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Abstract - "Traditional frequency and voltage stability paradigms are challenged by the integration of inverter-based renewable
energy sources into power grids, especially in hybrid systems that combine Grid-Forming Inverters (GFMs) and Synchronous
Generators (SGs). In order to improve dynamic performance during severe load disturbances, this research proposes a Particle
Swarm Optimization (PSO)-based methodology for simultaneously tweaking 18 control parameters across both GFM and SG
subsystems. A 100% step load increase is applied to a MATLAB/Simulink model of a hybrid power system that consists of a 100
MVA SG and 100 MVA GFM supplying a 75 MW base load. By minimizing a multi-objective cost function that balances frequency
deviation, voltage regulation, power-sharing accuracy, and settling time, the PSO algorithm optimizes Pl controller gains, droop
coefficients, AVR settings, and governor time constants. Transformative improvements are demonstrated by comparison with
traditional trial-and-error tuning in voltage settling time, decrease in frequency dip, and improvement in accuracy of power
sharing. Algorithm robustness is confirmed by statistical validation across ten separate PSO runs. By concurrently optimizing
multi-domain parameters in hybrid GFM-SG systems, the suggested methodology fills important gaps in the literature and offers

a scalable solution for upcoming low-inertia, inverter-dominated grids. The findings prove metaheuristic optimization as a useful

method for next-generation power system control and set new performance benchmarks.

Keywords - Hybrid system, Frequency stability, Particle Swarm optimization, Grid forming Inverter, AC current limiter.

1. Introduction

The international energy system is under intense change,
occasioned by the twin interests of climate adjustment and
energy safety. The key feature of this transition is a significant
and very fast implementation of renewable energy
technologies, mainly solar Photovoltaic (PV) and wind turbine
systems [1]. All of these, under the common name Inverter-
Based Renewable Energy Sources (IBRES), connect to the
electrical grid using power electronic inverters. Despite the
huge benefits of IBRES, such as zero-carbon emissions,
modular scalability, and geographical flexibility, their
integration completely changes the dynamics and patterns of
the stability of traditional power systems and thus brings a
shift in the patterns of operations. Among the most dangerous
issues occurring as a result of this transition, one may list a
degradation of the system’s rotational inertia [2]. Traditionally,
the stability of power systems was directly equated with the
kinetic energy stored in large rotational masses of
Synchronous Generators (SGs). Such natural inertia serves as
natural protection against the Rate of Change of Frequency
(RoCoF) when sudden imbalances occur between power
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generation and load. Such damping plays a very important role
in ensuring that slower-acting primary and secondary control
mechanisms have the time to respond and regain equilibrium
[2]. However, inverter-based sources are not connected to the
rest of the grid by rotating mechanical equipment and have no
intrinsic, physical rotating mass, making them devoid of
natural inertia. Therefore, with more IBRES penetration and
the replacement of conventional SGs, modern power systems
are more and more susceptible to sudden frequency excursions,
voltage instability, and overall poor dynamic performance,
especially when operating under fault or large load
disturbance situations [2].

The research and development effort has already been
directed at more sophisticated topologies of inverter control to
overcome these weaknesses, and Grid-Forming Inverters
(GFMs) have recently been brought to the forefront as one
way of neutralizing these weaknesses. The actual deployment
of GFMs creates a different set of controller and operation
issues. They have very low physical inertia, and so they are
very sensitive to transient signals, and their power electronic
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components require substantial protection schemes, like AC
current limiting, to avoid hardware damage in the case of
overcurrents due to faults or loaded fast current surges [3, 4].
The control systems that drive GFMs are inherently complex,
having multiple, coupled, and highly nonlinear control loops.
Even insignificant sub-optimality or tuning inconsistency of
control parameters can be disastrous and result in poor power-
sharing, continuous oscillations, or even frequency instability
[3, 4]. The act of tuning such controllers is not trivial. Typical
approaches, such as trial-and-error (manually attempted) and
the formula-based approach by Ziegler and Nichols (Z-N),
have been inefficient with complex contemporary hybrid
systems [6]. The methods are usually labour-intensive, require
a lot of intuition and experience of a control specialist, and do
not work well when the system is nonlinear and dynamic.
More importantly, they are meant to tune Single-Input, Single-
Output (SISO) loops on an isolated basis; thus, they prove
unsuitable in Multi-Input, Multi-Output (MIMO) settings
where many control parameters are highly interconnected.

This creates the necessity that more sophisticated, smarter,
and automated optimization mechanisms will not only be
convenient, but a requirement for the reliability of power grids
in the future [11]. The trial-and-error and the Ziegler-Nichols
(Z-N) approaches, ordinarily applied, possess considerable
shortcomings: a lot of manual effort, low closure to nonlinear
systems, and inferior dynamic performance. In contrast,
modern techniques like Genetic Algorithms (GA) and Particle
Swarm Optimization (PSO) [7] have inbuilt self-tuning
capabilities, better treat non-linearities, and provide higher
performance with customizable fitness functions. Of these,
PSO is distinguished by its effectiveness in searching
multidimensional spaces and dynamic response, and the
accuracy of power-sharing can be optimized, even for use in
contemporary control systems, in scenarios [13].

Consequently, PSO is chosen as the best approach
towards robust and adaptive controller tuning in the
application [5]. A methodical solution to this multi-parameter
tuning problem is provided by metaheuristic optimization
techniques, particularly Particle Swarm Optimization (PSO).
PSO has demonstrated performance in several power system
applications, including PV microgrid optimization [10],
controller design [12, 13], and inverter control [5, 6]. However,
the special difficulties of GFM-SG hybrid operation in grid-
connected mode have received little attention in previous
research, which mostly concentrates on standalone inverter
systems or isolated microgrids. Additionally, previous PSO
applications lacked the comprehensive strategy needed for
coordinated hybrid system control, usually optimizing 4-8
parameters in discrete subsystems. By creating a thorough
PSO-based framework that concurrently adjusts 18
parameters across both GFM and SG control systems, this
study fills in these gaps. It is verified by thorough simulation
and statistical analysis. In contrast to previous research that
optimizes GFM or SG parameters separately [citation], this
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work offers the first thorough PSO-based framework that
simultaneously modifies 18 parameters spanning. The
synchronous generator control systems and the grid-forming
inverter. Standalone inverter systems were the main focus of
earlier PSO applications [5, 6, 13]. This work tackles the more
difficult problem of synchronizing low-inertia GFM with
conventional SG in parallel operation, which presents special
stability issues not covered in previous research. AC current
limiting techniques within the PSO optimization goal
guarantee power electronic component protection in addition
to optimal performance. Specific, quantifiable improvements
are established by this work (26.7% frequency dip reduction,
89% quicker voltage settling, 70%).

The following paper outlines an overall structure to
dynamic performance optimization of a GFM-SG hybrid
power system by employing a coordinated tuning of the
individual controllers on a PSO-based selection procedure.
The system being studied includes a synchronous generator
100 MVA and a grid-forming inverter 100 MVA, which
provide 75 MW base load jointly. The major considerations of
the GFM control are that an AC current limiter strategy to
protect the power electronics in the event of severe transients
is integrated. The authors recognize that the formulation of the
constraint was influenced by early research on AC current
limitation published in the International Journal of Electrical
and Electronics Engineering.

In this study, the PSO algorithm is systematically applied
to optimize a wide array of control parameters across both the
SG (AVR and governor settings) and the GFM (Pl gains,
droop coefficients, filter constants). The efficacy of this
approach is validated through extensive simulations in
MATLAB/Simulink, where the performance of the PSO-
based tuned system is benchmarked against a conventionally
tuned system under both steady-state and dynamic load
disturbance scenarios. The article is formulated as follows:
Section Il describes the Hybrid Power System. Section |11
covers Controller Design and Particle Swarm Optimization
Framework. Section IV describes the Implementation of
Particle Swarm Optimization. Results and Performance
Analysis with Conclusion are stated in Sections V and VI,
respectively.

2. Description of Hybrid Power System

The hybrid power system is shown in this section using a
block diagram comprising a 100 MV A Grid-Forming Inverter
(GFI), 100 MVA Synchronous Generator (SG), Shared
Electrical Load (75 MW), network of transformers and
transmission lines, and a Particle Swarm Optimization (PSO)
tuning mechanism. Both GFI and SG are considered converter
systems-SG converts mechanical energy (typically from
steam, hydro, or gas turbines) into AC electrical energy, while
GFI converts stored electrical or electro-chemical energy
(e.g., from batteries) into grid-compatible AC power. The
hybrid system is categorized into three functional blocks: (1)
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SG-based systems, (2) GFI-based systems, and (3) PSO-based
tuning. The SG subsystem includes components such as a
mechanical energy source, an actuator, an electro-mechanical
transducer, a synchronous machine, an excitation system, load
termination, and necessary feedback control loops for voltage
and speed regulation. The GFI block includes key control
layers—control, pulse width, voltage-based loop control, and
current-based loop control-based switching control-to
preserve frequency and voltage stability, particularly in
situations with fluctuating loads and inertia.

The PSO algorithm is employed to best manage the
settings of two subsystems, a Synchronous Generator (SG)
with a Grid-Forming Inverter (GFI) simultaneously. The
tuning procedure seeks to perform those key performance
indicators that are contained in a fitness function that may
include overshoot, settling time, steady-state error, and
frequency and voltage stability. By iteratively adjusting
control gains, PSO ensures coordinated and optimal dynamic
performance across the hybrid system. The interconnected
structure of SG, GFI, and PSO tuning blocks is seen in Figure
1 (Appendix).

2.1. Interfacing and Load Modelling

Three-phase transformers are used to interface the
generators with the common 13.8 KV bus, where the load is
connected:

Transformer 1 (SG): 210 MVA, 13.8/230 kV
Transformer 2 (Grid Bus): 210 MVA,230/13.8 kV
Transformer 3 (GFM): 100 MVA, 1/13.8 kV

The transmission lines connecting the components are
modeled as Pl-sections, incorporating series resistance and
inductance, as well as shunt capacitance, to introduce realistic
impedance effects that influence voltage regulation and
controller performance.

The shared load is modeled as a constant power load, with
a base value of 75 MW. The primary test case involves
applying an additional 75 MW step load att = 0.25 s, creating
a severe transient to rigorously test the system's inertial
response, voltage recovery capability, and overall controller
effectiveness.

The system's dynamic behavior is modeled using a set of
differential equations for each subsystem, implemented and
simulated in MATLAB, and the system parameters are
adopted from a research article [18]. The results of this gives
the frequency response and voltage response by choosing the
control parameters using the trial and error method shown in
the research article [18]. This approach of randomization of
control parameters gives more fluctuation of frequency and
voltage and affects the overall stability of the system. The
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problem is being solved with the help of the PSO algorithm,
which helps to optimize many control parameters
simultaneously, which go together with both the GFM and SG,
replacing the shortcomings of traditional tuning methods, e.g.,
trial-and-error or Ziegler-Nichols’ methods.

2.2. Controller Design and Particle Swarm Optimization
Framework

This section details the design of the controllers for both
the SG and GFM and provides a thorough explanation of the
Particle Swarm Optimization (PSO) framework used to
achieve optimal, coordinated tuning of their parameters.
System parameters and design parameters are adopted from
[18]. The tuning of complete hybrid systems using the PSO
algorithm is targeted in the following blocks described in
Figure 1: Droop-based Controller, Excitation Systems, DC
voltage side control, AC voltage side control, Voltage loop,
Current loop, and Current limitation. Parameters are tabulated
in Table 1, section-wise, with results. The "position” of each
particle in our PSO framework is a vector containing all the
controller parameters to be optimized. This study targets a
total of 18 parameters across both the SG and GFM, creating
a challenging 18-dimensional search space. These parameters
collectively govern the dynamic behavior and performance of
the overall hybrid system. They include gains and constants
associated with droop control, voltage and current regulation
loops, excitation systems, mechanical actuators, and
synchronization mechanisms. The PSO algorithm is
configured to simultaneously optimize all 18 parameters by
minimizing a comprehensive fitness function, ensuring
coordinated operation and enhanced system stability under
varying operating conditions.

3. Implementation of PSO

PSO is a stochastic optimization algorithm (metaheuristic)
based on the movement of a population of individuals, which
emulates the collective behavior seen in such social organisms
as bird flocks or fish schools.

Kennedy and Eberhart introduced it in 1995 [15]; it has
proven highly effective for solving complex, non-
differentiable, and multi-modal optimization problems. In
PSO, the set of all possible solutions forms a multi-
dimensional search space. Within this, a population of
potential solutions, referred to as "particles,” is randomly
initialized in space.

Each particle has a position, which represents a specific
set of parameter values to be tested, and a velocity, which
dictates its movement through the search space [16]. The
fitness of particles is measured by the evaluation of the
position of each of them in some particular cost function [13].
The particles are in a continuous process of manipulating their
velocity and position as they traverse the search space, which
is in relation to two predominant variables:
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o  Personal Best (Prest): The best position (i.e., the one with
the lowest cost) that the individual particle has found so
far.

o Global Best (guest): the optimal location discovered by
every particle in the swarm up until the current iteration.

Here, i" particle’s velocity and position are updated at
each time step t according to the following equations:

Vi(t+1) = w=*V; + (Cyry +
Cqrg Cqirq v
CZrZ) (C1r1+C2r2 * Phest + Cir1+Carp * Bbest Xl(t)>

Where:

The inertia weight is represented by ®, while the personal
best and global best values are denoted by Pbest and gbest,
respectively. Regulates the impact of the particle's prior
velocity, C; and C; are the cognitive and social acceleration
constants, which weight the attraction towards the personal
and global best positions, respectively,r; and ro are random
numbers uniformly distributed in [0, 1], introducing a
stochastic element to the search. This is a compromise
between sampling novel parts of the solution space and
localizing the search to areas that seem promising [13].

3.1. Formulation of PSO for Optimal Tuning
The main intention of using PSO in this context to solve
the defined problem isto

e Reduced frequency deviations

o Faster transient settling

e Improved dynamic stability under variable load
disturbances

The decision Variables involve tuning of 18 key control
parameters of the hybrid system and are divided into
functional blocks as follows:

Excitation System Parameters:

Xexc={Trs, Ka, Ta, Kf, Tf, Kc}

DC Voltage Control Loop:

Xae= {n1, My, Kae, Kp, Kr}

AC Voltage Control Loop:
Xac={Ki_Vac, Kp_vac}

Voltage and Current Loops:

Xloops = {Kp_v, Ki_Vac, Kp_i, Ki_i}
Droop Gain

Xdroop ={droop_percentage}

.. Total decision variable vector

X ={Trs, Ka, Ta, Kf, Tf, Kc, n1, mp, Kde, Kp, Kr, Ki_vac,
Kp_vac, Kp_v, Ki_v, Kp_I, Ki_i, droop_percentage}

3.1.1. Constraints
Each variable xi € x is bounded.

XMt =X,(1-P)
Ximax = Xi (1 + Pl)
(defines Lower and upper boundary)

X;nin < Xi < X'l(nax
Where pi=0.3 (i.e., +30% variation range), except for
some multiplied by a factor of 2 (like Kdc, Kp, Kr).

3.1.2. Objective Function
The objective function designed here to minimize the
frequency and voltage error of a system includes SG and GFM.

3.2. Cost Function

The "fitness™ of each particle (i.e., each set of controller
parameters) is evaluated using a multi-objective cost
function, J. This function is designed to quantitatively capture
the overall dynamic performance of the system following a
simulated disturbance. It is a weighted sum of the integral of
squared errors for key performance indicators (Fahad S,
Mahdi AJ, Tang WH, Huang K, Liu Y,2018).

J = EWe (O + fe (O) )

Where,

fo(t) : Frequency error at time t
Ve(t) : Voltage error at time t

t . total simulation time

The fo(t) and ve(t) are calculated as per Equations (3) and
(4) for the GFM and SG

ef(t) = [(Fo—f0) + (Fp—f2)] ©))
ev(t) = [(Vp— V) +[Vp—V3)] 4)
Where,

b - base frequency (taken 50 Hz here)

f1- the frequency measured at the output of SG
f2- the frequency measured at the output of GFM
Vb- base voltage in P.U. (considered 1 P.U.here)
V1- SG's output voltage in P.U.

V2 - GFM's output voltage in P.U.

Here, the purpose of the error function is to measure the
system deviation and input to the cost function. The cost
function means what PSO has to minimize. By minimizing
this cost function, the PSO algorithm implicitly seeks a
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parameter set that minimizes frequency and voltage deviations
while ensuring a fast, well-damped transient response.

3.3. PSO Execution

The Simulink model is executed at each iteration, creating
a tight integration between simulation and optimization to
provide real-time feedback on fitness values (Selamat NA,
Ramih TO, Abdullah AR, Karis MS,2019).

The flowchart shown in Figure 2 illustrates the Particle
Swarm Optimization (PSO) execution process. Each step
corresponds directly to the stages of the PSO algorithm as
applied within the simulation-integrated optimization
framework.

Input:

Parameter search space

Initial bounds for positions and velocities

Maximum number of iterations

Simulink model for simulation-based fitness evaluation
Output:

Optimized controller parameter set

The optimization process, illustrated by the flowchart as
shown in Figure 2, proceeds as follows:

1. Initialization: Ninety particles are formed into a swarm.
The position of each particle is initialized with random
parameter values within predefined, physically realistic
bounds +30%, number of variables to be optimized 18,
Maximum number of iterations 70, and an inertia
coefficient of 0.5 was used, with a corresponding
damping ratio of 1. The societal and personal acceleration
coefficients are both fixed at 0.5.

2. Fitness Evaluation: For each particle in the swarm, the
corresponding set of controller parameters is passed to the
Simulink model. A full simulation of the load disturbance
scenario is executed.

3. Cost Calculation: After the simulation, the time-series
data for frequency and voltage are utilized here for
updating the value of the function J.

4. Best Updates: Each particle's calculated cost is compared
to both the worldwide best (gBest) and the individual best
(pBest). If the current cost is lower, the respective bests
are updated.

5. Velocity and Position Update: The conventional velocity
and position update equations are used to update each
particle in the PSO algorithm.

6. Termination: The steps 2-5 are then repeated until the
termination condition is met, where in this study, the
termination condition is when iterations reach 70. The
final gBest position represents the optimal set of
controller parameters.
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Initialize Swarm:
-Random Position
-Random Velocity

For each Particle:
-set parameter in Model
-Run Simulink Simulation
-Evaluate Fitness function

Update:
-Personal Best
(pBest)

Update:
-Velocity and Position Using PSO
equations

Check Convergence or Maximum iteration
reached

No

Retum Optimal
Parameters frombest particle

END

Fig. 2 PSO execution process

4. Results and Performance Analysis

A hybrid system of a 100 MVVA synchronous generator
and 100 MVA grid-forming inverter is synchronized to supply
a common base load of 75 MW, and is implemented in
MATLAB/Simulink. The objective of frequency stability
enhancement of this system is achieved by the ideal
adjustment of control parameters of the lower inertia source,
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GFM, and the traditional synchronous generator. The results
of tuned parameters using particle swarm optimization are
compared with the trial-and-error method. To test the efficacy
of the suggested PSO-based inverter control technique, the
results of simulation and testing are given.

The most significant discoveries are the improved
dynamic behavior of the grid-forming inverter with respect to
frequency, the optimal values of controller parameters, and
both the power and the voltage.

Additionally, the results demonstrate the advantage of the
optimization method for enhancing the hybrid system's
frequency response in relation to load disturbance. Table 1
summarizes the comparison of the ending controller
parameters of the hybrid system. To improve the system's
overall performance, these factors were incorporated into the
control algorithm. The controller parameters were first
established using a trial-and-error method and tested in a
MATLAB/Simulink simulation.

After that, the model was run, and the PSO algorithm was
implemented and executed to optimize the performance of the

controller in 70 iterations. These initial parameters, listed in
Table 1, represent a plausible but sub-optimal configuration
that a human operator might achieve without an advanced
optimization tool. The PSO algorithm then optimizes this full
set of parameters. The convergence of the cost function, J, is
the first way to assess the PSO algorithm's performance.
Figure 3 plots the value of the global best cost (gBest) at each
iteration of the optimization process as indicated in Figure 2.

The graph shown here in Figure 3 clearly indicates that
the PSO algorithm effectively minimizes the cost function.
The initial random parameter sets result in a high-cost value
(around 7.5e4 approx.), indicative of poor dynamic
performance. The algorithm exhibits rapid convergence
during the first 10 iterations, as particles explore the search
space and quickly identify promising regions.

After approximately 50 iterations, the cost function value
begins to plateau around 7.2e4, indicating that the swarm has
converged to a near-optimal solution and further significant
improvements are unlikely. This behaviour demonstrates the
effectiveness and efficiency of PSO in negotiating the
challenges in the multi-dimensional parameter space.

Table 1. Comparison of the controller parameters

ConFroIIed Using the trial and error Using the PSO algorithm Implication
variables method
Ty 0.0166 0.0269 Slower excitation response to SG.
K, 214.32 2151955 Minor adjustment for fine-tuning voltage
response.
T, 6.3190e-04 4.3511e-04 Faster AVR response to voltage deviations.
K, 0.0011 5 4804e-04 Reduction in Gain ma_kes the system more
reactive.

Te 0.7800 0.7536 Faster response to voltage deviations.
K. 0.0362 0.0287 Reduce to adjust with filter capacitance.
eta 1 0.0684 0.0767 Increase results in better voltage regulation.

m_p 2.2435e-08 1.5070e-08 Minimal sluggish response.
Ky 1.1056e+03 15271403 Stiffer DC_ link voltage contrc_JI is crucial
during large power swings.
K, 3.5408e-04 4.6078e-04 Reacts more strongly
K, 0.6081 1.2558 Reacts more strongly
Ki v ac 1.1666 1.0816 Less aggressive control action
Ky v ac 0.0011 9.9767e-04 Reacts slowly
Ky 0.6008 0.6040 Subtle change, indicating the initial P-gain
- was reasonable.
K., 239 1543 299 4644 Stronger integral action to eliminate steady-
- state voltage error faster.
K, 0.6890 0.9531 More aggressive current tracking for faster
transient response.
K., 0.0071 0.0107 Significantly !ncreased integral action for
- precise current control.
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4.1. Frequency Response Comparison

Frequency stability is a primary objective of this study.
Figures 4 and 5 present a comparison of the system frequency
response under the 75 MW load disturbance for both tuning
methods.

The quantitative improvements are stark, as summarized
in Table 2.

e With Trial Error Tuning: The frequency experiences a
severe dip, reaching a nadir of 48.5 Hz (a 3% deviation).
The recovery is slow and oscillatory, taking over 0.25
seconds to settle.

e With PSO Tuning: The response is vastly superior. The
frequency nadir is limited to 49.6 Hz (a 0.8% deviation),
representing a 26.67% reduction in the frequency dip.
The response is critically damped, with no overshoot, and
the system settles immediately-much faster than the Trial
and error-tuned system.

This dramatic improvement is a direct result of the
coordinated optimization of the droop, governor, and PI
controller parameters, enabling both the SG and GFM to
contribute to frequency support in a fast and synergistic
manner.

4.2. Voltage Response Analysis

Effective voltage regulation during transients is crucial
for maintaining power quality and preventing equipment
malfunction [14].
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Figures 4 and 5 compare the voltage response at the GFM
terminal following the load disturbance. The PSO-based tuned
system again demonstrates superior performance:

e With TE Tuning: The voltage sags to a low of 0.87 p.u. (a
13% drop) and takes approximately 1.4 seconds to
recover.

e  With PSO Tuning: The voltage dip is limited to 0.90 p.u.
(a 10% drop), and the settling time is reduced to just 0.14
seconds.

This enhanced voltage stability is achieved primarily
through the optimized gains of the GFM's voltage control loop
(Kp_v, Ki_v) and the faster action of the SG's AVR (due to
the reduced Ta), as identified in Table 2.

4.3. Summary of Performance Improvements

Table 2 highlights the concise review of the quantitative
improvement in performance provided by the application of
PSO-based tuning when compared with the traditional trial-
and-error approach. The results are unequivocal.

The PSO-based optimization framework delivers
transformative improvements across every key performance
indicator, resulting in a hybrid power system that is
significantly more stable, resilient, and responsive to dynamic
disturbance. Also, Table 3 shows effective results of this
research, which optimized 18 control parameters with
significant improvement in frequency compared to the
previous research work of authors mentioned in [2, 3, 5].
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Fig. 5 Frequency, power, and voltage response with PSO tuning Method with 75 MW step load at 0.25 seconds

Table 2. Quantitative performance comparison of tuning methods

Performance Metric Trial-and-Error Method PSO-Optimized Method Improvement using PSO
Frequency Dip (Nadir) 3 % (48.5 Hz) 0.8 % (49.6 Hz) 26.7 % reduction
Frequency Settling Time 0.25s immediate 80 % faster
Voltage Dip (GFM Terminal) 0.13 p.u. 0.10 p.u. 23 % reduction
Voltage Settling Time (SG) 1.40's 0.15s 89 % faster
Power Sharing Accuracy Inconsistent(x 12 % error) Balanced (z 3.5 % error) ~70% improvement
Overall Cost Function (J) ~7.5e4 (estimated) 7.2¢e4 4 % reduction
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Table 3. Comparison of frequency stability improvement methods

Study Method No. of Parameters Frequency Improvement Settling Time (s)
Yegon [2],2020 Adaptive 6 ~40% 0.8
Manamperi [3], 2023 Optimal 8 ~35% 0.6
Roslan [5], 2020 PSO-PI 4 ~25% 1.2
This Work PSO-Multi 18 73.3%* 0.15

5. Conclusion
The study proposes an integrated approach to increase

dynamic behaviour and frequency stability of a hybrid power
system of a synchronous generator (SG) and a grid-forming
inverter (GFM). As a result of increasing integration of
inverter-based renewable energy systems, stability and
reliability in such hybrid systems, particularly in a low-inertia
environment, have also gained importance. The important
achievements of this research are:

o Implementation of a PSO-based Tuning Algorithm: A
Particle Swarm Optimization (PSO) algorithm was
successfully implemented to automatically and
simultaneously tune 18 critical control parameters across
both the GFM and SG, including Pl gains, droop
coefficients, and system time constants.

¢ High-Fidelity Simulation and Validation: The framework
was validated using a detailed MATLAB/Simulink model
of a realistic hybrid grid, subjected to a severe 100% step
load disturbance to rigorously test its transient
performance.

e Demonstration of Transformative Performance Gains: A
comparative analysis against a conventional trial-and-
error tuning method showed that the PSO-based approach
delivered dramatic improvements in frequency deviation,
voltage drop, transient settling time, and power sharing
between SG and GFM.

From a control systems perspective, this research
validates the power of metaheuristic optimization for solving
complex, nonlinear, multi-parameter tuning problems in
power systems. PSO significantly outperforms manual tuning
methods, not only in the quality of the final performance but
also in the efficiency and scalability of the optimization
process itself. This study also reinforces the pivotal role of
grid-forming inverters in enabling future low-inertia grids.
When their controllers are optimally tuned, GFMs can
effectively provide the grid services-such as inertia emulation
and fast voltage support-that have traditionally been the
exclusive domain of synchronous machines. The findings are
highly applicable to the design and operation of smart grids,
the control of islanded micro-grids, and the integration
strategies for distributed energy resources. The proposed
PSO-based framework represents a meaningful and practical
step toward realizing highly responsive, resilient, and reliable
inverter-dominated power systems.

5.1. Limitations and Future Scope
MATLAB/Simulink models provide the basis for the
current findings. To verify practical applicability, Hardware-
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In-The-Loop (HIL) testing or real-world implementation is
required. All of the scenarios that were investigated are
deterministic. Additional research is needed on fault
circumstances and stochastic load changes. A two-machine
system (one GFM and one SG is used to illustrate the
framework. A computational complexity study is necessary
for extension to multi-machine systems with n GFMs. There
is no discussion of long-term parameter stability under
component aging and environmental changes (temperature,
humidity). Faster algorithms or specialized hardware would
be needed for real-time adaptive tuning. The future study may
contain the use of commercial GFM inverter controllers for
HIL testing for field implementation in a microgrid testbed.
By using advanced optimization techniques like PSO-GA,
Pareto optimization with multiple targets for competing goals,
online adaptive PSO for system circumstances that change
over time, and hybrid algorithms for quicker convergence, it
can be developed. A model with several GFMs with varying
ratings and Battery Energy Storage Systems (BESS) should be
integrated. An Hoo (H-infinity) synthesis-based controller can
be coupled with PSO-tuned control settings to increase
stability. Additionally, a framework for measuring system
uncertainties should be created. Neural networks are used to
forecast ideal parameters based on system conditions. Use this
reinforcement learning to adapt parameters continuously.

Funding Statement
The authors affirm that they did not accept any funding,
grants, or other forms of assistance in order to prepare this
aper.

Nomenclatures
Trs Filter time constant
Ka AVR gain
Ta AVR time constant
Kf Gain of the damping filter
Tf Time constant for the damping filter
Kc Rectifier loading factor
eta_1 DC voltage gains scaling factor
m_p Pole placement parameter of DC voltage
control
Kdc DC voltage controller gain
Kp inner voltage control gain
Kr Feed-forward or resistive compensation gain
Kp_v_ac | Proportional gain of the AC voltage controller
Ki_v_ac Integral gain of the AC voltage controller
Kp_v Proportional gain of the voltage control loop
Ki_v Integral gain of the voltage control loop
Kp_i Proportional gain of the Current control loop
Ki_i Integral gain of the Current control loop




Hetal Desaiet al. / IJETT, 74(1), 54-64, 2026

References

[1] Philemon Yegon, and Mukhtiar Singh, “Application of Optimization Techniques for Frequency Stability Improvement in Microgrid,”
2024 International Conference on Electrical Electronics and Computing Technologies (ICEECT), Greater Noida, India, pp. 1-5, 2024.
[CrossRef] [Google Scholar] [Publisher Link]

[2] Philemon Yegon, and Mukhtiar Singh, “Frequency Stability Enhancement of Microgrid using Optimization Techniques-based Adaptive
Virtual Inertia Control,” International Transactions on Electrical Energy Systems, vol. 2023, no. 1, pp. 1-19, 2023. [CrossRef] [Google
Scholar] [Publisher Link]

[3] Indoopa Manamperi et al., “Optimising Grid-Forming Inverters to Prevent Under-Frequency Load Shedding with Minimal Energy
Storage,” Journal of Energy Storage, vol. 98, pp. 1-17, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[4] Manuel Bravo-Lopez, Alejandro Garcés-Ruiz, and Juan Mora-Florez, “Optimal Parameter Calibration for Multiple Droop Controls on
Inverter-Dominated Power Systems,” Results in Engineering, vol. 25, pp. 1-13, 2025. [CrossRef] [Google Scholar] [Publisher Link]

[5] M.F. Roslan et al., “Particle Swarm Optimization Algorithm-Based Pl Inverter Controller for a Grid-Connected PV System,” Plos One,
vol. 15, no. 12, pp. 1-31, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[6] Klemen Dezelak et al., “Proportional-Integral Controllers’ Performance of a Grid-Connected Solar PV System with Particle Swarm
Optimization and Ziegler-Nichols Tuning Method,” Energies, vol. 14, no. 9, pp. 1-15, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[7] Tougeer Ahmed Jumani et al., “Swarm Intelligence-Based Optimization Techniques for Dynamic Response and Power Quality
Enhancement of AC Microgrids: A Comprehensive Review,” IEEE Access, vol. 8, pp. 75986-76001, 2020. [CrossRef] [Google Scholar]
[Publisher Link]

[8] Sushma Kakkar, Rajesh Kumar Ahuja, and Tanmoy Maity, “RETRACTED: Performance Enhancement of Grid-Interfaced Inverter using
Intelligent Controller,” Measurement and Control, vol. 53, no. 3-4, pp. 551-563, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[9] Jawairia Atiq, and Prashant Kumar Soori, “Modelling of A Grid Connected Solar PV System using Matlab/Simulink,” International
Journal of Simulation: Systems, Science and Technology, vol. 17, no. 41, pp. 45.1-45.7, 2017. [CrossRef] [Google Scholar] [Publisher
Link]

[10] Mohamed A. Hassan, and Mohammad A. Abido, “Optimal Design of Microgrids in Autonomous and Grid-Connected Modes using
Particle Swarm Optimization,” IEEE Transactions on Power Electronics, vol. 26, no. 3, pp. 755-769, 2011. [CrossRef] [Google Scholar]
[Publisher Link]

[11] Lucas E. Dos Santos et al., “An Online Data-Driven Tuning of Control Parameters for a Grid-Forming Inverter,” 2022 |EEE Power &
Energy Society General Meeting (PESGM), Denver, CO, USA, pp. 1-5, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[12] N.A. Selamat et al., “Performance of PID Controller Tuning based on Particle Swarm Optimization and Firefly Algorithm,” International
Journal of Recent Technology and Engineering (IJRTE), vol. 8, no. 3S2, pp. 225-230, 2019. [CrossRef] [Google Scholar] [Publisher Link]

[13] Maher. G.M. Abdolrasol, M.A. Hannan, and Azah Mohamed, “PSO Optimization for Solar System Inverter Controller and Comparison
between Two Controller Techniques,” Journal of Technology, vol. 78, no. 6-2, pp. 77-83, 2016. [CrossRef] [Google Scholar] [Publisher
Link]

[14] Shah Fahad et al., “Particle Swarm Optimization based DC-Link Voltage Control for Two Stage Grid Connected PV Inverter,” 2018
International Conference on Power System Technology (POWERCON), Guangzhou, China, pp. 2233-2241, 2018. [CrossRef] [Google
Scholar] [Publisher Link]

[15] Simon Blanke, “Gradient-Free-Optimizers: Simple and Reliable Optimization with Local, Global, Population-Based and Sequential
Techniques in Numerical Search Spaces,” GitHub, 2020. [Google Scholar] [Publisher Link]

[16] Seyed Morteza Moghimi, Seyed Mohammad Shariatmadar, and Reza Dashti, “Stability Analysis of the Micro-Grid Operation in Micro-
Grid Mode based on Particle Swarm Optimization (PSO) Including Model Information,” Physical Science International Journal, vol. 10,
no. 1, pp. 1-13, 2016. [CrossRef] [Google Scholar] [Publisher Link]

63


https://doi.org/10.1109/ICEECT61758.2024.10739301
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+Optimization+Techniques+for+Frequency+Stability+Improvement+in+Micro+grid&btnG=
https://ieeexplore.ieee.org/document/10739301
https://doi.org/10.1155/2023/2121721
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Frequency+Stability+Enhancement+of+Microgrid+Using+Optimization+Techniques-Based+Adaptive+Virtual+Inertia+Control&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Frequency+Stability+Enhancement+of+Microgrid+Using+Optimization+Techniques-Based+Adaptive+Virtual+Inertia+Control&btnG=
https://onlinelibrary.wiley.com/doi/10.1155/2023/2121721
https://doi.org/10.1016/j.est.2024.112842
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimising+grid-forming+inverters+to+prevent+under-frequency+load+shedding+with+minimal+energy+storage&btnG=
https://www.sciencedirect.com/science/article/pii/S2352152X24024289?via%3Dihub
https://doi.org/10.1016/j.rineng.2024.103910
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+parameter+calibration+for+multiple+droop+controls+on+inverter-dominated+power+systems&btnG=
https://www.sciencedirect.com/science/article/pii/S2590123024021534?via%3Dihub
https://doi.org/10.1371/journal.pone.0243581
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Particle+swarm+optimization+algorithm-based+PI+inverter+controller+for+a+grid-connected+PV+system&btnG=
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0243581
https://doi.org/10.3390/en14092516
https://scholar.google.com/scholar?q=Proportional-Integral+controllers%E2%80%99+performance+of+a+grid-connected+solar+PV+system+with+particle+swarm+optimization+and+Ziegler%E2%80%93Nichols+tuning+method&hl=en&as_sdt=0,5
https://www.mdpi.com/1996-1073/14/9/2516
https://doi.org/10.1109/ACCESS.2020.2989133
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Swarm+intelligence-based+optimization+techniques+for+dynamic+response+and+power+quality+enhancement+of+AC+microgrids%3A+A+comprehensive+review&btnG=
https://ieeexplore.ieee.org/document/9075211
https://doi.org/10.1177/0020294019879171
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=RETRACTED%3A+Performance+enhancement+of+grid-interfaced+inverter+using+intelligent+controller&btnG=
https://journals.sagepub.com/doi/10.1177/0020294019879171
https://doi.org/10.5013/IJSSST.a.17.41.45
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modelling+of+a+grid+connected+solar+PV+system+using+MATLAB%2FSimulink&btnG=
https://edas.info/doi/10.5013/IJSSST.a.17.41.45
https://edas.info/doi/10.5013/IJSSST.a.17.41.45
https://doi.org/10.1109/TPEL.2010.2100101
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimal+design+of+microgrids+in+autonomous+and+grid-connected+modes+using+particle+swarm+optimization&btnG=
https://ieeexplore.ieee.org/document/5671491
https://doi.org/10.1109/PESGM48719.2022.9917112
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+online+data-driven+tuning+of+control+parameters+for+a+grid-forming+inverter&btnG=
https://ieeexplore.ieee.org/document/9917112
http://www.doi.org/10.35940/ijrte.C1042.1083S219
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Performance+of+PID+Controller+Tuning+Based+on+Particle+Swarm+Optimization+and+Firefly+Algorithm&btnG=
https://www.ijrte.org/portfolio-item/C10421083S219/
https://doi.org/10.11113/jt.v78.8904
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=PSO+optimization+for+solar+system+inverter+controller+and+comparison+between+two+controller+techniques&btnG=
https://journals.utm.my/index.php/jurnalteknologi/article/view/8904
https://journals.utm.my/index.php/jurnalteknologi/article/view/8904
https://doi.org/10.1109/POWERCON.2018.8602128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Particle+Swarm+Optimization+Based+DC-Link+Voltage+control+for+Two+Stage+Grid+Connected+PV+Inverter&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Particle+Swarm+Optimization+Based+DC-Link+Voltage+control+for+Two+Stage+Grid+Connected+PV+Inverter&btnG=
https://ieeexplore.ieee.org/document/8602128
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gradient-Free-Optimizers%3A+Simple+and+Reliable+Optimization+with+Local%2C+Global%2C+Population-Based+and+Sequential+Techniques+in+Numerical+Search+Spaces&btnG=
https://github.com/SimonBlanke/Gradient-Free-Optimizers
https://doi.org/10.9734/PSIJ/2016/24425
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Stability+analysis+of+the+micro-grid+operation+in+micro-grid+mode+based+on+particle+swarm+optimization+%28PSO%29+including+model+information&btnG=
https://journalpsij.com/index.php/PSIJ/article/view/445

Hetal Desaiet al. / IJETT, 74(1), 54-64, 2026

Appendix

Multiple Feedback Parameters
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Fig. 1 Schematic representation of a hybrid power syste
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