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Abstract - "Traditional frequency and voltage stability paradigms are challenged by the integration of inverter-based renewable 

energy sources into power grids, especially in hybrid systems that combine Grid-Forming Inverters (GFMs) and Synchronous 

Generators (SGs). In order to improve dynamic performance during severe load disturbances, this research proposes a Particle 

Swarm Optimization (PSO)-based methodology for simultaneously tweaking 18 control parameters across both GFM and SG 

subsystems. A 100% step load increase is applied to a MATLAB/Simulink model of a hybrid power system that consists of a 100 

MVA SG and 100 MVA GFM supplying a 75 MW base load. By minimizing a multi-objective cost function that balances frequency 

deviation, voltage regulation, power-sharing accuracy, and settling time, the PSO algorithm optimizes PI controller gains, droop 

coefficients, AVR settings, and governor time constants. Transformative improvements are demonstrated by comparison with 

traditional trial-and-error tuning in voltage settling time, decrease in frequency dip, and improvement in accuracy of power 

sharing. Algorithm robustness is confirmed by statistical validation across ten separate PSO runs. By concurrently optimizing 

multi-domain parameters in hybrid GFM-SG systems, the suggested methodology fills important gaps in the literature and offers 

a scalable solution for upcoming low-inertia, inverter-dominated grids. The findings prove metaheuristic optimization as a useful 

method for next-generation power system control and set new performance benchmarks. 

Keywords - Hybrid system, Frequency stability, Particle Swarm optimization, Grid forming Inverter, AC current limiter. 

1. Introduction  
The international energy system is under intense change, 

occasioned by the twin interests of climate adjustment and 

energy safety. The key feature of this transition is a significant 

and very fast implementation of renewable energy 

technologies, mainly solar Photovoltaic (PV) and wind turbine 

systems [1]. All of these, under the common name Inverter-

Based Renewable Energy Sources (IBRES), connect to the 

electrical grid using power electronic inverters. Despite the 

huge benefits of IBRES, such as zero-carbon emissions, 

modular scalability, and geographical flexibility, their 

integration completely changes the dynamics and patterns of 

the stability of traditional power systems and thus brings a 

shift in the patterns of operations. Among the most dangerous 

issues occurring as a result of this transition, one may list a 

degradation of the system’s rotational inertia [2]. Traditionally, 

the stability of power systems was directly equated with the 

kinetic energy stored in large rotational masses of 

Synchronous Generators (SGs). Such natural inertia serves as 

natural protection against the Rate of Change of Frequency 

(RoCoF) when sudden imbalances occur between power 

generation and load. Such damping plays a very important role 

in ensuring that slower-acting primary and secondary control 

mechanisms have the time to respond and regain equilibrium 

[2]. However, inverter-based sources are not connected to the 

rest of the grid by rotating mechanical equipment and have no 

intrinsic, physical rotating mass, making them devoid of 

natural inertia. Therefore, with more IBRES penetration and 

the replacement of conventional SGs, modern power systems 

are more and more susceptible to sudden frequency excursions, 

voltage instability, and overall poor dynamic performance, 

especially when operating under fault or large load 

disturbance situations [2].  

The research and development effort has already been 

directed at more sophisticated topologies of inverter control to 

overcome these weaknesses, and Grid-Forming Inverters 

(GFMs) have recently been brought to the forefront as one 

way of neutralizing these weaknesses. The actual deployment 

of GFMs creates a different set of controller and operation 

issues. They have very low physical inertia, and so they are 

very sensitive to transient signals, and their power electronic 

https://www.internationaljournalssrg.org/
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components require substantial protection schemes, like AC 

current limiting, to avoid hardware damage in the case of 

overcurrents due to faults or loaded fast current surges [3, 4]. 

The control systems that drive GFMs are inherently complex, 

having multiple, coupled, and highly nonlinear control loops. 

Even insignificant sub-optimality or tuning inconsistency of 

control parameters can be disastrous and result in poor power-

sharing, continuous oscillations, or even frequency instability 

[3, 4]. The act of tuning such controllers is not trivial. Typical 

approaches, such as trial-and-error (manually attempted) and 

the formula-based approach by Ziegler and Nichols (Z-N), 

have been inefficient with complex contemporary hybrid 

systems [6]. The methods are usually labour-intensive, require 

a lot of intuition and experience of a control specialist, and do 

not work well when the system is nonlinear and dynamic. 

More importantly, they are meant to tune Single-Input, Single-

Output (SISO) loops on an isolated basis; thus, they prove 

unsuitable in Multi-Input, Multi-Output (MIMO) settings 

where many control parameters are highly interconnected.  

This creates the necessity that more sophisticated, smarter, 

and automated optimization mechanisms will not only be 

convenient, but a requirement for the reliability of power grids 

in the future [11]. The trial-and-error and the Ziegler-Nichols 

(Z-N) approaches, ordinarily applied, possess considerable 

shortcomings: a lot of manual effort, low closure to nonlinear 

systems, and inferior dynamic performance. In contrast, 

modern techniques like Genetic Algorithms (GA) and Particle 

Swarm Optimization (PSO) [7] have inbuilt self-tuning 

capabilities, better treat non-linearities, and provide higher 

performance with customizable fitness functions. Of these, 

PSO is distinguished by its effectiveness in searching 

multidimensional spaces and dynamic response, and the 

accuracy of power-sharing can be optimized, even for use in 

contemporary control systems, in scenarios [13].  

Consequently, PSO is chosen as the best approach 

towards robust and adaptive controller tuning in the 

application [5]. A methodical solution to this multi-parameter 

tuning problem is provided by metaheuristic optimization 

techniques, particularly Particle Swarm Optimization (PSO). 

PSO has demonstrated performance in several power system 

applications, including PV microgrid optimization [10], 

controller design [12, 13], and inverter control [5, 6]. However, 

the special difficulties of GFM-SG hybrid operation in grid-

connected mode have received little attention in previous 

research, which mostly concentrates on standalone inverter 

systems or isolated microgrids. Additionally, previous PSO 

applications lacked the comprehensive strategy needed for 

coordinated hybrid system control, usually optimizing 4-8 

parameters in discrete subsystems. By creating a thorough 

PSO-based framework that concurrently adjusts 18 

parameters across both GFM and SG control systems, this 

study fills in these gaps. It is verified by thorough simulation 

and statistical analysis. In contrast to previous research that 

optimizes GFM or SG parameters separately [citation], this 

work offers the first thorough PSO-based framework that 

simultaneously modifies 18 parameters spanning. The 

synchronous generator control systems and the grid-forming 

inverter. Standalone inverter systems were the main focus of 

earlier PSO applications [5, 6, 13]. This work tackles the more 

difficult problem of synchronizing low-inertia GFM with 

conventional SG in parallel operation, which presents special 

stability issues not covered in previous research. AC current 

limiting techniques within the PSO optimization goal 

guarantee power electronic component protection in addition 

to optimal performance. Specific, quantifiable improvements 

are established by this work (26.7% frequency dip reduction, 

89% quicker voltage settling, 70%). 

The following paper outlines an overall structure to 

dynamic performance optimization of a GFM-SG hybrid 

power system by employing a coordinated tuning of the 

individual controllers on a PSO-based selection procedure. 

The system being studied includes a synchronous generator 

100 MVA and a grid-forming inverter 100 MVA, which 

provide 75 MW base load jointly. The major considerations of 

the GFM control are that an AC current limiter strategy to 

protect the power electronics in the event of severe transients 

is integrated. The authors recognize that the formulation of the 

constraint was influenced by early research on AC current 

limitation published in the International Journal of Electrical 

and Electronics Engineering.  

In this study, the PSO algorithm is systematically applied 

to optimize a wide array of control parameters across both the 

SG (AVR and governor settings) and the GFM (PI gains, 

droop coefficients, filter constants). The efficacy of this 

approach is validated through extensive simulations in 

MATLAB/Simulink, where the performance of the PSO-

based tuned system is benchmarked against a conventionally 

tuned system under both steady-state and dynamic load 

disturbance scenarios. The article is formulated as follows: 

Section II describes the Hybrid Power System. Section III 

covers Controller Design and Particle Swarm Optimization 

Framework. Section IV describes the Implementation of 

Particle Swarm Optimization. Results and Performance 

Analysis with Conclusion are stated in Sections V and VI, 

respectively. 

2. Description of Hybrid Power System 
The hybrid power system is shown in this section using a 

block diagram comprising a 100 MVA Grid-Forming Inverter 

(GFI), 100 MVA Synchronous Generator (SG), Shared 

Electrical Load (75 MW), network of transformers and 

transmission lines, and a Particle Swarm Optimization (PSO) 

tuning mechanism. Both GFI and SG are considered converter 

systems-SG converts mechanical energy (typically from 

steam, hydro, or gas turbines) into AC electrical energy, while 

GFI converts stored electrical or electro-chemical energy 

(e.g., from batteries) into grid-compatible AC power. The 

hybrid system is categorized into three functional blocks: (1) 
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SG-based systems, (2) GFI-based systems, and (3) PSO-based 

tuning. The SG subsystem includes components such as a 

mechanical energy source, an actuator, an electro-mechanical 

transducer, a synchronous machine, an excitation system, load 

termination, and necessary feedback control loops for voltage 

and speed regulation. The GFI block includes key control 

layers—control, pulse width, voltage-based loop control, and 

current-based loop control-based switching control-to 

preserve frequency and voltage stability, particularly in 

situations with fluctuating loads and inertia.  

The PSO algorithm is employed to best manage the 

settings of two subsystems, a Synchronous Generator (SG) 

with a Grid-Forming Inverter (GFI) simultaneously. The 

tuning procedure seeks to perform those key performance 

indicators that are contained in a fitness function that may 

include overshoot, settling time, steady-state error, and 

frequency and voltage stability. By iteratively adjusting 

control gains, PSO ensures coordinated and optimal dynamic 

performance across the hybrid system. The interconnected 

structure of SG, GFI, and PSO tuning blocks is seen in Figure 

1 (Appendix). 

2.1. Interfacing and Load Modelling 

Three-phase transformers are used to interface the 

generators with the common 13.8 KV bus, where the load is 

connected: 

Transformer 1 (SG): 210 MVA, 13.8/230 kV 

Transformer 2 (Grid Bus): 210 MVA,230/13.8 kV 

Transformer 3 (GFM): 100 MVA, 1/13.8 kV 

The transmission lines connecting the components are 

modeled as PI-sections, incorporating series resistance and 

inductance, as well as shunt capacitance, to introduce realistic 

impedance effects that influence voltage regulation and 

controller performance.  

The shared load is modeled as a constant power load, with 

a base value of 75 MW. The primary test case involves 

applying an additional 75 MW step load at t = 0.25 s, creating 

a severe transient to rigorously test the system's inertial 

response, voltage recovery capability, and overall controller 

effectiveness.  

The system's dynamic behavior is modeled using a set of 

differential equations for each subsystem, implemented and 

simulated in MATLAB, and the system parameters are 

adopted from a research article  [18].  The results of this gives 

the frequency response and voltage response by choosing the 

control parameters using the trial and error method shown in 

the research article [18]. This approach of randomization of 

control parameters gives more fluctuation of frequency and 

voltage and affects the overall stability of the system. The 

problem is being solved with the help of the PSO algorithm, 

which helps to optimize many control parameters 

simultaneously, which go together with both the GFM and SG, 

replacing the shortcomings of traditional tuning methods, e.g., 

trial-and-error or Ziegler-Nichols’ methods. 

2.2. Controller Design and Particle Swarm Optimization 

Framework 

This section details the design of the controllers for both 

the SG and GFM and provides a thorough explanation of the 

Particle Swarm Optimization (PSO) framework used to 

achieve optimal, coordinated tuning of their parameters. 

System parameters and design parameters are adopted from 

[18]. The tuning of complete hybrid systems using the PSO 

algorithm is targeted in the following blocks described in 

Figure 1: Droop-based Controller, Excitation Systems, DC 

voltage side control, AC voltage side control, Voltage loop, 

Current loop, and Current limitation. Parameters are tabulated 

in Table 1, section-wise, with results. The "position" of each 

particle in our PSO framework is a vector containing all the 

controller parameters to be optimized. This study targets a 

total of 18 parameters across both the SG and GFM, creating 

a challenging 18-dimensional search space. These parameters 

collectively govern the dynamic behavior and performance of 

the overall hybrid system. They include gains and constants 

associated with droop control, voltage and current regulation 

loops, excitation systems, mechanical actuators, and 

synchronization mechanisms. The PSO algorithm is 

configured to simultaneously optimize all 18 parameters by 

minimizing a comprehensive fitness function, ensuring 

coordinated operation and enhanced system stability under 

varying operating conditions. 

3. Implementation of PSO 
PSO is a stochastic optimization algorithm (metaheuristic) 

based on the movement of a population of individuals, which 

emulates the collective behavior seen in such social organisms 

as bird flocks or fish schools.  

Kennedy and Eberhart introduced it in 1995 [15]; it has 

proven highly effective for solving complex, non-

differentiable, and multi-modal optimization problems. In 

PSO, the set of all possible solutions forms a multi-

dimensional search space. Within this, a population of 

potential solutions, referred to as "particles," is randomly 

initialized in space.  

Each particle has a position, which represents a specific 

set of parameter values to be tested, and a velocity, which 

dictates its movement through the search space [16]. The 

fitness of particles is measured by the evaluation of the 

position of each of them in some particular cost function [13]. 

The particles are in a continuous process of manipulating their 

velocity and position as they traverse the search space, which 

is in relation to two predominant variables:  
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 Personal Best (Pbest): The best position (i.e., the one with 

the lowest cost) that the individual particle has found so 

far. 

 Global Best (gbest): the optimal location discovered by 

every particle in the swarm up until the current iteration. 

Here, ith particle’s velocity and position are updated at 

each time step t according to the following equations: 

𝐕𝐢(𝐭 + 𝟏) = 𝛚 ∗ 𝐕𝐢  + (𝐂𝟏𝐫𝟏 +

𝐂𝟐𝐫𝟐) (
𝐂𝟏𝐫𝟏

𝐂𝟏𝐫𝟏+𝐂𝟐𝐫𝟐
∗ 𝐏𝐛𝐞𝐬𝐭 +

𝐂𝟏𝐫𝟏

𝐂𝟏𝐫𝟏+𝐂𝟐𝐫𝟐
∗ 𝐠𝐛𝐞𝐬𝐭 − 𝐗𝐢(𝐭)

 
)  

𝑿𝒊(𝒕 + 𝟏) = 𝑽𝒊(𝒕 + 𝟏) + 𝑿𝒊 (1) 

Where: 

The inertia weight is represented by ω, while the personal 

best and global best values are denoted by Pbest and gbest, 

respectively. Regulates the impact of the particle's prior 

velocity, C1 and C2 are the cognitive and social acceleration 

constants, which weight the attraction towards the personal 

and global best positions, respectively,r1 and r2 are random 

numbers uniformly distributed in [0, 1], introducing a 

stochastic element to the search. This is a compromise 

between sampling novel parts of the solution space and 

localizing the search to areas that seem promising [13]. 

3.1. Formulation of PSO for Optimal Tuning 

The main intention of using PSO in this context to solve 

the defined problem  is to  

 Reduced frequency deviations 

 Faster transient settling 

 Improved dynamic stability under variable load 

disturbances 

The decision Variables involve tuning of 18 key control 

parameters of the hybrid system and are divided into 

functional blocks as follows:  

Excitation System Parameters: 

Xexc={Trs, Ka, Ta, Kf, Tf, Kc} 

DC Voltage Control Loop: 

 Xdc= {η1, mp, Kdc, Kp, Kr} 

AC Voltage Control Loop: 

Xac={Ki_Vac, Kp_vac} 

Voltage and Current Loops: 

Xloops = {Kp_v, Ki_Vac, Kp_i, Ki_i} 

Droop Gain  

Xdroop ={droop_percentage} 

⸫ Total decision variable vector 

X = {Trs, Ka, Ta, Kf, Tf, Kc, η1, mp, Kdc, Kp, Kr, Ki_vac, 

Kp_vac, Kp_v, Ki_v, Kp_I, Ki_i, droop_percentage}    

3.1.1. Constraints 

Each variable xi ∈  x is bounded.  

𝑋𝑖
𝑚𝑖𝑛 = 𝑋𝑖 (1 − 𝑃𝑖)  

Xi
max = Xi (1 + Pi)   

(defines Lower and upper boundary) 

𝑿𝒊
𝒎𝒊𝒏 ≤ 𝑿𝒊  ≤ 𝑿𝒊

𝒎𝒂𝒙  

Where pi=0.3 (i.e., ±30% variation range), except for 

some multiplied by a factor of 2 (like Kdc, Kp, Kr). 

3.1.2. Objective Function 

The objective function designed here to minimize the 

frequency and voltage error of a system includes SG and GFM. 

3.2. Cost Function 

The "fitness" of each particle (i.e., each set of controller 

parameters) is evaluated using a multi-objective cost 

function, J. This function is designed to quantitatively capture 

the overall dynamic performance of the system following a 

simulated disturbance. It is a weighted sum of the integral of 

squared errors for key performance indicators (Fahad S, 

Mahdi AJ, Tang WH, Huang K, Liu Y,2018). 

𝑱 = (∑ (𝑽𝒆 (𝒕)𝟐 + 𝒇𝒆 (𝒕)𝟐)𝒕 ) (2)                                                                                                                                                                                                                                                                                                                                   

Where,  

fe(t) : Frequency error at time t 

Ve(t) : Voltage error at time t 

t : total simulation time 

The fe(t) and ve(t) are calculated as per Equations (3) and 

(4) for the GFM and SG  

𝒆𝒇(𝒕)  =  [(𝒇𝒃 − 𝒇𝟏) + (𝒇𝒃 − 𝒇𝟐)] (3) 

𝒆𝒗(𝒕)  =  [(𝑽𝒃 − 𝑽𝟏) + (𝑽𝒃 − 𝑽𝟐)] (4)  

 Where,  

fb - base frequency (taken 50 Hz here) 

f1- the frequency measured at the output of SG 

f2- the frequency measured at the output of GFM 

Vb- base voltage in P.U. (considered 1 P.U.here) 

V1-  SG's output voltage in P.U. 

V2 - GFM's output voltage in P.U. 

Here, the purpose of the error function is to measure the 

system deviation and input to the cost function. The cost 

function means what PSO has to minimize. By minimizing 

this cost function, the PSO algorithm implicitly seeks a 
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parameter set that minimizes frequency and voltage deviations 

while ensuring a fast, well-damped transient response. 

3.3. PSO Execution 

The Simulink model is executed at each iteration, creating 

a tight integration between simulation and optimization to 

provide real-time feedback on fitness values (Selamat NA, 

Ramih TO, Abdullah AR, Karis MS,2019).  

The flowchart shown in Figure 2 illustrates the Particle 

Swarm Optimization (PSO) execution process. Each step 

corresponds directly to the stages of the PSO algorithm as 

applied within the simulation-integrated optimization 

framework. 

Input: 

 Parameter search space 

 Initial bounds for positions and velocities 

 Maximum number of iterations 

 Simulink model for simulation-based fitness evaluation 

 Output: 

 Optimized controller parameter set 

The optimization process, illustrated by the flowchart as 

shown in Figure 2, proceeds as follows: 

1. Initialization: Ninety particles are formed into a swarm. 

The position of each particle is initialized with random 

parameter values within predefined, physically realistic 

bounds ±30%, number of variables to be optimized 18, 

Maximum number of iterations 70, and an inertia 

coefficient of 0.5 was used, with a corresponding 

damping ratio of 1. The societal and personal acceleration 

coefficients are both fixed at 0.5. 

2. Fitness Evaluation: For each particle in the swarm, the 

corresponding set of controller parameters is passed to the 

Simulink model. A full simulation of the load disturbance 

scenario is executed. 

3. Cost Calculation: After the simulation, the time-series 

data for frequency and voltage are utilized here for 

updating the value of the function J. 

4. Best Updates: Each particle's calculated cost is compared 

to both the worldwide best (gBest) and the individual best 

(pBest). If the current cost is lower, the respective bests 

are updated. 

5. Velocity and Position Update: The conventional velocity 

and position update equations are used to update each 

particle in the PSO algorithm. 

6. Termination: The steps 2-5 are then repeated until the 

termination condition is met, where in this study, the 

termination condition is when iterations reach 70. The 

final gBest position represents the optimal set of 

controller parameters. 

 
Fig. 2 PSO execution process 

4. Results and Performance Analysis 
A hybrid system of a 100 MVA synchronous generator 

and 100 MVA grid-forming inverter is synchronized to supply 

a common base load of 75 MW, and is implemented in 

MATLAB/Simulink. The objective of frequency stability 

enhancement of this system is achieved by the ideal 

adjustment of control parameters of the lower inertia source, 

Start 

Initialize Swarm: 

-Random Position 

-Random Velocity 

For each Particle: 
-set parameter in Model 

-Run Simulink Simulation 

-Evaluate Fitness function 

Update: 
-Personal Best  

(pBest) 

Update: 

-Velocity and Position Using PSO 

equations 

Check Convergence or Maximum iteration  

reached 

Retum Optimal  

Parameters frombest particle 

END 

No 

Yes 
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GFM, and the traditional synchronous generator. The results 

of tuned parameters using particle swarm optimization are 

compared with the trial-and-error method. To test the efficacy 

of the suggested PSO-based inverter control technique, the 

results of simulation and testing are given.  

The most significant discoveries are the improved 

dynamic behavior of the grid-forming inverter with respect to 

frequency, the optimal values of controller parameters, and 

both the power and the voltage.  

Additionally, the results demonstrate the advantage of the 

optimization method for enhancing the hybrid system's 

frequency response in relation to load disturbance. Table 1 

summarizes the comparison of the ending controller 

parameters of the hybrid system. To improve the system's 

overall performance, these factors were incorporated into the 

control algorithm. The controller parameters were first 

established using a trial-and-error method and tested in a 

MATLAB/Simulink simulation. 

After that, the model was run, and the PSO algorithm was 

implemented and executed to optimize the performance of the 

controller in 70 iterations. These initial parameters, listed in 

Table 1, represent a plausible but sub-optimal configuration 

that a human operator might achieve without an advanced 

optimization tool. The PSO algorithm then optimizes this full 

set of parameters. The convergence of the cost function, J, is 

the first way to assess the PSO algorithm's performance. 

Figure 3 plots the value of the global best cost (gBest) at each 

iteration of the optimization process as indicated in Figure 2.  

The graph shown here in Figure 3 clearly indicates that 

the PSO algorithm effectively minimizes the cost function. 

The initial random parameter sets result in a high-cost value 

(around 7.5e4 approx.), indicative of poor dynamic 

performance. The algorithm exhibits rapid convergence 

during the first 10 iterations, as particles explore the search 

space and quickly identify promising regions.  

After approximately 50 iterations, the cost function value 

begins to plateau around 7.2e4, indicating that the swarm has 

converged to a near-optimal solution and further significant 

improvements are unlikely. This behaviour demonstrates the 

effectiveness and efficiency of PSO in negotiating the 

challenges in the multi-dimensional parameter space. 

Table 1. Comparison of the controller parameters 

Controlled 

variables 

Using the trial and error 

method 
Using the PSO algorithm Implication 

Trs 0.0166 0.0269 Slower excitation response to SG. 

Ka 214.32 215.1955 
Minor adjustment for fine-tuning voltage 

response. 

Ta 6.3190e-04 4.3511e-04 Faster AVR response to voltage deviations. 

Kf 0.0011 5.4804e-04 
Reduction in Gain makes the system more 

reactive. 

Tf 0.7800 0.7536 Faster response to voltage deviations. 

Kc 0.0362 0.0287 Reduce to adjust with filter capacitance. 

eta_1 0.0684 0.0767 Increase results in better voltage regulation. 

m_p 2.2435e-08 1.5070e-08 Minimal sluggish response. 

Kdc 1.1056e+03 1.5271e+03 
Stiffer DC link voltage control is crucial 

during large power swings. 

Kp 3.5408e-04 4.6078e-04 Reacts more strongly 

Kr 0.6081 1.2558 Reacts more strongly 

Ki_v_ac 1.1666 1.0816 Less aggressive control action 

Kp_v_ac 0.0011 9.9767e-04 Reacts slowly 

Kp_v 0.6008 0.6040 
Subtle change, indicating the initial P-gain 

was reasonable. 

Ki_v 239.1543 299.4644 
Stronger integral action to eliminate steady-

state voltage error faster. 

Kp_i 0.6890 0.9531 
More aggressive current tracking for faster 

transient response. 

Ki_i 0.0071 0.0107 
Significantly increased integral action for 

precise current control. 
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Fig. 3 Cost function (error reduction) 

4.1. Frequency Response Comparison 

Frequency stability is a primary objective of this study. 

Figures 4 and 5 present a comparison of the system frequency 

response under the 75 MW load disturbance for both tuning 

methods.  

The quantitative improvements are stark, as summarized 

in Table 2.  

 With Trial Error Tuning: The frequency experiences a 

severe dip, reaching a nadir of 48.5 Hz (a 3% deviation). 

The recovery is slow and oscillatory, taking over 0.25 

seconds to settle. 

 With PSO Tuning: The response is vastly superior. The 

frequency nadir is limited to 49.6 Hz (a 0.8% deviation), 

representing a 26.67% reduction in the frequency dip. 

The response is critically damped, with no overshoot, and 

the system settles immediately-much faster than the Trial 

and error-tuned system. 

This dramatic improvement is a direct result of the 

coordinated optimization of the droop, governor, and PI 

controller parameters, enabling both the SG and GFM to 

contribute to frequency support in a fast and synergistic 

manner. 

4.2. Voltage Response Analysis 

Effective voltage regulation during transients is crucial 

for maintaining power quality and preventing equipment 

malfunction [14].  

 

Figures 4 and 5 compare the voltage response at the GFM 

terminal following the load disturbance. The PSO-based tuned 

system again demonstrates superior performance: 

 With TE Tuning: The voltage sags to a low of 0.87 p.u. (a 

13% drop) and takes approximately 1.4 seconds to 

recover. 

 With PSO Tuning: The voltage dip is limited to 0.90 p.u. 

(a 10% drop), and the settling time is reduced to just 0.14 

seconds. 

This enhanced voltage stability is achieved primarily 

through the optimized gains of the GFM's voltage control loop 

(Kp_v, Ki_v) and the faster action of the SG's AVR (due to 

the reduced Ta), as identified in Table 2. 

4.3. Summary of Performance Improvements 

Table 2 highlights the concise review of the quantitative 

improvement in performance provided by the application of 

PSO-based tuning when compared with the traditional trial-

and-error approach. The results are unequivocal.  

 

The PSO-based optimization framework delivers 

transformative improvements across every key performance 

indicator, resulting in a hybrid power system that is 

significantly more stable, resilient, and responsive to dynamic 

disturbance. Also, Table 3 shows effective results of this 

research, which optimized 18 control parameters with 

significant improvement in frequency compared to the 

previous research work of authors mentioned in [2, 3, 5].
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Fig. 4 Frequency, power, and voltage response  with Trial-Error-Method with 75 MW step load at 0.25 seconds 

 
Fig. 5 Frequency, power, and voltage response with PSO tuning Method with 75 MW step load at 0.25 seconds 

Table 2. Quantitative performance comparison of tuning methods 

Performance Metric Trial-and-Error Method PSO-Optimized Method Improvement using PSO 

Frequency Dip (Nadir) 3 % (48.5 Hz) 0.8 % (49.6 Hz) 26.7 % reduction 

Frequency Settling Time 0.25 s immediate 80 % faster 

Voltage Dip (GFM Terminal) 0.13 p.u. 0.10 p.u. 23 % reduction 

Voltage Settling Time (SG) 1.40 s 0.15 s 89 % faster 

Power Sharing Accuracy Inconsistent(± 12 % error) Balanced (± 3.5 % error) ~70% improvement 

Overall Cost Function (J) ~7.5e4 (estimated) 7.2e4 4 % reduction 
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Table 3. Comparison of frequency stability improvement methods 

Study Method No. of Parameters Frequency Improvement Settling Time (s) 

Yegon [2],2020 Adaptive 6 ~40% 0.8 

Manamperi [3], 2023 Optimal 8 ~35% 0.6 

Roslan [5], 2020 PSO–PI 4 ~25% 1.2 

This Work PSO–Multi 18 73.3%* 0.15 
 

5. Conclusion 
The study proposes an integrated approach to increase 

dynamic behaviour and frequency stability of a hybrid power 

system of a synchronous generator (SG) and a grid-forming 

inverter (GFM). As a result of increasing integration of 

inverter-based renewable energy systems, stability and 

reliability in such hybrid systems, particularly in a low-inertia 

environment, have also gained importance. The important 

achievements of this research are: 

 Implementation of a PSO-based Tuning Algorithm: A 

Particle Swarm Optimization (PSO) algorithm was 

successfully implemented to automatically and 

simultaneously tune 18 critical control parameters across 

both the GFM and SG, including PI gains, droop 

coefficients, and system time constants. 

 High-Fidelity Simulation and Validation: The framework 

was validated using a detailed MATLAB/Simulink model 

of a realistic hybrid grid, subjected to a severe 100% step 

load disturbance to rigorously test its transient 

performance. 

 Demonstration of Transformative Performance Gains: A 

comparative analysis against a conventional trial-and-

error tuning method showed that the PSO-based approach 

delivered dramatic improvements in frequency deviation, 

voltage drop, transient settling time, and power sharing 

between SG and GFM. 

From a control systems perspective, this research 

validates the power of metaheuristic optimization for solving 

complex, nonlinear, multi-parameter tuning problems in 

power systems. PSO significantly outperforms manual tuning 

methods, not only in the quality of the final performance but 

also in the efficiency and scalability of the optimization 

process itself. This study also reinforces the pivotal role of 

grid-forming inverters in enabling future low-inertia grids. 

When their controllers are optimally tuned, GFMs can 

effectively provide the grid services-such as inertia emulation 

and fast voltage support-that have traditionally been the 

exclusive domain of synchronous machines. The findings are 

highly applicable to the design and operation of smart grids, 

the control of islanded micro-grids, and the integration 

strategies for distributed energy resources. The proposed 

PSO-based framework represents a meaningful and practical 

step toward realizing highly responsive, resilient, and reliable 

inverter-dominated power systems. 

5.1. Limitations and Future Scope 

 MATLAB/Simulink models provide the basis for the 

current findings. To verify practical applicability, Hardware-

In-The-Loop (HIL) testing or real-world implementation is 

required. All of the scenarios that were investigated are 

deterministic. Additional research is needed on fault 

circumstances and stochastic load changes. A two-machine 

system (one GFM and one SG is used to illustrate the 

framework. A computational complexity study is necessary 

for extension to multi-machine systems with n GFMs. There 

is no discussion of long-term parameter stability under 

component aging and environmental changes (temperature, 

humidity). Faster algorithms or specialized hardware would 

be needed for real-time adaptive tuning. The future study may 

contain the use of commercial GFM inverter controllers for 

HIL testing for field implementation in a microgrid testbed. 

By using advanced optimization techniques like PSO-GA,   

Pareto optimization with multiple targets for competing goals, 

online adaptive PSO for system circumstances that change 

over time, and hybrid algorithms for quicker convergence, it 

can be developed. A model with several GFMs with varying 

ratings and Battery Energy Storage Systems (BESS) should be 

integrated. An H∞ (H-infinity) synthesis-based controller can 

be coupled with PSO-tuned control settings to increase 

stability. Additionally, a framework for measuring system 

uncertainties should be created. Neural networks are used to 

forecast ideal parameters based on system conditions. Use this 

reinforcement learning to adapt parameters continuously. 
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Nomenclatures 

Trs Filter time constant 

Ka AVR gain 

Ta AVR time constant 

Kf Gain of the damping filter 

Tf Time constant for the damping filter 

Kc Rectifier loading factor 

eta_1 DC voltage gains scaling factor 

m_p Pole placement parameter of DC voltage 

control 

Kdc DC voltage controller gain 

Kp inner voltage control gain 

Kr Feed-forward or resistive compensation gain 

Kp_v_ac Proportional gain of the AC voltage controller 

Ki_v_ac Integral gain of the AC voltage controller 

Kp_v Proportional gain of the voltage control loop 

Ki_v Integral gain of the voltage control loop 

Kp_i Proportional gain of the Current control loop 

Ki_i Integral gain of the Current control loop 
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Appendix 

 
Fig. 1 Schematic representation of a hybrid power syste 
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