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Abstract - Deforestation presents significant challenges to biodiversity, high conservation-value species, global warming, and 

climate change. Recent developments in satellite image processing using deep learning and computer vision techniques have 

greatly improved methods for monitoring forest cover changes. This paper introduces a novel hybrid approach named AResU-

Net, an attention-based residual-U-Net for forest change detection. The model generates a binary mask for the given input image 

leveraging Red (R), Green (G), and Blue (B) bands, along with the Near-Infrared (NIR) band from Sentinel-2 imagery. Spectral 

indices NDSI and NDVI identify snow/ice masks from the input image. Snow masks are removed from predicted masks to 

eliminate the possibility of incorrect deforestation detection due to seasonal variations, especially in winter.  The effectiveness 

of the proposed model is validated by experimental results that demonstrate substantial improvements in key performance 

metrics: “Accuracy” - 0.964782, “Precision” - 0.946866, “Recall” - 0.968095, “F1 Score” - 0.957363, and “Mean Intersection 

over Union (mIOU)" - 0.929982. The evaluation metrics, complemented by visual analyses, indicate a strong correlation, 

confirming the model's effectiveness in accurately detecting forest changes. The performance assessment was conducted using a 

diverse array of validation images, including randomly selected .tif images of varying sizes sourced from Google Earth Engine 

in regions of Nepal, with an integration of the snow index. The AResU-Net model represents a significant advancement in 

automated image segmentation methodologies, contributing to environmental conservation efforts by effectively monitoring 

deforestation trends over time. 
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1. Introduction  
Deforestation pervasively influences ecosystems and 

biodiversity worldwide, emphasizing the importance of 

comprehensive monitoring and mitigation activities. Aside 

from natural calamities, increased human activities such as 

agriculture, mining, and logging are the chief causes of 

deforestation. An effective monitoring strategy is required to 

prompt intervention against unlawful human activities and 

analyze forest cover changes after disasters. Recent research 

in deep learning and computer vision has underlined the 

importance of image segmentation in forest change detection. 

Forest change identification can be automated using high-

resolution satellite data and semantic segmentation 

techniques. Deep learning combined with remote sensing 

creates a potent technique for accurately segmenting and 

detecting deforestation. Compared to traditional methods, 

deep learning-based image segmentation offers significant 

advantages, including improved accuracy and efficiency in 

identifying deforested areas. Additionally, it has the potential 

to fully automate the detection process, making mapping 

faster and more streamlined. However, this approach also 

presents challenges, such as the need for extensive training 

data and the complexity of analyzing diverse and 

heterogeneous forest landscapes, which are crucial for 

evaluating the performance of the deep learning model. 

Despite the recent deep learning-based implementations in 

this area, challenges still need to be addressed- i) forest change 

detection (afforestation/deforestation) using heterogeneous 

forest landscapes. ii) evaluation of the percentage of 

afforestation and deforestation ii) addressing the issues of 

seasonal variations due to snow cover, which may lead to 

incorrect deforestation detection. This paper addresses these 

challenges by presenting AResU-Net, a novel semantic 

segmentation that uses attention gates and residual blocks with 

U-Net for semantic segmentation. 

2. Related Work 
Given the latest discoveries in the field, a thorough 

investigation has been carried out. A review of the literature 

outlining recent developments in this field is included in this 

https://www.internationaljournalssrg.org/
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study, along with dataset analysis and an examination of 

different forest regions. Using the stochastic gradient descent 

(SGD) optimizer, K. Isaienkov et al. demonstrated 

experimental results using the U-Net model combined with 

ResNet-50 and U-Net 101. The authors created the Sentinel-2 

dataset for their research, which sought to identify 

deforestation in specific regions of Ukraine. They underlined 

the need for more datasets to be developed for training and 

future improvements in dataset accuracy [1]. A potential 

hybrid semantic segmentation model that combines the 

attention U-net model with the residual connection was 

proposed by K. Kalinaki et al. [2]. Despite requiring more 

processing time than the Attention U-Net and the standard U-

Net, the model's greater accuracy revealed its potential [2]. F. 

Pelletier et al. [3] created an algorithm trained on tree masks 

to distinguish tree crowns from other land cover types.  

The algorithm utilized Shortwave Infrared (SWIR) and 

Normalized Burn Ratio (NBR) for change detection. Pacheco-

Pascagaza et al. [4] emphasized using the Sentinel-2 dataset 

(10m resolution), which can be effectively used for 

deforestation detection to enable the logging of individual 

large tropical trees. Jamali et al. proposed a hybrid semantic 

segmentation model that integrated components of HetConv, 

U-Net, attention gates, and Vision Transformers (ViT). The 

proposed solution has shown significant improvement in 

forest change detection compared with existing findings [5]. 

David John et al. conducted a comparative analysis of the 

results obtained using  Attention U-Net against “U-Net”, 

“Residual U-Net”, “ResNet50-SegNet”, and “FCN32-

VGG16” across three distinct datasets: “three-band Amazon, 

four-band Amazon, and Atlantic Forest”. Their findings 

indicated that the Residual Attention U-Net, while containing 

a greater number of parameters than the Attention U-Net, may 

result in an extended training duration but holds the potential 

for improving upon the performance of the Residual U-Net[6]. 

D. Lee and Y. Choi et al. [7] compared several U-Net family 

networks, including “U-Net, R2U-Net, Attention U-Net, 

Attention R2U-Net, and Nested U-Net”. The assessment 

focused on two key evaluation metrics: “F1-score” and 

“Intersection over Union (IoU)”.  

The findings revealed that the Attention U-Net 

demonstrated superior predictive performance for both 

metrics, utilizing satellite imagery from “Sentinel-1”, 

“Sentinel-2”, and “Landsat 8”. J. B. Kilbride et al. [8] 

employed Google Earth Engine and Google AI platforms to 

detect forest cover changes. They underscored the necessity of 

refining their training datasets within these platforms to 

enhance detection accuracy. Furthermore, the authors noted 

that classifiers must exhibit robustness against noise resulting 

from seasonal variations in the data, with Landsat imagery 

serving as the analytical basis. M. Kaselimi et al. [9] 

introduced the Vision Transformer Model for change 

detection with data source- 

“https://www.kaggle.com/c/planet-understanding-the-

amazon-from-space/data”. S. V. Lim et al. [10] explored 

attention-based semantic segmentation utilizing Landsat 8 

imagery for change detection. Future directions are suggested 

to i)contribute to developing a dataset including seasonal 

variations and ii) improve the architecture of attention-based 

semantic segmentation models and evaluate their 

effectiveness. Studies advised using high-performance GPUs 

or investigating alternative pipelining strategies to facilitate 

processing extensive datasets within constrained GPU 

memory. Another approach proposed was to utilize datasets 

with slightly reduced resolutions to alleviate memory 

constraints. P. Tovar et al. [11] investigated the “Spatial 

Attention Mechanism (SAM)” and “Channel Attention 

Mechanism (CAM)” utilizing optical images obtained from 

the Landsat 8-OLI sensor, characterized by a resolution of 30 

meters.  

Their experiments sought to assess the relevance and 

sensitivity of hyperparameter tuning for the loss function and 

the impact of dual-attention mechanisms (spatial and channel) 

on predicting deforestation. K. Karaman et al. [12] introduced 

an attention-based neural network architecture called 

“SENTINEL-1 BraDD-S1TS”, encompassing approximately 

25,000 image sequences depicting deforested and unchanged 

land within the Brazilian Amazon. I. Md Jelas et al. [13] 

presented a detailed literature survey mentioning the 

effectiveness of recent image segmentation techniques ‘U-

Net’, ‘DeepLabV3’, ‘ResNet’, ‘SegNet’, and ‘Fully 

Convolutional Networks (FCN)’. They suggested contributing 

to developing a ‘ResU-Net’ to utilize skip connections from 

U-Net with the residual blocks from ResNet.  

The suggested integration has the potential to extract finer 

patterns in deforested areas, with residual blocks contributing 

significantly to enhanced model precision.D. L. Torres [14] 

assessed “U-Net, ResU-Net, SegNet, FC-DenseNet” and two 

variants of “DeepLabv3+” for monitoring Brazilian Amazon 

deforestation. The study was presented by utilizing Landsat-8 

and Sentinel-2 images. The findings indicated that ResU-Net 

consistently exhibited the most favourable trade-off between 

accuracy and training and inference times. In contrast, 

MobileNetV2 and SegNet demonstrated the least effective 

performance among the evaluated frameworks. This study 

constitutes a noteworthy advance toward achieving more 

efficient, objective, and accurate monitoring of the Amazon 

rainforest. P. J. Soto [15] examined various regions within the 

Amazon rainforest and the Brazilian Cerrado, utilizing 

Landsat 8-OLI. The authors devised an unsupervised pseudo-

labelling scheme based on the Change Vector Analysis 

technique to mitigate the challenges posed by the scarcity of 

ground-truth labelled training samples. T. Andrei [16] 

presents two principal contributions to the field: 1. The 

automation of image labelling using a Gaussian Mixture 

Model (GMM), 2. The development of a U-Net model that 

minimizes resource requirements, computational time, and 

model complexity while preserving accuracy.  
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The study utilizes a Geospatial Defense Intelligence 

Agency (AIGA) dataset. B. M. Matosak [17] has developed a 

model integrating Long Short-Term Memory (LSTM) and U-

Net. The study utilized Landsat-8 and Sentinel-2 images for 

detecting deforestation in the Cerrado region. Z. Wang [18] 

introduces RepDDNet, which is capable of effectively 

extracting contextual semantic features with Siamese 

backbone and encoder-decoder architecture. Compared to 

deep learning models incorporating re-parameterization or 

segmentation, the proposed RepDDNet demonstrated 

exceptional performance. Haseeb Azizi [19] employed 

Random Forests (RF) to estimate Fractional Snow Cover 

(FSC). The analysis revealed that the RF models performed 

variably across different elevation zones.This literature survey 

is centered on research related to forest change detection. The 

datasets utilized, and the methodologies applied in prior 

findings are detailed in the accompanying figures: Figure 1 

and Figure 2. 

 
Fig. 1 Methodologies used in existing findings 

 
Fig. 2 Percentage of dataset usage in existing studies 

As shown in Figure 1. U-net is used as a baseline model 

in most existing findings, and few findings have presented 

enhanced performance using an attention-based approach. 

There are very few papers based on DeepLabV3. As shown in 

Figure 2, 44% of studies used the Sentinel dataset,17% used 

the Landsat dataset,17% of studies presented results using 

both Sentinel and Landsat datasets, and 22% of studies 

presented results using other datasets, e.g. Optical images, 

images acquired using Google Earth Engine and aerial images. 

Key findings based on the literature survey are as follows:  

1. Sentinel2 dataset is used in most of the existing findings, 

and U-Net is used as a baseline model for forest change 

detection. 

2. All the recent findings suggested using attention-based 

semantic segmentation approaches for change detection. 

Attention U-Net demonstrates the highest performance 

among the models evaluated [6, 5, 2, 10, 7, 11]. 

3. Few studies highlighted future research using the 

Residual Attention U-Net, which includes a greater 

number of parameters than the Attention U-Net, as it has 

the potential to enhance the performance of the Residual 

U-Net [6, 13]. 

4. We must address the challenges in processing images 

with seasonal variations [8]. 
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5. Further studies are needed to utilise diverse datasets to 

make Amazon rainforest monitoring more efficient [14]. 

6. A fixed NDSI threshold is needed to identify seasonal 

variation in forest cover [19]. 
 

The following research gaps are identified through the 

literature survey- 

1. Findings that combine the Sentinel-2 dataset with spectral 

indices for forest cover change detection are unavailable. 

2. Existing findings highlighted the need for forest change 

detection using a semantic segmentation model that 

combines attention gates and residual blocks to enhance 

performance. 

3. Existing findings highlighted the need for research that 

combines spectral indices (NDSI, NDVI )with semantic 

segmentation results to detect seasonal variations in forest 

cover (e.g. Snow cover). 
 

This study proposes an AResU-Net attention-based 

residual U-Net semantic segmentation model that combines 

results with spectral features for forest change detection. The 

objective of the proposed model is to estimate the percentage 

of forest change (afforestation/deforestation) and identify 

snow cover to eliminate the possibility of incorrect detection 

of deforestation during winter. Details about the material and 

methods are given in section 3. Section 4 presents the result, 

and section 5 concludes and presents future directions. 

3. Materials and Methods  
The AResU-Net semantic segmentation model is 

presented as an advanced approach for analysing deforestation 

and afforestation dynamics. The model is designed to process 

a pair of input images (.tiff ) sequentially and generate binary 

temporal masks (M1 and M2). The model is trained using a 

pair of .tiff files and associated binary mask to produce an 

output binary mask. In the predicted binary temporal mask, 

deforested areas are represented in black, while forested areas 

are depicted in white. The temporal binary masks generated 

through this process (M1 and M2) are subsequently compared 

pixel by pixel to facilitate change detection, and change is 

stored in the resulting mask (RM).  

The snow mask is derived from the input images (.tiff) 

using the “Normalized Difference Vegetation Index (NDVI)” 

and the “Normalized Difference Snow Index (NDSI)”, which 

assists in the identification of snow-covered regions. To 

enhance the accuracy of forest change estimations, snow 

masks are excluded from the change detection mask (RM), 

thereby mitigating the risk of erroneously categorizing snow 

as deforested land. 

This research work proposes a system with the ability:- 

1) To generate the mask for the unseen input images. The 

system is proposed to generate the output mask (Geotiff 

image). Output mask serves as Ground truth /labelled 

data. In the generated output mask, each pixel is classified 

as belonging to a forest or not (background). 

2) To detect forest changes, i.e., deforestation/afforestation, 

by comparing two temporal masks.   

3) To identify and eliminate snow cover from the change 

detection mask. 

This section further details 3.1 Dataset, 3.2 Proposed 

Architecture and 3.3. Model Implementation.  

3.1. Dataset Details 

The dataset contains high-resolution multispectral 

imagery from the Sentinel-2 Level 2A Satellite. The dataset 

covers two significant tropical forest regions: the “Amazon 

Rainforest” and the “Atlantic Forest” in Brazil. The images in 

the dataset are meant to train a “fully convolutional neural 

network” designed for semantic segmentation tasks, 

particularly in monitoring forest cover changes. Each image 

typically includes multiple spectral bands, such as RGB and 

Near-Infrared (NIR). The datasets also provide pixel-level 

annotations to classify areas as forested or deforested, 

enabling detailed analysis of forest cover changes over time 

using various deep learning models. The dataset consisted of 

.tif images of sizes (4, 512, 512). These images were converted 

to patches of size (4, 128, 128) for model input and were split 

into ‘training’, ‘validation’, and ‘test datasets’. The models 

were trained on the training dataset (15155 patches), with 

validation on the validation dataset (3789 patches). 

3.1.1. Dataset Link 

https://zenodo.org/records/4498086#:~:text=This%20dat

abase%20contains%20images%20from,%2C%203%2C%20

2%20and%208 

3.2. System Architecture 

The layout of the components detailing the system's flow 

and operations of the proposed forest change detection system 

is shown in Figure 3. The proposed system is trained using an 

input image-mask pair to generate the binary mask of the input 

images indicating the ‘forest’ and ‘non-forest’ regions in the 

input image.  The proposed system demonstrates semantic 

segmentation of the input image, generating the result as an 

output mask with a pixel-wise classification indicating the 

presence or absence of a forest.  

The AResU-Net model combines residual connections, 

attention gates, and an encoder-decoder (U-Net) structure for 

binary segmentation. Residual blocks extract semantic 

information from input images, followed by down-sampling 

with max-pooling layers. In the Encoder structure, five levels 

of residual blocks progressively extract features, with filter 

sizes doubling at each level. The decoder structure uses up-

sampling layers to restore spatial dimensions and ‘attention 

gates’ to focus on relevant regions in skip connections. The 

output layer uses the conv2D layer with sigmoid activation for 

binary classification, producing a single-channel prediction. 

The deepest layer, which bridges the encoder and decoder, 

also uses residual connections. 
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Fig. 3 System architecture

3.3. Model Implementation 

This section covers details about data pre-processing, 

major model components, model workflow, change detection 

and snow identification.  

3.3.1. Data Pre-Processing 

This section presents pre-processing of the multispectral 

image with 4-channel (RGB + NIR) where each pixel is 

represented by four spectral values ‘blue (band 2)’, ‘green 

(band 3)’, ‘red (band 4)’, and ‘near-infrared (band 8)’. Each 

pixel will have four values corresponding to the reflectance of 

bands 2, 3, 4, and 8. 

The main preprocessing steps are as follows- Clipping 

image and image enhancement.  

Clipping Image 
The function is implemented to convert clipped images to 

NP array as follows:  

1) Input Image: GeoTIFF image 

2) Clip images to 128 x 128 resolution patches: The input 

image is clipped into smaller patches of 128 x 128 

pixels. 

3) Convert input image to numpy arrays.  

Image Enhancement 

An enhanced image is generated by applying a non-linear 

transformation to adjust contrast using gamma correction. The 

gamma value is set to 0.5, which can be adjusted for better 

contrast. 

3.3.2. Major Model Components 

The Residual Block is the first important element. Two 

Conv2D layers with ReLU activation and residual skip 

connections make up this block. Residual blocks perform well 

in deep networks because they skip over layers and preserve 

key properties. The second major component is Attention 

gates. This component is applied to skip connections to 
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selectively highlight relevant features from encoder layers and 

ignore less prominent features, which helps in more accurate 

segmentation. A description of major model components is 

outlined in Table1. 

Table 1. Major model components 

Component Description 

Residual Blocks 

Two Conv2D layers with ReLU 

activation and skip connections to 

retain spatial features. 

Encoder 

Structure 

Five levels of residual blocks with 

increasing filter sizes, using max-

pooling for down-sampling. 

Bridge Layer 

The deepest layer connects the 

encoder and decoder, utilizing residual 

connections. 

Decoder 

Structure 

Up-sampling layers to restore spatial 

dimensions and integrate skip 

connections. 

Attention Gates 

Applied to skip connections to 

highlight relevant features and ignore 

less prominent features 

Output Layer 

A Conv2D layer with sigmoid 

activation generates a single-channel 

binary segmentation mask. 

 

Hyperparameters & Training Configuration 

The input shape is (128, 128, 4), where the model accepts 

128x128 patches with four channels. As for the number of 

filters used in Residual Blocks, for progressively deeper 

layers, the filters used are 64, 128, 256, 512 and 1024. The 

model is compiled with an AdamW optimizer with a learning 

rate 1e-3 and weight decay of 1e-5. Binary Cross-Entropy is 

the loss function, as it is suitable for binary segmentation. A 

batch size of 4 was chosen to balance training speed and 

memory requirements. The maximum epoch limit is set to 

100. However, an early stopping mechanism is applied 

through a callback, which monitors validation loss with a 

patience of 10 to prevent overfitting. Best weights are restored 

after training is complete. 

3.3.3. Model Workflow: Workflow of the Proposed Model is 

Given Below 

1. The input image (in .tiff format) is preprocessed and 

resized to (128, 128, 4). 

2. The image is fed into the encoder with residual blocks, 

progressively extracting features with increasing filters 

and downsampling. 

3. After reaching the bridge layer, the abstract features are 

passed to the decoder. 

4. The decoder upsamples the feature maps, reducing the 

number of filters progressively. 

5. Attention gates refine the features before passing them to 

the decoder, focusing on the relevant areas. 

6. The output layer processes the output from the decoder to 

produce a binary mask of size (128, 128, 1). 

7. The sigmoid activation outputs the probability of each 

pixel being part of the foreground. 

8. The Binary Cross-Entropy loss is computed, and the 

model is trained with the AdamW optimizer. 

By the end of the training process, the model can predict 

a binary mask for any given .tiff input, effectively performing 

semantic segmentation. 

3.3.4. Change Detection (Afforestation / Deforestation) 

This function compares the two temporal masks and 

identifies each pixel as afforested and deforested.  

Steps 1 for Marking Pixel as Afforested and Deforested 

1. It detects deforestation by identifying pixels that changed 

from white (1) in past_mask to black (0) in current_mask. 

2. The detected deforested pixels are assigned a red colour 

([255, 0, 0]) in change_mask. 

3. It detects afforestation by identifying pixels that changed 

from black (0) in past_mask to white (1) in current_mask. 

4. The detected forested pixels are assigned a green colour 

([0, 255, 0]) in change_mask. 

 

Steps 2 for Calculating Percentage Change    

1. The function calculate_change_percentage computes the 

percentage of deforested and afforested areas in a given 

change mask image. 

2. It first calculates the total number of pixels in the image. 

3. It counts deforested pixels (red: [255, 0, 0]) and afforested 

pixels (green: [0, 255, 0]) using NumPy operations. 

4. The percentages are computed by dividing the respective 

pixel counts by the total number of pixels and multiplying 

by 100. 

5. The function returns the computed deforestation and 

afforestation percentages. 

3.3.5. Snow / Ice Cover Detection and Integration with 

Semantic Segmentation Results 

Detection of the presence of snow helps us minimise the 

misclassification of afforestation and deforestation areas. 

Snow can diversly impact models trained to identify forest 

cover changes, especially when bi-temporal images are 

captured in different seasons. The snow index helps 

differentiate snow cover from actual vegetation so the model 

can focus on identifying true changes in forest cover without 

being confused by seasonal snow. Thus, the primary goal of 

snow detection is to exclude snow-covered areas from 

contributing to change detection. When a model sees a 

summer image without snow and a winter image with snow, it 

might interpret the appearance of snow as deforestation. Using 

a snow index, a snow mask is created in the algorithm, and 

these areas are identified and masked to ensure they don't 

influence the final afforestation or deforestation change 

detection results. A survey of the recent findings is done to 

calculate snow masks for a given input image. Studies by 

Poussin C. et al. [20], Wang Y. et al. [21], Wang G. et al. [22] 
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and He et al. [23] used NDSI to detect the presence of snow. 

With NDSI>0, NDSI>0.4 is considered as the presence of 

snow. Wang, Y. et al. [21] and He et al. [23] also used NDVI 

for snow detection with NDVI>0 no snow presence.  

To create a snow mask from the input image, the 

algorithm leverages NDSI, NDVI and binary dilation. These 

spectral indices automatically outline landscape features like 

snow, ice, vegetation and water in Sentinel imagery, where 

they create an ‘index stack’ using the three indices sets. The 

following section presents the computation of NDSI, NDVI 

and binary dilation. 

Computation of NDSI 

NDSI helps detect areas that might contain snow, thus 

excluding these areas during change detection. This 

calculation can be done using NumPy, which supports array-

based operations necessary for raster band manipulation. 

NDSI=Green-NIR/Green+NIR 

Where,  

1) NIR is the reflectance value of the Near Infrared Band 

(Band 8) 

2) Green is the reflectance value of the Green band (Band 3) 

3) The proposed algorithm uses a threshold of -0.1, i.e. 

NDWI > -0.1, which helps identify pixels with a 

reflectance similar to snow.  

Computation of NDVI 

NDVI measures vegetation density and health based on 

the response in the near-infrared (NIR) and red bands. NDVI 

values closer to 1 represent denser vegetation. Avoiding areas 

with low or negative NDVI values is helpful since snow-

covered areas can sometimes yield low NDVI, masked with 

snow index logic. Like NDWI, NumPy handles NDVI 

computations efficiently by operating on individual bands of 

the raster. 

NDVI=NIR-Red/NIR+Red[21] 

Where, 

1) NIR is the reflectance value of the Near Infrared Band 

(Band 8) 

2) Red is the reflectance value of the Red band (Band 4) 

3) The proposed algorithm uses a threshold of 0.1, i.e. 

4) NDVI < 0.1, which excludes pixels with high vegetation 

density, as snow-covered areas usually have low NDVI.  

 

Computation of Binary Dilation              

Another technique used for the creation of the snow mask 

was binary dilation. It is a function from the SciPy library that 

expands the boundaries of snow-covered areas detected in the 

snow mask. This operation helps ensure that even the images' 

isolated or small snow patches are fully included in the mask, 

reducing potential edge misclassifications. Thus, the binary 

dilation operation helps produce a more robust semantic 

segmentation result. Mathematically, binary dilation at each 

pixel checks if any neighbouring pixels within the structuring 

element are True (or 1). If at least one neighbouring pixel in 

the set filter grid 3x3 is set to True, the central pixel is set to 

True. Thus, for each pixel, the binary dilation operation can be 

defined as follows: 

dilated_mask_matrix(i, j) = max (mask_matrix(i+m, j + n)) 

Where, m n represents the offsets within the structuring 

element.  

Snow mask calculation steps are listed in Figure 4.  

1) Calculate NDSI using bands b3 and b8 

ndsi = (b3 - b8) / (b3 + b8) 

2) Calculate NDVI to help filter vegetation areas 

from the snow mask using B8 and B4 

ndvi = (b8 - b4) / (b8 + b4) 

3) Apply NDSI and NDVI thresholds to create a 

refined snow mask 

snow_mask = (ndsi > -0.1) & (ndvi < 0.1)   

4) Apply morphological dilation to expand the 

detected snow areas. binary_dilation imported from 

scipy.ndimage. 

snow_mask_dilated = 

binary_dilation(snow_mask, iterations=1)   

import  

Binary mask generated with 1 for snow, 0 otherwise 
Fig. 4 Steps for snow cover detection using NDVI, NDSI and binary 

dilation 

The snow masks created using these techniques are then 

incorporated into the change detection process by masking out 

these pixels during the afforestation and deforestation change 

detection process. Thus, using techniques such as NDVI, 

NDSI and binary dilation and by masking snow areas, the 

model’s performance is enhanced for seasonal images, 

ensuring only actual afforestation and deforestation changes 

are highlighted without the interference of temporary snow 

coverage. By separating out real forest change signals and 

eliminating the impact of snow on these forecasts, the masking 

technique improves accuracy. Only actual vegetation-related 

changes are noted to reduce misinterpretations caused by 

seasonal variations. The model can perform more robustly 

across datasets with varying temporal spans because it is less 

susceptible to seasonal artefacts.  
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4. Results and Discussion  
This section presents the findings of the proposed model 

- AResU-Net Figure 5 shows the binary mask predicted by the 

proposed model. The predicted binary mask closely aligns 

with the ground truth, demonstrating the effectiveness of the 

proposed model. The visual similarity between them indicates 

high accuracy in segmentation, reinforcing the model’s 

reliability for the given task. 

Original Image Enhanced Image Ground Truth 
Predicted mask using 

AResU-Net 

    

    

    

    

    

    
Fig. 5 Original image, enhanced image, ground truth and predicted mask 

Due to the unavailability of bitemporal images in the test 

dataset, any two images were taken for the sake of 

presentation. It was assumed that image1 is the past image, 

and image2 is the current image. 

1) The red colour denotes deforestation. 

2) The green colour denotes afforestation. 

3) Blue colour denotes snow cover. 

Further, this section presents the results of the proposed 

model  

1) Figure 6: Testing using images given in the test dataset 

2) Figure 7: Testing using images of large size acquired from 

Google Earth engine 

3) Figure 8: Testing using images from the Nepal region 

acquired using the Google Earth engine 
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Figure 6 Shows the result obtained for the images from 

the test dataset. Each sample includes two input images, 

enhanced images after preprocessing, their ground truth 

binary masks, and the binary mask predicted by model 1 

(proposed model), and the resultant mask generated is 

presented along with the ground truth mask.  

As shown in each sample, ground truth and predicted 

change detection masks are similar, indicating the model's 

efficiency in change detection. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Percentage of forest change for test images 

Figure 7 shows the results obtained for large images. The 

proposed model efficiently processes .tif images of any size, 

seamlessly handling large-scale inputs by re-stitching the 

output without losing accuracy.  

Its adaptability ensures reliable forest change detection 

across varying image dimensions, demonstrating robustness in 

diverse real-world scenarios. 
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(a) 

 
(b) 

Fig. 7 Percentage of forest change for images of large size 

Figure 8 shows the results obtained using random .tif 

images of any size captured from Google Earth Engine from 

areas of Nepal with integration of snow index. 

The proposed model accurately detects changes in 

afforestation and deforestation while effectively 

distinguishing snow cover during winter using the integrated 

snow index. This ensures that seasonal snow is not 

misclassified as deforestation. Results on random .tif images 

from Google Earth Engine over Nepal validate the model’s 

high accuracy in change detection, demonstrating its 

reliability in forest monitoring. 

 

 
Fig. 8 Snow detection and its elimination while calculating the 

percentage of forest change 
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Table 2 presents the performance metrics evaluated for 

standard U-net, Residual U-net, and AResU-Net. As indicated 

in Table 2, AResU-Net outperforms the other two models. 

Table 2. Validation results of U-Net, residual U-Net and proposed 

hybrid model 

Model 
Evaluation Metrics 

Accuracy Precision Recall F1 Score 

AResU-

Net 
0.964782 0.946866 0.968095 0.957363 

Residual 

U-net 
0.9352 0.905 0.944 0.923 

Unet 0.9332 0.8982 0.943 0.920 

 

 
Fig. 9 Validation results of U-Net, residual U-Net and AResU-net 

The results presented in Table 2 are represented in 

graphical form to compare each evaluation metric, which is 

shown in Figure 9.  

The figure shows that the proposed model demonstrated 

superior performance to the U-Net and Residual U-net 

models. Figure 10 shows the screenshots of the evaluation 

metrics obtained for the models. 

 

 
AResU-Net findings 

 
U-net Experimental Findings 

 
Residual U-net Experimental Findings 

Fig. 10 Screenshots of the evaluation metrics obtained for the models 

Table 3. Comparison of the AResU-Net performance over existing state-of-the-art models

Paper Ref. 

No. 
Methodology used 

Evaluation metrics 

Precision Recall F1-score Accuracy 

[6] 

Attention U-net with sentinel2 imagery for deforestation 

detection 

Training Amazon - Atlantic Forest and testing Atlantic 

Forest -   Amazon 

0.9222 0.8829 0.9021 - 

U-net 0.9169 0.8847 0.9005 - 

[5] 
TransU-Net++: Deforestation mapping using attention 

gated U-net. 
0.7626 0.9087 0.8310 0.8821 

[10] 

Attention-based semantic segmentation approach. 

HRNet+CBAM: Improvement over previous HRNet by 

combining with convolutional block attention module 

(abbreviated as CBAM) Using Landsat8 dataset 

- - - 0.9224 

[7] 
Attention U-net demonstrated the best prediction for both 

F1 and IoU. 
- - 0.90 - 

[11] 

Channel Attention Mechanism (CAM). 0.9491 0.8016 0.8691 - 

Spatial Attention Mechanism (SAM) 0.9428 0.8080 0.8702 - 

SAM + CAM 

Amazon forest area Landsat dataset 
0.9399 0.8162 0.8736 - 

[9] 

 

ForestViT-Vision transformer approach using 

Amazon forest images 
0.80 0.94 - - 

[24] DeepLabv3+ using Landsat OLI-8 0.7176 0.7229 0.7180 - 

0.86

0.88

0.9

0.92

0.94

0.96

0.98

Accuracy Precision Recall F1 Score

Evaluation Metrics

Validation results of U-Net, Residual U-Net 

and AResU-Net 

AResU-Net Residual U-net Unet
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[14] Results obtained using Res-Unet 0.82.3 0.74 0.78 - 

AResU-Net 

Proposed 

model 

Forest change detection semantic segmentation using 

attention-based Residual U-net with snow mask detection. 
0.946866 0.968095 0.957363 0.964782 

Table 3 outlines the comparison of the AResU-Net model 

with existing models. The study by K. Kalinaki, O. A. Malik, 

and D. T. Ching Lai [2] introduced the Attention residual U-

net for forest change detection. Using a Dataset of 

924   Sentinel2 images, the study [2] achieved a remarkable 

Mean Intersection over Union(IOU) of -0.9330. The proposed 

AResU-Net model also demonstrated a high Mean 

Intersection over Union (mIOU)- 0.929982. Findings by 

David John et al. [6] highlighted the improvement in accuracy 

using attention over the U-net model. The presented findings 

of AResU-Net align with those of K. Kalinaki et al. [2] and 

David John et al. [6]. The results of the evaluation of existing 

recent findings [5, 7, 10, 11, 14, 24], also presented in Table 

3, vary in dataset usage, methodologies followed for the 

implementation and evaluation metrics compared to the 

proposed method. AResU-Net performance is improved over 

U-Net and residual U-net due to incorporating attention gates 

and residual blocks for semantic segmentation. This 

improvement can inspire further research and development in 

this area. 

 

5. Conclusion  
This study introduces AResU-Net, a sophisticated hybrid 

attention-based U-Net methodology aimed at achieving 

semantic segmentation to detect changes in forest cover. The 

model can find the percentage of deforestation and 

afforestation by pixel-by-pixel comparison of a given pair of 

temporal sentinel2 images. Importantly, the model is designed 

to handle seasonal variations, especially during winter, by 

calculating snow/ice cover using NDVI, NDSI spectral 

indices and binary dilation. The calculated snow mask is 

eliminated from the temporal binary masks before calculating 

the percentage of forest change. Removing snow cover from 

the binary mask significantly reduces the risk of 

misclassifying snow cover as deforestation, thereby enhancing 

the model's accuracy. The model performance is validated 

using unseen sentinel2 images acquired using Google Earth 

Engine. Also, the model is implemented to handle input 

images of any size. The model is validated by acquiring 

images from the Nepal region, including snow. The 

performance of the model is compared with existing findings. 

Visual results obtained and evaluation metrics show 

similarity, which underscores the performance of the proposed 

model.  

Based on the proposed work, the following future work is 

suggested: i) evaluation of the processing time of each model 

and presentation of its comparative analysis. ii) Use a pre-

trained model to check its impact on processing time. iii) Use 

an approach to eliminate haze clouds to improve change 

detection. iii) Improve NDSI accuracy by including the impact 

of topography data.
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