Conceptual Design of a Hybrid Power System for a Spraying UAV Applied to Family Farming in Arequipa – Perú

Conceptual Design of a Hybrid Power System for a Spraying UAV Applied to Family Farming in Arequipa – Perú

  IJETT-book-cover           
  
© 2023 by IJETT Journal
Volume-71 Issue-4
Year of Publication : 2023
Author : Lizbeth Leonor Paredes Aguilar, Roberts Zapana Flores, Jaser Valencia Osorio, Juan Carlos Zúñiga Torres
DOI : 10.14445/22315381/IJETT-V71I4P230

How to Cite?

Lizbeth Leonor Paredes Aguilar, Roberts Zapana Flores, Jaser Valencia Osorio, Juan Carlos Zúñiga Torres, "Conceptual Design of a Hybrid Power System for a Spraying UAV Applied to Family Farming in Arequipa – Perú, " International Journal of Engineering Trends and Technology, vol. 71, no. 4, pp. 344-353, 2023. Crossref, https://doi.org/10.14445/22315381/IJETT-V71I4P230

Abstract
The effective use of UAVs in agriculture, especially crop-spraying drones, requires a more extended flight range. Batteries currently limit a drone’s flight time since purely electric drones tend to consume more electrical energy with their higher payload capacity. For this reason, the present project proposes the improvement of an Agras MG-1P octocopter drone batteries’ load supply through a load system consisting of a double-cylinder VVRC RCGF 70cc combustion engine and a KDE10218XF-105 brushless motor as a generator. The brushless motor operates as a generator since it weighs less than an alternator or generator. The weight is significant, and the octocopter can stay longer in the air. This project aims to increase the Agra MG-1P Octocopter UAVs flight time by more than two hours, as well as its payload, having a 9 l variable load of fumigant and a 4.4 kg load of added components, which are enough for spraying operations or FAP (Farm Agroforestry Planning) in Peru.

Keywords
Hybrid power system, Agriculture spraying drone, Octocopter flight time, Fumigation using drone.

References
[1] Nikos Alexandratos, and Jelle Bruinsma, “World Agriculture towards 2030/2050: the 2012 Revision,” Agricultural and Food Policy, 2012.
[CrossRef] [Google Scholar] [Publisher Link]
[2] Patricia Gutti, Yamila Kababe, and Fernando Peirano “Ten Witness Cases of the Purposes and Factors that Sustain and Promote Family Farming in South America,” Revista Latinoamericana de Estudios Rurales, vol. 4, no. 7, pp. 1–23, 2019.
[Google Scholar] [Publisher Link]
[3] J. F. Herrera Moreno et al., “Exposure Risk Factors During the Handling and use of Pesticides in Urban Sprayers,” Revista Internacional de Contaminacion Ambiental, vol. 34, pp. 33–44, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[4] Vitali Bernardi et al., “Union Strategies against Job Insecurity in the Banana Sector of Los Ríos, Ecuador,” Labor and Capitalism: Social Relations and Collisions, 2019.
[Online]. Available: https://ri.conicet.gov.ar/handle/11336/126444
[5] H. E. Maletta, “Small Family Farming in Peru: A Micro-Regionalized Typology,” Lima, 2017.
[Google Scholar] [Publisher Link]
[6] Juan Diego Sender Uribe, and Gómez Chuchón, Santiago Rolfi, “Impacto del uso de drones para la fumigación de cultivos de arándanos en el departamento de la Libertad - Perú,” Universidad Peruana de Ciencias Aplicadas (UPC), 2017.
[Google Scholar] [Publisher Link]
[7] Navia Zamora, Jose Rolando, and Baque Mite, Leonardo Arturo, “Optimization of the Agricultural Fumigation Process Through the Use of Drones,” Quevedo-UTEQ, Los Ríos – Ecuador, 2019.
[Google Scholar] [Publisher Link]
[8] Britta Palm, “Pesticide use in Rice Cultivation in Tarapoto, Peru,” SLU, Department of Environmental Assessment, 2007.
[Google Scholar] [Publisher Link]
[9] Sebastian Ramos Cosi, Wilmer Vergaray Mendez, and Laberiano Andrade-Arenas, “Design of a Spraying Module for Backpacks through Automation in the Tambo Valley Region - Arequipa,” International Journal of Engineering Trends and Technology, vol. 70, no. 7, pp. 455–461, 2022.
[CrossRef] [Publisher Link]
[10] Bruno S. Faiçal et al., “An Adaptive Approach for UAV-Based Pesticide Spraying in Dynamic Environments,” Computers and Electronics in Agriculture, vol. 138, pp. 210–223, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[11] Matheus Hentschke et al., “Evaluation of Altitude Sensors for a Crop Spraying Drone,” Drones, vol. 2, no. 3, pp. 25, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[12] Nikitha M V, Sunil M P, and Hariprasad S A., “Autonomous Quad Copter for Agricultural Land Surveillance,” International Journal of Advanced Research in Engineering and Technology, vol. 12, no. 1, pp. 892–901, 2021.
[CrossRef] [Google Scholar]
[13] Eduardo López González et al., “Increasing Energy Efficiency and Autonomy in Unmanned Vehicles Through the use of Hybrid Energy Systems With Fuel Cells,” 2016.
[Google Scholar]
[14] Higinio González-Jorge et al., “Unmanned Aerial Systems for Civil Applications: A Review,” Drones, vol. 1, no. 2, pp. 2, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[15] Gastón A. Addati, and Gabriel Pérez Lance, “Introduction to UAV's, Drones or UAVs for civil use,” CEMA Working Papers: Serie Documentos de Trabajo, vol. 551, 2014.
[Google Scholar] [Publisher Link]
[16] J. Alberto, and M. Delgado, “The Use of Commercial Drones as Terrorist Vectors,” bie3: Boletín IEEE, no 9, pp. 925–960, 2018, Accessed: Mar. 05, 2023.
[Google Scholar] [Publisher Link]
[17] Bharat Rao, Ashwin Goutham Gopi, and Romana Maione “The Societal Impact of Commercial Drones,” Technology in Society, vol. 45, pp. 83–90, 2016.
[CrossRef] [Google Scholar] [Publisher Link]
[18] J. J. Díaz García-Cervigón, and J. J. Díaz García-Cervigón, “Study of Vegetation Indices from Aerial Images Taken from Uas/Rpas and Applications of these to Precision Agriculture,” Universidad Complutense de Madrid, 2015.
[Google Scholar] [Publisher Link]
[19] U. R. Mogili, and B. B. V. L. Deepak, “Review on Application of Drone Systems in Precision Agriculture,” Procedia Computer Science, vol. 133, pp. 502–509, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[20] R. I. Valdés et al., “Modelado Y Simulación De Una Batería De Ion-Litio Comercial Multicelda,” Seminário Anual De Automática, Electrónica Industrial e Instrumentación, 2012. [Online]. Available: https://www.researchgate.net/publication/234588217_MODELADO_Y_SIMULACION_DE_UNA_BATERIA_DE_ION-LITIO_COMERCIAL_MULTICELDA.
[21] Xiaoya Wang et al., “Structure Evolution and Thermal Stability of High-Energy- Density Li-Ion Battery Cathode Li 2 VO 2 F,” Journal of the Electrochemical Society, vol. 164, no. 7, pp. A1552–A1558, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[22] T. C. Madueme and R. U. Abonyi, “Design of a Hybrid Solar/Diesel Ups Supply For Low Power Applications,” International Journal of Engineering Trends and Technology, vol. 67, no. 7, pp. 132–139, 2019.
[CrossRef] [Google Scholar] [Publisher Link]
[23] Ye Xie et al., “Review of Hybrid Electric Powered Aircraft, Its Conceptual Design and Energy Management Methodologies,” Chinese Journal of Aeronautics, vol. 34, no. 4, pp. 432–450, 2021.
[CrossRef] [Google Scholar] [Publisher Link]
[24] Stepan Riss, “Development of a Hybrid Power Unit for Unmanned Aerial Vehicles,” Master Thesis, Czech Technical University in Prague, 2017.
[Google Scholar] [Publisher Link]
[25] E. A. Llanes Cedeño, J. B. Carguachi-Caizatoa, and J. C. Rocha-Hoyos, “Energy and Exergy Evaluation in a 1.6L Otto Cycle Internal Combustion Engine,” Enfoque UTE, vol. 9, no. 4, pp. 221–232, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[26] R. Glassock et al., “Design, Modelling and Measurement of a Hybrid Powerplant for Unmanned Aerial Systems,” Australian Journal of Mechanical Engineering, , vol. 6, no. 2, pp. 69–78, 2008.
[CrossRef] [Google Scholar] [Publisher Link]
[27] Lee, T., C. Ribeiro, and M. Mendoza. "Designing High-Performance and Power Efficient 3-Phase Brushless Dc Motor Control Systems," Micrel Inovation Throught Technology, 2014.
[Google Scholar] [Publisher Link]
[28] D. Van Niekerk, M. Case, and D. V Nicolae, “Brushless Direct Current Motor Efficiency Characterization,” 2015 Intl Aegean Conference on Electrical Machines & Power Electronics (ACEMP), 2015 International Conference on Optimization of Electrical & Electronic Equipment (OPTIM) & 2015 International Symposium on Advanced Electromechanical Motion Systems (ELECTROMOTION), pp. 226–231, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[29] Vikram Puri, Anand Nayyar, and Linesh Raja, “Agriculture Drones: A Modern Breakthrough in Precision Agriculture,” Journal of Statistics and Management Systems, vol. 20, no. 4, pp. 507–518, 2017.
[CrossRef] [Google Scholar] [Publisher Link]
[30] Claudia Benavente Cardenas et al., “Evaluation of the Development of Peri-Urban Agriculture and Integral Management Proposal in the District of Cayma, Arequipa, Peru,” Idesia (Arica), vol. 36, no. 3, pp. 53–61, 2018.
[CrossRef] [Google Scholar] [Publisher Link]
[31] BCRP, AREQUIPA: Síntesis de Actividad Económica Junio 2020, Arequipa, 2020. [Online]. Available: https://www.bcrp.gob.pe/docs/sobre-el-bcrp/folleto/folleto-institucional.pdf.
[32] Shilpa Kedari et al., "Real Time Wireless Communication between Quadcopter and Android in Agriculture Field – A Review," SSRG International Journal of Computer Science and Engineering, vol. 2, no. 12, pp. 15-18, 2015.
[CrossRef] [Publisher Link]
[33] G. Basso, “Proposal to Supply Power to a Multirotor Drone through an Internal Combustion Engine,” Universidade de Caxias do Sul, 2015.
[Google Scholar] [Publisher Link]
[34] DJI, MG-1P - DJI. [Online]. Available: https://www.dji.com/mg-1p
[35] Jakob Andreasson et al., Electric Motor Design For Aviation, 2018. [Online]. Available: https://odr.chalmers.se/server/api/core/bitstreams/a1b1e9a6-c1c7-4e29-b0dc-588e294690a9/content.
[36] Magin Lapuerta et al., “Study of the Effect of Altitude on the Behavior of Internal Combustion Engines. Part 1: Operation” Technological Information, vol. 17, no. 5, pp. 21–30, 2006.
[CrossRef] [Google Scholar] [Publisher Link]
[37] Jose Miralles et al., “Effect of Compression Ratio on the Performance of Internal Combustion Engines at Different Altitudes,” Technological information, vol. 26, no. 4, pp. 63–74, 2015.
[CrossRef] [Google Scholar] [Publisher Link]
[38] Ana Pozo Ruz, Convertidores conmutados de potencia: test de autoevaluación, Marcombo, 2021.
[39] Sergio Moyano Díaz, “Diseño y Construcción de un Quadcopter,” Bachelor Thesis, Universitat Politècnica de Catalunya, 2014.
[Google Scholar] [Publisher Link]
[40] J. Lastra Nistal, “Design of a Low-Cost Programmable Drone,” Universidad De Cantabria, 2017.
[Publisher Link]
[41] Ruslan Baitlessov, Aitbek Myrzakhmet, and Kuanysh Sharipov “Designing and Building a Hybrid (Electric/Ic) UAV,” Nazarbayev University School of Engineering and Digital Sciences, 2017.
[Google Scholar] [Publisher Link]
[42] S. Selvaganapathy, and A. Ilangumaran, “Design of Quadcopter for Aerial View and Organ Transportation Using Drone Technology,” Asian Journal of Applied Science and Technology, vol. 1, no. 3, pp. 311–315, 2017.
[Google Scholar] [Publisher Link]
[43] María José Ruiz Jiménez et al., Matemáticas I. Editex, 2019.
[Publisher Link]
[44] Payri González, and Francisco, Motores De Dombustión Interna Alternativos, Editorial Universitat Politècnica De València, 2011.
[Google Scholar] [Publisher Link]
[45] A. Leyensetter, and G. Würtemberger, “Tecnología De Los Oficios Metalúrgicos,” 1987.
[Google Scholar]
[46] Katsuhiro Okamoto et al., “Changes in Evaporation Rate and Vapor Pressure of Gasoline with Progress of Evaporation,” Fire Safety Journal, vol. 44, no. 5, pp. 756–763, 2009.
[CrossRef] [Google Scholar] [Publisher Link]
[47] K. Shaw, “Electric Flight Rules Of Thumb,” 2004. [Online]. Available: http://www.stefanv.com/rcstuff/qf200407.html
[48] P. Regente Pacheco, “Small Export Agriculture and the Contract Farming Model in Arequipa, ” Arequipa, 2007.
[Publisher Link]