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Abstract - Engineered nanoparticles (ENPs) possess distinctive physicochemical properties that drive innovation across various 

fields. However, their potential cytotoxic effects, combined with the inherent complexity of their biological interactions, pose 

significant challenges for accurate toxicity assessment. Traditional machine learning methods often fall short in modeling the 

nonlinear and high-dimensional nature of ENP data. To address this limitation, this study introduces a novel feature aggregation 

technique called Horizontal Sequence Pooling (HSP) integrated within a Convolutional Neural Network framework to improve 

cytotoxicity prediction. The dataset employed was compiled from multiple peer-reviewed sources published between 2010 and 

2022, comprising 4,863 samples characterized by 28 descriptors. Data preprocessing involved median-based univariate 

imputation for handling missing values and one-hot encoding of categorical variables to ensure compatibility with the CNN 

architecture. The CNN-HSP model was evaluated against CNN variants utilizing conventional max and average pooling 

strategies. Experimental results demonstrate that the CNN-HSP model consistently achieved superior performance, reflected in 

significantly reduced error metrics (MSE, MAE, and RMSE) and a high coefficient of determination R-squared value of 0.9975, 

indicating strong alignment between predicted and observed values. The enhanced pooling method effectively preserved critical 

spatial data relationships, allowing the model to learn complex toxicity-related patterns more accurately. Overall, the CNN-HSP 

model provides a robust and interpretable framework for ENP cytotoxicity prediction, offering a valuable tool for risk assessment 

and safer nanomaterial development. 

Keywords - Engineered Nanoparticles, Cytotoxicity, Convolutional Neural Networks, Pooling algorithms, Prediction. 

1. Introduction 
Engineered nanoparticles (ENPs) have become 

indispensable in diverse industries such as medicine, 

electronics, and environmental remediation due to their 

customizable physicochemical properties and nanoscale 

behavior, enabling unprecedented functionality and efficiency  

[1]. However, this technological advancement introduces 

significant safety concerns, as nanoparticle structure and 

composition modification can inadvertently alter their 

biological interactions, potentially leading to unforeseen 

toxicological effects [2, 3]. Therefore, accurately predicting 

ENP cytotoxicity is a critical research priority for ensuring 

their safe and responsible deployment. Despite efforts to 

model ENP toxicity using traditional machine learning 

methods [4], these models often struggle with the complex, 

nonlinear interactions inherent in nanoparticle-biological 

systems. Their limited capacity to generalize across diverse 

ENP types and the oversimplification of feature relationships 

restrict their reliability and interpretability in practical 

applications. Deep learning has recently advanced, notably in 

Convolutional Neural Networks (CNNs), offering promising 

alternatives due to their ability to extract hierarchical features 

from complex datasets automatically. CNNs have shown 

potential in toxicity prediction, but a key challenge remains in 

how spatial features are condensed through pooling 

operations. Conventional pooling methods, such as max 

pooling and average pooling, may discard or dilute essential 

information by uniformly applying reductions across feature 

maps. This becomes a critical drawback when modeling 

ENPs, where position-dependent and subtle descriptor 

patterns can be vital to understanding toxicological outcomes. 

This study addresses this specific gap by introducing a novel 

pooling mechanism called Horizontal Sequence Pooling 

(HSP), which is designed to more effectively preserve key 

spatial dependencies and feature relationships. Unlike 

traditional pooling strategies that treat spatial data uniformly, 

HSP applies a sequence of positional feature-specific pooling 

operations to selectively retain prominent and contextually 

relevant features. Doing so minimizes information loss and 

improves the network’s capacity to model the complex and 

varied toxicity behaviors of ENPs. To establish the value of 

this approach, the performance of the HSP-enhanced CNN 
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model is rigorously compared with standard CNN 

architectures using standalone max pooling and average 

pooling. The evaluation relies on robust statistical metrics like 

Mean Square Error (MSE), Mean Absolute Error (MAE), 

Root Mean Square Error (RMSE), and R-squared (R2) to 

validate predictive accuracy and model robustness. 

This research introduces a novel domain-specific pooling 

strategy within the CNN framework directly tailored to the 

complexity of ENP cytotoxicity data. This contribution 

advances CNN architecture design and provides a more 

accurate and interpretable tool for nanotoxicology, with 

implications for safer material design and regulatory decision-

making. 

2. Literature Review 
2.1. Engineered Nanoparticles and their Cytotoxicity 

Engineered nanoparticles (ENPs) are intentionally 

designed materials with at least one dimension in the 

nanoscale range (1 to 100 nanometres), known for their high 

surface area-to-volume ratio and tunable physical and 

chemical characteristics [5]. Their widespread use in medical, 

environmental remediation, electronics, and consumer 

products arises from their adjustable morphology, surface 

charge, reactivity, and coating profiles [6]. 

However, these same properties that drive innovation can 

also introduce unanticipated toxicological effects, especially 

when ENPs interact with biological systems in complex 

environments [2]. After inhalation, ingestion, or dermal 

contact exposure, ENPs can induce oxidative stress, 

inflammation, genotoxicity, or cell apoptosis [7, 8]. 

Moreover, the environmental accumulation of ENP 

through industrial effluents, wastewater discharges, or soil 

infiltration presents growing risks to aquatic life and microbial 

ecosystems [9]. The wide range of ENPs and the complexity 

of their dose response make experimental toxicological 

evaluation difficult. The time and resources required for 

laboratory-based cytotoxicity testing make it impractical to 

assess the vast array of emerging ENPs [10]. Additionally, the 

inconsistency between in vitro and in vivo outcomes 

complicates safety standardization [11].  

To address this, computational toxicology has gained 

prominence. Traditional models, such as Quantitative 

Structure-Activity Relationship (QSAR) models and basic 

machine learning algorithms, have been explored in predicting 

chemical toxicity based on molecular descriptors [4, 12]. 

However, these methods often fall short when modeling the 

highly nonlinear and interdependent physicochemical 

attributes of ENPs. Their limited generalization across diverse 

nanoparticle configurations highlights the need for more 

advanced data-driven approaches capable of learning deeper 

feature interactions from structured, high-dimensional 

datasets. 

2.2. Convolutional Neural Network 

Convolutional Neural Networks have become a 

cornerstone of deep learning due to their hierarchical learning 

ability and success across domains, including image analysis, 

speech recognition, and molecular property prediction [13]. 

By leveraging convolutional layers, activation functions, and 

pooling operations, CNNs can automatically learn spatial and 

positional feature relationships from complex datasets. 

Over the years, CNN architectures have evolved 

substantially, starting from early models like LeNet-5 [14] and 

AlexNet  [15] to more complex designs such as ResNet [16] 

and EfficientNet [17]. While initially applied in computer 

vision, CNNs are now increasingly used in cheminformatics 

and bioinformatics for drug toxicity screening, compound 

classification, and molecular interaction analysis [18, 19]. 

In the context of ENP, recent studies have begun to 

explore CNN-based models for predicting toxicity by 

transforming ENP descriptors into input formats suitable for 

deep learning. These formats include molecular fingerprints, 

2D/3D structural grids, and graph-structured data processed 

using graph convolutional networks [20]. These models have 

demonstrated the capacity to capture intricate substructure 

patterns and predict toxicity more accurately than traditional 

models. 

However, the performance of CNNs in this domain is 

highly sensitive to architectural design choices, including how 

pooling layers aggregate feature information. Since ENP 

toxicity is often linked to subtle, position-dependent features 

(e.g., specific surface coatings or charge distributions), 

retaining and interpreting fine-grained information is crucial. 

Thus, optimizing pooling strategies remains a key challenge 

for deep-learning models in nanotoxicology. 

2.3. Pooling Methods and their Role in Predictive Modeling 

Pooling layers in CNNs are designed to reduce feature 

map dimensionality, enhance generalization, and manage 

computational complexity. The two most common strategies, 

max pooling and average pooling, summarize spatial regions 

by extracting either the most prominent or the average signal 

within a defined window [21, 22]. While these methods are 

efficient, they can lose important spatial dependencies or 

dilute key signals, especially in tasks that require more 

detailed pattern retention. 

The deep learning community has developed various 

advanced pooling techniques to overcome these limitations. 

Mixed pooling combines max and average pooling for better 

generalization [23], while rank-based average pooling (RAP) 

introduces statistical ordering to pooling [24]. S3Pooling uses 

stochastic spatial sampling to prevent overfitting and improve 

generalization [25], and LEAP (Learning Pooling) employs 

trainable pooling operations to adaptively learn pooling 

behavior during training [26]. 
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Traditionally, max pooling and average pooling are the 

most common methods [21, 14]. Max pooling extracts the 

maximum value within a window, effectively preserving the 

most significant features. Average pooling calculates the 

average value, offering a smoothed representation of features 

within each window. Global pooling is another variant that 

aggregates all values across the entire feature map, reducing 

dimensionality [27]. Other innovations, such as Generalized 

Max Pooling [28], Chebyshev Pooling [29], and EDS Pooling 

[30], aim to balance feature prominence with context 

preservation. Horizontal Max Pooling [31] specifically 

addresses spatial sensitivity, a critical factor for position-

dependent tasks such as image segmentation and structural 

feature recognition. 

Despite the growing pool of advanced techniques, limited 

research has focused on tailoring pooling operations to the 

unique challenges of ENP cytotoxicity modeling. 

Conventional pooling layers may not adequately capture the 

complex and spatially structured interactions embedded in 

ENP feature representations. Therefore, exploring novel 

pooling methods, such as the proposed HSP, offers an 

opportunity to preserve critical toxicological features, reduce 

signal loss, and improve model interpretability and predictive 

accuracy. 

3. Materials and Methods  
3.1. Data Collection and Preprocessing 

This study relied on a dataset from journal publications 

released between 2010 and 2022, curated by [4]. A total of 

4,863 samples with 28 descriptors containing various 

parameters that describe the properties of the ENPs, including 

their synthesis, physical characteristics, and cytotoxicity (cell 

viability) effects on different cell lines under various 

conditions. The dataset is stored in a Comma Separated Value 

(CSV) format and divided into an 80% training set for model 

training and fine-tuning and a 20% test set to assess model 

performance. Missing values were pre-processed and 

managed using the median univariate imputation method, 

which replaced missing values with the median of the 

corresponding column (descriptors). To ensure compatibility 

with the model, categorical descriptors were converted into 

numerical values using one-hot encoding. 

3.2. Enhanced CNN Prediction Model with Modified 

Pooling Algorithm 

In this study, an enhanced feature pooling CNN model 

was employed to predict the cytotoxicity of ENPs. The model 

comprises two one-dimensional convolution layers featuring 

64 filters (kernel size 3) and 128 (kernel size 3) filters. The 

Rectified Linear Unit (ReLU) activation function was used. 

Batch normalization was applied to enhance training 

efficiency. In the pooling layer, the Horizontal Sequence 

Pooling algorithm was applied, using modified pool and stride 

sizes of 2. The network architecture further included a 

flattened layer, succeeded by two dense layers containing 128 

and 64 neurons, respectively. The Dropout [32] technique was 

incorporated to mitigate overfitting. Figure 1 shows the CNN 

model with enhanced feature pooling using the HSP 

algorithm.  

 
Fig. 1 CNN model with horizontal sequence pooling 

3.3. Horizontal Sequence Pooling Algorithm 

The Horizontal Sequence Pooling algorithm is utilized as 

a feature pooling technique in CNNs by capturing complex 

cytotoxicity interactions between input features. Given an 

input tensor X with dimensions corresponding to batch size 

and feature channels, HSP operates over the tensor using a 

specified pooling window size p and a stride.  

For each window position I, starting from 0 and moving 

in increments of stride, a local Wi is extracted from X, 

spanning p steps across feature channels. HSP computes two 

sets of maximum values within each window to capture the 

positional maxima. Specifically, the feature is derived by 

taking the maximum values across the first and third indices 

along the feature dimension. In contrast, featureb is obtained 

by computing the maximum values across the second and 

fourth indices similarly. These positional maxima are then 

averaged to form the pooled feature for the window, ensuring 

that significant features are preserved. Mathematically, this 

pooled feature for window Wi is represented in Equation 1: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1   (1) 
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By iteratively tuning parameters such as pool size, stride 

size, and feature pooling indices, the configuration is 

optimized to align with the dataset’s characteristics. 

Algorithm 1 presents the pseudocode for the Horizontal 

Sequence Pooling algorithm. 

Algorithm 1. Horizontal Sequence Pooling 

Input: 

X – Input tensor (shape: 4 x m) 

p – Pool size 

stride – Stride size 

Output: 

HSP – Final pooled tensor containing aggregated 

features 

      

1. Initialize an empty list of HSP. 

2. Define the total number of windows:  

numwindows = floor(m ˗ p) / stride + 1 

3. For each window index 𝑖 from 0 to numwindows ˗ 1: 

4. Define the start and end indices of the current window: 

startx = i x stride 

endx = startx + p 

5. Extract the window matrix Wi: Wi = X [:, startx :endx] 

6. Calculate maxa: max(Wi [:,:,[0,2]], axis = 1)  

7. Calculate maxb: max(Wi [:,:,[1,3]], axis = 1) 

8. Compute the pooled feature for the window: 

pooledfeature = ave (maxa + maxb) 

9. Append the pooledfeature to HSP. 

10. Stack all pooled features: HSP = stack (HSP, axis = 1)  

11. Return HSP.  
 

 

3.4. Performance Metrics 

The model’s performance was assessed using four key 

metrics: MSE, MAE, RMSE, and R2. MSE measures the 

average squared errors between actual cytotoxicity and the 

model’s predicted values. MAE calculates the average 

absolute errors between the actual and predicted cytotoxicity. 

RMSE provides the average magnitude of the prediction 

errors. Additionally, R2 evaluates how well the model’s 

predictions explain the variability in the actual cytotoxicity. 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1  (2) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑦�̂�|
𝑛
𝑖=1  (3) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦�̂�)

2𝑛
𝑖=1  (4) 

𝑅2 = 1
∑ (𝑦𝑖−𝑦�̂�)

2𝑛
𝑖=1

∑ (𝑦𝑖−�̅�)
2𝑛

𝑖=1

 (5) 

In the equation, n denotes the number of samples or 

observations, i is the number of iterations, yi is the actual 

cytotoxicity, ŷi is the predicted cytotoxicity,  

�̅� and represents the mean of the actual cytotoxicity. The 

optimal model for predicting cytotoxicity was selected based 

on the lowest MSE, MAE, and RMSE values combined with 

the highest R2 value.  

4. Results and Discussion 
4.1. Experimental Setup and Data 

The prediction model was developed using Python 3.9.12 

within the Jupyter Notebook environment, leveraging key 

packages such as numerical computing (Numpy), data 

manipulation (Pandas), deep learning (Tensorflow), machine 

learning (Scikit-learn), and data visualization (Matplotlib). 

The model was trained and evaluated on a system configured 

with an Intel(R) Core i7 10870H (2.20GHz) processor, 32GB 

of RAM, and a 6GB NVIDIA GeForce RTX 3060 GPU. The 

CNN models were compiled using the Adam [33] optimizer 

with a learning rate 0.0001, minimizing the MSE loss 

function. To evaluate the enhanced CNN model, its 

performance was directly compared against standard CNN 

architectures employing max pooling and average pooling 

layers, respectively. Training for all models involved 120 

epochs with a batch size of 32. 

4.2. Model Training and Convergence Behaviour 

The learning dynamics of the three CNN models (CNN-

HSP, CNN-Max Pooling, and CNN-Average Pooling) are 

shown in Figures 2 to 4 using MSE, MAE, and RMSE metrics 

across 120 training epochs. Initially, all models exhibit a sharp 

drop in error values during the first 20 epochs, reflecting the 

fast acquisition of basic feature representations from the ENP 

dataset. Beyond this point, a clear divergence in performances 

emerges. The CNN-HSP model continues to decline steadily 

across all error metrics, achieving the lowest and most stable 

values throughout training. In contrast, CNN-Max Pooling 

shows inconsistent error behavior with significant fluctuation 

and early plateauing, indicative of optimization instability. 

CNN-Average Pooling performs moderately better but 

stabilizes at a higher error level than CNN-HSP. 

 
Fig. 2 Mean Square Error (MSE) convergence 
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Fig. 3 Mean Absolute Error (MAE) convergence 

 
Fig. 4 Root Mean Square Error (RMSE) convergence 

This consistent improvement in the CNN--HSP model is 

due to its enhanced pooling mechanism that preserves spatial 

and contextual patterns, facilitating more precise learning of 

complex toxicological features. 

4.3. Comparative Prediction Performance on the Test Set 

Table 1 presents the final performance metrics of the three 

models on the test dataset. The CNN-HSP model 

outperformed both traditional pooling strategies in all metrics. 

The CNN-HSP demonstrated 97.1% lower MSE than CNN-

Max Pooling and 95.2% lower than CNN-Average Pooling. 

The model achieved an over 80% reduction in MAE relative 

to Max Pooling and demonstrated exceptional predictive 

accuracy with an R2 of 0.9957. These results validate the 

hypothesis that the Horizontal Sequence Pooling method 

enhances the model’s ability to extract fine-grained, position-

sensitive features crucial to accurate ENP cytotoxicity 

prediction. 

Table 1. Performance comparison of the CNN model with different 

pooling algorithms 

MODEL 
METRIC 

MSE MAE RMSE R2 

CNN-Max 

Pooling 
0.1485 0.2540 0.3853 0.8540 

CNN-Average 

Pooling 
0.0896 0.1817 0.2993 0.9120 

CNN-Horizontal 

Sequence 

Pooling 

0.0043 0.0501 0.0658 0.9957 

 

4.4. Actual vs. Predicted Value Analysis 

Figures 5 to 7 compare actual and predicted cytotoxicity 

values for all three models across 20% of test samples. Figure 

5 (CNN-HSP) shows an almost perfect alignment of predicted 

values (red) with actual values (blue). The model tracks 

dynamic changes in cell viability with minimal deviation, 

demonstrating strong sensitivity to local and global patterns in 

the data. Figure 6 (CNN-Max Pooling) exhibits clear 

misalignment and volatility in predictions.  

 
Fig. 5 Actual vs Predicted values of the CNN model with horizontal sequence pooling algorithm 
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 Fig. 6 Actual vs Predicted values of the CNN model with the max pooling algorithm 

 
Fig. 7 Actual vs Predicted values of the CNN model with average pooling algorithm 

The model often overshoots or undershoots actual values, 

reflecting its tendency to overemphasize dominant features 

while discarding essential details. While Figure 7 (CNN-

Average Pooling) shows smoother results, it still 

underestimates sharp changes and flattens peaks and troughs 

due to its averaging nature.  

This results in muted predictions that fail to capture high-

intensity signals critical to toxicological inference. The 

superior predictive performance of CNN-HSP demonstrates 

its ability to retain contextual cues during pooling, enabling 

more nuanced and accurate predictions.  

4.5. Residual Error Analysis 

Residual plots (Figures 8 to 10) further validate model 

performance by analyzing the distribution of prediction errors. 

CNN-HSP residuals (Figure 8) show a tight, random scatter 

around the zero line, indicating minimal bias and a well-

generalized model. No significant pattern or 

heteroscedasticity confirms consistent performance across the 

prediction range. CNN-Max Pooling residuals (Figure 9) 

show a curved pattern with pronounced error at both ends of 

the prediction scale. This reflects poor generalization and bias 

introduced by retaining only extreme feature activations. 

While CNN-Average Pooling residuals (Figure 10) show 

better than Max Pooling, the residuals still deviate from the 

baseline, especially at high predicted values, suggesting 

underestimation due to feature smoothing.  

The CNN-HSP model’s residual characteristics strongly 

support its robustness and high fidelity, making it capable of 

accurately capturing common and rare cytotoxicity patterns. 

4.6. Contribution Beyond State-of-the-Art 

Compared to prior work, such as [4], which employed 

regularized regression models for ENP cytotoxicity with 

moderate accuracy, our model represents a significant 

advancement. While conventional CNN approaches in related 
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studies have shown improvements, they rarely address the 

pooling layer as a bottleneck. The Horizontal Sequence 

Pooling method fills this gap by introducing a position-aware 

pooling strategy that retains biological relevance during 

down-sampling, a novel contribution to CNN-based toxicity 

prediction.  

This study not only achieves state-of-the-art accuracy but 

also demonstrates the critical role of customized architectural 

components in advancing AI-driven nanotoxicology. The 

superior performance, validated through multiple quantitative 

and visual evaluations, establishes CNN-HSP as a reliable tool 

for rapid and scalable ENP risk assessment.  

 
Fig. 8 Residual plot of the CNN model with horizontal sequence pooling 

algorithm 

 
Fig. 9 Residual plot of the CNN model with max pooling algorithm 

 
Fig. 10 Residual plot of the CNN model with average pooling algorithm 

5. Conclusion 
This research highlights the significant potential of the 

Horizontal Sequence Pooling strategy in improving 

Convolutional Neural Networks' performance for predicting 

engineered nanoparticles' cytotoxic effects. Unlike 

conventional pooling methods, HSP is designed to retain 

essential spatial and positional information, enabling the 

model to capture the intricate patterns underlying ENP-

induced biological responses more accurately. Empirical 

results show that the CNN-HSP model consistently 

outperformed models using standard max pooling and average 

pooling across all evaluation metrics. It achieved remarkably 

low prediction errors (MSE: 0.0043, MAE: 0.0501, RMSE: 

0.0658) and a near-perfect R2 score of 0.9957, demonstrating 

strong alignment between predicted and actual cytotoxicity 

outcomes. These outcomes confirm the importance of context-

aware feature aggregation in enhancing model sensitivity and 

generalizability for toxicological prediction tasks. The 

findings offer a valuable step forward in the field of 

computational nanotoxicology by introducing a model that 

balances predictive power with interpretability. This approach 

supports the design of safer nanomaterials and contributes to 

advancing AI-assisted toxicology frameworks that can better 

inform public health and regulatory decisions. Future research 

may explore integrating HSP with hybrid architectures such as 

attention-based networks or transformer models to enhance 

pattern recognition and prediction accuracy, particularly for 

highly heterogeneous and multi-modal ENP datasets. 
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