING

s' (IMDAA) = s' (sigType1) = ''<signature>''

s' (STRING1) = ''<name>''

c (STRING1) = "\" + STRING1 + \" "

s (STRING1) = ''</name>''

s' (STRING2) = ''<position>''

c (STRING2) = "\" + STRING2 + \" "

s (STRING2) = ''</position>''

s (sigType1) = s (IMDAA) = ''</signature>''

c (sigType1) = c (STRING1) U c (STRING2)

Rule 20: sigType2-list sigType2 sigType2-list

s' (sigType2) = s' (sigType2-list)

s' (sigType2-list0) = s' (sigType2-list1)

c (sigType2-list0) = c (sigType2) U c (sigType2-list1)

sigType2-list sigType2

s' (sigType2) = s' (sigType2-list)

c (sigType2-list) = c (sigType2)

s (sigType2-list) = s (sigType2)

Rule 21:sigType 2 STRING IMDAA : STRING

s' (STRING1) = s' (sigType2) = ''<signature>''

s' (STRING1) = ''<position>''

c (STRING1) = "\" + STRING1 + \""

s (STRING1) = ''</position>''

s' (STRING2) = ''<name>''

c (STRING2) = "\" + STRING2 + \""

s (STRING2) = ''</name>''

s (sigType2) = ''</signature>''

IV. EXPERIMENTS & CONCLUSIONS

 In the experiments, a sample unstructured input

document is fed to the developed compiler system. It is

mainly a decree issued in the Arabic language that

dates back to year 2018. Figure 4 depicts the input

document; while, Figure 5 shows the output code

generated by the compiler after translating the input

document. Obviously, the output is a structured XML

file conveying the data originally presented in the

input file. All in all, the proposed system delivers

automation capabilities for converting hand-written

juridical files into digital XML documents that can be

managed by modern computers. As the original decree

file became in digital format, it can now be stored and

archived on computers. Moreover, being structured, it

can be easily and systematically digitally manipulated

including searching, editing, extending, and printing.

This automation could prove to be a starting point for a

future digital government platform for the Lebanese

government.

Fig 4: Input Document

International Journal of Engineering Trends and Technology (IJETT) - Volume 67 Issue 3- March 2019

ISSN: 2231 – 5381 http://www.ijettjournal.org Page 104

Fig 5: Output XML Document

V. FUTURE WORK

 As further research, other types of juridical

documents are to be investigated, mainly those that

require error detection and correction prior to

converting them into digital formats. Furthermore,

other output data formats are to be studied, for instance

JSON and YAML. Finally and in an independent

endeavor, other automation operations are to be

researched and developed basically transaction

services in E-Governments.

ACKNOWLEDGMENT

 This research was funded by the Lebanese

Association for Computational Sciences (LACSC),

Beirut, Lebanon, under the “Arabic Programming

Language Research Project – APLRP2019”.

REFERENCES

[1] Georges Ifrah, "The Universal History of Computing: From

the Abacus to the Quantum Computer", New York: John

Wiley & Sons, ISBN 9780471396710, 2001

[2] Padegs, A.,"System/360 and Beyond", IBM Journal of

Research and Development IBM, vol. 25 no. 5, pp. 377–390,

1981

[3] Gray, George T., Smith, Ronald Q., "Sperry Rand's

Third-Generation Computers 1964-1980". IEEE Annals of

the History of Computing, IEEE Computer Society, vol. 23

no. 1, pp.3–16, 2001

[4] Amdahl, G. M., Blaauw, G. A., Brooks, F. P., "Architecture

of the IBM System/360". IBM Journal of Research and

Development, vol. 8 no. 2, pp.87–101, 1964

[5] John L. Hennessy, David A. Patterson, David Goldberg,

"Computer architecture: a quantitative approach", Morgan

Kaufmann, ISBN 9781558607248, 2003

[6] Fennell, Philip, "Extremes of XML", XML London Pub,

ISBN 9780992647100, 2013

[7] Kenneth C. Louden, "Compiler Construction: Principles and

Practice", PWS Publishing Company, 1997, ISBN

0534939724

[8] Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey D.,

"Introduction to Automata Theory, Languages, and

Computation (2 ed.)", Addison Wesley, 2001, ISBN

0201441241.

[9] Chomsky, Noam, "Three models for the description of

language", Information Theory, IEEE Transactions, vol. 2,

no. 3, pp. 113–124, 1956.

