
International Journal of Engineering Trends and Technology Volume 73 Issue 5, 369-382, May 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I5P130 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Using Deep Learning Model to Estimate Cost of Software

Project Development

Ajay Jaiswal1, Jagdish Raikwal2, Pushpa Raikwal3

1Department of Computer Science & Engineering, Prestige Institute of Engineering Management & Research, Indore, India.
2Department of Information Technology, Institute of Engineering & Technology, Devi Ahilaya Vishwavidhalay, Indore, India.

3Department of Electronics and Communication Engineering, PDPM-IIITDM, Jabalpur, India.

1Corresponding Author : ajay.jaiswal55555@gmail.com

Received: 27 October 2024 Revised: 12 May 2025 Accepted: 26 May 2025 Published: 31 May 2025

Abstract- Effective software-related cost estimation is paramount in decision-making. Estimating is the macro activity that is

part of project methodology and allows for the effective delivery of projects. This is useful in project management because it

assists with implementing the necessary tasks. Pretty much the discussed parameter helps in the optimization of resources in

relation to the requirements for accomplishing project scope. There are several important factors that encompass software

projects, including time, resources, human resources, infrastructure and materials, finance, and risk. In case the cost estimate is

lower than required, the time for the development of the project will be longer and more expensive. The scope for waste of

resources has been exaggerated. Artificial intelligence is a fusion of machine learning and deep learning to produce smart

systems capable of posing solutions to problems. Software effort estimation assists in constructing the objectives, which include

planning, scheduling, and budgeting for a project. Different prediction trials mentioned above, which were expert opinion-based,

analogy-based estimates, regression estimations, categorization strategies, and deep learning algorithms, were suggested as

predictors of type of endeavors. Among the evaluation metrics discussed were Mean Absolute Error, Root Mean Squared Error,

Mean Square Error, and R-squared. Therefore, estimation has and will take a significant role in risk prevention measures in the

future. Metrics for assessment will be used in many assessments. After this, other studies intend to explain the reasons why

software developer cost modeling can be very beneficial in light of LSTM (Long Short-Term Model) and CNN (Convolutional

Neural Network) prospects introduced throughout the research. This method allows for solving intricate tasks with multiple

dependencies in an ever-changing environment by using ML (Machine Learning) and DL (Deep Learning) technologies. Further

studies reveal that the most common deep learning architecture in these studies was convolutional, and relatively little

application was deep learning.

Keywords - Machine Learning, Deep Learning, LSTM model, CNN, Software cost estimation.

1. Introduction
Building a fair and robust software product requires many

activities, from gathering and analyzing requirements to final

testing and maintenance, all of which must be performed

within time and cost constraints [1]. However, as the projects

evolve, the people who are involved in the managing

processes are now facing greater challenges in developing

software. Estimations of time and effort are also considered

critical planning processes for all commercial organizations.

Such measures are important for many, including the

customers of a company who participate indirectly in the

development process [2]. Estimation of software development

effort has elicited the use of various techniques. And in the

current circumstances, measure evaluation is of paramount

importance. Studies carried out by the Standish Group

revealed how only 32% of all software projects are delivered

with the right features, on time, and within budget. 24.4%

failed, meaning they were canceled or finished but never

utilized, and 44.4% did not fulfill the previously stated

requirements [3] [4]. Planning the software and its project is

one of the most important aspects of the entire process of the

development of software. It involves a collection of tasks and

activities that can be generally grouped as the creation of a

plan for the project, its implementation, estimating risks that

may arise, and generating alternative solutions for these

issues. Software cost and effort estimation is part of the project

planning process, which includes estimating project expenses

as well as the number of man-hours and time required to

execute the project. An erroneous estimate can lead to project

failure and greater expenditures. Inaccurate software project

estimates are caused by a number of factors, including

stakeholder governance, market pressures, project budgeting,

project risk management, required development effort

(capacity, estimation, and availability), project objective

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ajay.jaiswal55555@gmail.com

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

370

formulation, and project scheduling errors [5]. In the decision-

making process, an accurate estimate is crucial. Overestimating

project effort can lead to a project proposal being rejected,

whereas underestimating might cause work to be unfinished

owing to financial constraints and scheduling conflicts [6].

These models rely on prior completed projects that are

comparable to ongoing software endeavors to estimate.

Estimates are derived from dataset studies or data from earlier

program releases. Non-algorithmic estimation techniques

include analogy estimation, expert judgment techniques (such

as top-down and bottom-up estimation), learning-based

approaches (Artificial Neural Networks) [7–10], Machine

Learning (ML) [11], and Deep Neural Networks (DNN)), and

Long Short-Term Memory (LSTM). There are a number of

restrictions, including the need for large, inclusive, and

unbiased training data sets. Training and learning also require

a significant amount of time to attain a high level of accuracy

and relevance. Neural networks are, therefore, difficult to use

for high-dimensional, multi-objective data classification.

Accuracy, data requirements, interpretability, scalability, and

adaptability are important factors to consider when comparing

different models, including both conventional and deep

learning-based approaches for software project development

cost estimation. An organized comparison of the most popular

models can be found below (Table 1):

Table 1. Comparing different models

Model Type Accuracy Data Req. Scalability Adapt-ability

Expert Judgment Low–Medium Low Low Low

COCOMO/ Algorithmic Medium Medium Medium Low

Regression Models Medium Medium High Low

Random Forests Medium–High _ Medium Medium

SVM Medium Low–Medium Low Medium

Feedforward Neural Nets High High High High

LSTM/RNN High High Medium High

Transformers Very High Very High High Very High

Even with the availability of numerous estimation models

and techniques, accurately estimating software development

cost and effort is still an ongoing task. Missed deadlines,

budget overruns, and project failure can result from estimation

errors. Analogy estimation, expert judgment, machine

learning, deep neural networks, and LSTM are examples of

traditional and learning-based approaches that still face

challenges like reliance on sizable, objective datasets, lengthy

training periods, and trouble managing high-dimensional,

multi-objective data. Reliable, real-time decision-making in

project planning suffers from these issues.

Although there are a number of estimation models, such

as machine learning and traditional approaches, there aren't

many reliable, scalable, and accurate models that can handle

high-dimensional, multi-objective data with sparse or

unbalanced datasets. Furthermore, a large number of existing

models have limited practical utility because they are unable

to adjust to changing project dynamics or generalize well

across a variety of software projects. Better deep learning

models are required in order to decrease reliance on large data

sets, speed up training, and produce more accurate and easier-

to-understand cost and effort estimates.

Over time, the application of deep learning techniques to

software project cost prediction has undergone significant

change, reflecting both the growing complexity of software

systems and more general trends in artificial intelligence

deployment. At first, the primary methods for estimating

project costs were expert opinion, historical comparisons, and

computer models such as COCOMO. Although these models

were interpretable, they were not flexible enough to account

for the intricacy of modern construction techniques. As

processing power and information became more accessible,

machine learning techniques began to improve on traditional

methods. Deep learning's recent success can be attributed to

its ability to model intricate, nonlinear relationships between

a range of project characteristics, such as team preparation,

technology framework, code parameters, development

method, and project cost outcomes.

2. Background

Deep learning has proven to be significantly more

successful than conventional estimating methods when

working with complex, high-dimensional data. Traditional

approaches, like linear regression or other machine learning

algorithms, frequently rely on assumptions about the

distributions and relationships of data, which may limit their

accuracy and flexibility. These methods are typically needed

for a large amount of human feature engineering, but they are

less successful at detecting nonlinear patterns. On the other

hand, because deep learning models, such as neural networks,

automatically extract intricate features and patterns from raw

data, they can perform better on tasks like time-series

forecasting. Additionally, models trained on one task can be

successfully transferred to another with little extra effort

thanks to transfer learning and deep learning, which scale well

with large databases.

Estimation shows how much cost, time, effort, and

resources are needed to develop a system or product. Although

there are several approaches for estimating effort, it is still

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

371

regarded as one of the most interesting tasks. However, ML

techniques are not without their limits. First, repeated items

made in medium to large numbers are well suited for machine

learning (ML) based techniques (Hammann, 2024). In many

cases, business software tools include databases containing

extensive volumes of financial and industrial data. [1]

Researchers will give some background on deep learning

techniques in this part. After giving a brief overview of deep

learning, researchers discuss its differences from machine

learning. Researchers outline the situations in which DL is

necessary. Deep learning is a branch of machine learning that

draws inspiration from the way the human brain processes

information.

Why Should you Endeavor to Study Deeply?

This question may be addressed by a number of

performance components, including the Universal Learning

Approach. DL is sometimes referred to as universal learning

because of its performance in practically all application

fields.

1. Robustness: Generally, deep learning algorithms do not

require well-defined features. Rather, the best qualities

are automatically acquired in a way that is pertinent to

the current work. Hence, resilience to common

alterations.

2. Generalization: The same Deep Learning (DL)

technique, also known as Transfer Learning (TL), as

explained in the next section, can be used for different

kinds of data or applications (Figure 1).

3. Modeling: The purpose of the case study is to create two

cost models; hence, the following actions need to be

taken twice. The findings for the semi-finished and final

goods are shown together for ease of viewing.

2.1. Deep Learning (DL)

DL is also based on artificial neural networks, which in

turn give different explanations of the input data [12]. In

standard machine learning, the steps required to deal with the

classification problem involve step-by-step operations:

preprocessing, feature extraction, feature selection, training,

and classification. Moreover, machine learning algorithm

performance is strongly influenced by feature selection.

Deep learning has the ability to automate feature set learning

for a wide range of applications, in contrast to conventional

ML techniques [13] [14]. Data classification and learning

may happen at the same time, thanks to deep learning (Figure

3). When to Use Deep Learning Machine intelligence is

useful in many situations and can be on par with or superior

to human professionals in a number of them [15].

Neural network-based Deep Learning (DL) models

excel at recognizing complex trends and non-linear

correlations in data. Because they can learn features and are

highly expressive, they don't need a lot of manual feature

engineering. Despite their advantages, they have drawbacks,

such as high processing requirements that require substantial

training resources.

Fig. 1 Classification of deep learning methods [17]

2.1.1. Decision Trees (DTs)

DT is a popular interpretive tool that does a good job of

showing how decisions are made. They don't assume any

specific data distributions and can handle non-linear

connections by nature. However, DTs are prone to overfitting

and are unstable with slight changes, which leads to the

capture of noise in the training set. Individual DTs may not be

expressive enough to recognize more complex patterns in the

data, even though they perform well for simple tasks.

Deep Neural Network

Feedforward Neural

Network

Stacked Hidden Layers

Long Short-Term Memory

(LSTM)

Gated Recurrent Unit

(GRU)

Recurrent Neural

Network (RNN)

Convocational Neural

network (CNN)

Generative Adversarial

Networks (GANs)

Deep Learning

Architecture

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

372

2.1.2 Random Forest (RF)

These models decrease the overfitting issues related to

individual trees and provide more consistent forecasts. They

are great at handling non-linear interactions and offer

insightful analysis of the relevance of traits. Though they are

resource-intensive as their computational complexity

increases with the number of trees, though they are less of a

"black box" than DL models, Random Forests can still be hard

to read compared to more basic models. Which deep learning

model is best for categorization will depend on the specific

aim and the data. Still, among the most often used deep

learning models for categorization are CNNs, RNNs, and

LSTMs.

2.2. Deep Learning Approach(s) Classification

The three theorems of deep learning that are known today

consist of Semi-supervised, supervised, and unsupervised.

Moreover, RL, or deep reinforcement learning, is a type of

supervised methodology but is often regarded as footnote

supervised (See Figure 1).

2.2.1. Supervised Deep Learning

With this approach, there exists labeled data. If

researchers consider this method, then there are many possible

inputs and many possible outputs in the universe. If an agent

trainee well, then he may utilize the environment to determine

the suitable answers to questions. Some of the supervised

learning algorithms of deep learning include recurrent neural

networks, Convolutional neural networks, and deep neural

networks. RNNs also consist of Long short-term memory and

Gated Recurrent Units (GRUs) techniques. The main

advantage of this approach lies in the ability to collect or

output data based on previous information. It’s a drawback

that if the training dataset doesn’t contain plenty of samples

for the classes of interest, the decision boundary may become

overly stressed. In broad terms, this kind of quite powerful

method of learning is easier than the rest.

2.2.2. Deep Semi-Supervised Learning

The basis for mastering this method is semi-labeled

datasets. Furthermore, RNNs are employed in partially

supervised learning, including GRUs and LSTMs. Reducing

the quantity of labeled data required is one benefit of this

method. Semi-supervised learning is the best method for

classifying text documents since it overcomes the challenge of

obtaining a large number of tagged text documents.

2.2.3. Unsupervised Learning

This approach enables learning to proceed even when

labeled input is not available. Common unsupervised learning

techniques include generative networks, clustering, and

reduction of dimensionality. These methods have

demonstrated strong performance on non-linear

dimensionality reduction and clustering issues. Moreover, a

wide range of applications have employed RNNs for

unsupervised learning, including RU and LSTM techniques.

2.2.4. Reinforcement Learning

This led to the development of several improved

reinforcement learning systems. On the basis of this idea,

several supervised and unsupervised approaches have been

created. This learning is significantly more difficult than

standard supervised processes since the reinforcement learning

method does not have a fundamental loss function. Moreover,

supervised and reinforcement learning vary in two important

ways [18].

2.3. Deep Learning Network Types

The two most popular types of deep learning networks,

CNN and LSTM, are covered in this section. CNN was

covered in detail since it was so important. Moreover, it is the

most extensively utilized in several networks and a wide range

of applications. Deep learning is increasingly regarded by the

scientific community as a viable technique to enhance cost

estimates. Deep learning performs better than traditional

shallow learning methods because its features are more

carefully chosen and accurately represented. DL is a more

effective method for assessing software costs because it

enables the depiction of intricate relationships between effort

and cost components [19].

2.3.1. Convolutional Neural Networks (CNNs)

In deep learning, the CNN algorithm is the most popular

and extensively utilized. The primary benefit of CNN over its

forerunners is its ability to autonomously recognize important

traits without the need for human assistance. Numerous

applications, such as computer vision, audio processing, and

facial recognition, have made extensive use of CNNs. Similar

to conventional neural networks, CNNs were inspired by the

neurons seen in both animal and human brains. CNN mimics

the complex cell sequence that makes up the visual cortex of a

cat's brain, to be more precise.

CNN Architecture

There are several levels (sometimes referred to as

multiple building components) in the CNN architecture. The

levels of the CNN architecture are described in detail below,

along with their respective roles.

Convolutional Layer

The output feature map is created by convolving these

filters with the input image, which is represented as N-

dimensional metrics. The CNN input format is covered first in

the context of convolutional operation. The input of a CNN is

an image with several channels, whereas the input of a normal

neural network is a vector format.

Consistency with CNN

When it comes to CNN models, overfitting is the biggest

obstacle to well-behaved generalization. As will be covered in

the next section, a model is deemed over-fitted if it functions

exceptionally well on training data but poorly on test data

(unseen data). The opposite is achieved by an under-fitted

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

373

model, which absorbs too little information from the training

set. If a model shows good performance on both training and

testing data, it is said to be "just fitted". In Figure 2, these three

groups are shown. Regularization is assisted by a number of

intuitive ideas to help prevent overfitting; further details on

overfitting and under-fitting are included in later sections.

Fig. 2 Convolutional Neural Networks (CNNs)

Fig. 3 Architecture of LSTM model

2.3.2. LSTM (Long Short-Term Model)

LSTM networks (Figure 3) are designed with sequence

prediction problems in mind. According to Brownlee (2017),

there are several Long Short Term Model designs, such as

CNN-LSTM, stacked Long Short-Term Model, bidirectional

Long Short-Term Model, encoder-decoder Long Short-Term

Model, vanilla LSTM, and generative LSTM. The

statelessness, lack of temporal structure, clumsy scaling,

fixed-sized inputs, and fixed-sized outputs are some of the

drawbacks of multi-layer Perceptron (MLP) feedforward

artificial neural network (ANN) methods (Brownlee) [20].

LSTM may be seen as an addition to the network, in contrast

to the MLP network. Furthermore, LSTM makes up RNN

techniques. Unlike MLP networks, LSTMs can mimic parallel

input sequences, process variable-length input to generate

variable-length output, keep an internal state, and be aware of

the time structure of their inputs. According to Brownlee

(2017), the memory cell is the computational unit of the Long

Short-Term Model. These cells consist of gates and weights

(both internal state and output weights).

In addition to the fundamental advantages of deep

learning models, the effectiveness of deep learning

approaches for cost estimation in software project

development work is also influenced by realistic factors like

team experience and the chosen technology stack. Although

conventional estimation methods are usually ruled by

guidelines and mostly rely on expert judgment or historical

trends, deep learning models can learn from vast data sets to

reveal intricate, nonlinear interactions between project

elements and costs. However, a team with strong machine

learning, data science, and software engineering skills is

required for the successful implementation of deep learning.

The benefits of the approach may be compromised if

inexperienced teams fail to choose a model, preprocess data,

adjust it, and interpret the results. The technology framework,

comprising frameworks such as PyTorch, Tensor Flow, and

Keras, also influences scalability, integration with existing

systems, and development efficiency. Meeting the

computational demands of deep learning also calls for

advanced technology and resources such as data workflow

automation, GPU support, and cloud computing systems.

Deep learning can outperform traditional estimation methods

by producing more exact, data-driven forecasts that fit

changing project dynamics and organizational settings when

properly used by an experienced team with the appropriate

tools.

3. Related Work
One interesting trend is moving toward data-driven

estimation, which places an emphasis on obtaining and

choosing large, high-quality datasets from previous initiatives

in order to train deep learning models. Another trend that

enables organizations to apply knowledge from external

datasets or domains to their own environment, even in

situations where they have limited internal data, is the use of

model training and transfer learning. Generally speaking,

hybrid estimation methods that mix domain knowledge,

conventional models, and deep learning are increasingly

popular as they help to preserve accuracy, scalability, and

understanding. As data practices and tooling continue to

advance, deep learning is expected to play an increasingly

significant role in providing more accurate, flexible, and data-

informed cost estimation for software development projects.

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

374

A G Varshini, Priya, et al. (2019) [21], Software Effort

Estimation aids in project planning, scheduling, and

budgeting]. Numerous studies, including expert judgment,

regression estimations, categorization strategies, analogy-

based estimations, and deep learning algorithms, were put out

to forecast effort. Akhbardeh et al. (2021) [22] examined the

techniques for calculable factors that affect software cost and

presented studies that used machine learning techniques to

develop a trustworthy estimation technique. Machine learning

(ML) was used by Govinda et al. (2022) [23] to calculate the

costs of project management software using standard input.

Alauthman et al. (2023) [24] discussed the selection of

regression models for software development cost estimates. It

placed emphasis on matching models to the dataset used for

estimation and the software development technique. A

collection of assessments based on simple classifiers and

stacked ensemble classifiers with and without the feature

selection technique was published by Mustafa Hammad

(2023) [25]. A dataset from the software projects of 76

university students is used in the evaluation research. For any

assessment criterion, the feature selection strategy can

improve the performance of every stacked classifier. Selvam,

Karthick Panner, et al., (2024) [26].

Victor Uc-Cetina (2023), Recent Advances in Software

Effort Estimation using Machine Learning, addresses both

agile and non-agile approaches to software development effort

estimation using machine learning. It evaluates recent and

organized advancements in data-driven prediction models for

software effort estimation and talks about the benefits of

applying agile methodologies in this field. To increase the

accuracy of software cost estimation, Fizza Mansoor et al.

(2024), Improving the Estimation of Software Costs

Investigation, combine machine learning algorithms with a

variety of feature selection techniques. The study highlights

how Principal Component Analysis (PCA)-based feature

selection greatly improves model performance using the

COCOMO NASA dataset, highlighting the significance of

optimal feature selection in cost estimates.

The model estimates memory usage with a MAPE of

4.92% and predicts training step length with a MAPE of

9.51%. Various machine learning and deep learning methods

were employed to estimate the amount of work. Datasets for

estimating effort were gathered from Promise repositories,

GitHub, and ISBSG projects. PRED (25), the proportion of

projections with an MRE of less than or equal to 25%, was the

most often utilized indicator for estimations.

Key Research Findings are:

1. Conventional Models: In general, conventional models

are superior to deep learning. Several studies have

demonstrated that deep learning methods, specifically

Deep Neural Networks (DNNs) and Recurrent Neural

Networks (RNNs), perform better than traditional

estimating models such as Function Points and

COCOMO. This is especially true for large datasets with

complex feature relationships.

2. Temporal and Sequential Data: It has been shown that

Recurrent Neural Networks (RNNs), and specifically

LSTM networks, are particularly effective at cost

estimation when dealing with time-series or sequential

data, such as the cost trends of software projects over

time.

3. Quantity and Quality of Data: Large, high-quality

datasets are necessary for deep learning models to

function effectively. Numerous studies show that

insufficient data can have a detrimental effect on deep

learning models' performance, underscoring the

importance of feature selection and data preprocessing.

4. Hybrid Models: An emerging trend in the field is

combining deep learning with other machine learning

techniques (like ensemble methods). It has been shown

that by reducing bias and variance, this method improves

predicted accuracy.

5. Interpretability Issues: One of the main problems with

using deep learning techniques for software cost

estimation is the inability to read data. This is a serious

issue, especially when stakeholders must comprehend the

results.

These studies provide valuable insights into the evolving

application of deep learning in this field and show that, despite

its challenges, deep learning still has the potential to

revolutionize software project cost estimation and

management. The application of deep learning techniques for

software cost estimation is a novel and fascinating field with

significant potential to improve prediction accuracy and

reliability when compared to more conventional approaches.

However, there are problems with data quality, model

interpretability, and the need for big databases.

4. Performance Measures
Machine learning is a technique that teaches computer

systems to become better versions of themselves by using

historical data. Data-driven predictions are made when ML

algorithms build a prediction model (Figure 4) using a

collection of previously accessible training data [27]. Various

techniques are employed by numerous scholars and

professionals globally to enhance software estimates [28].

Numerous methods for assessing the precision of prediction

models have been put forth in the software estimating

literature to date. PRED, MMRE, correlation, and other

methods can be used to evaluate the performance of a model

that generates continuous output. PRED is a metric derived

from relative error, or RE, which is the relative magnitude of

difference between estimated and actual value. One approach to

conceptualize these metrics is to state that performance

measures and additional new variables, N+1, N+2, etc., are

included in the training data, which consists of records with

variables 1, 2, 3, and so on.

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

375

Fig. 4 Architecture of proposed tool

When using deep learning methods for cost estimation of

software project development, several statistical methods are

integrated into the modeling process to ensure the reliability,

generalization, and robustness of the estimates. Performance

Metrics like Mean Absolute Error (MAE), Root Mean

Squared Error (RMSE), and R² (Coefficient of

Determination), these metrics provide quantitative evidence of

model accuracy and help compare deep learning performance

with traditional estimation methods. RMSE is often preferred

when large estimation errors (e.g., budget overruns) are

especially critical. While deep learning introduces powerful

nonlinear modeling capabilities, these statistical methods are

essential to ensure the models are reproducible, interpretable,

and statistically valid for real-world cost estimation tasks in

software development.

4.1. MRE (Magnitude of Relative Error)

To assess the amount of estimating error in a single

estimate, first ascertain the Magnitude of Relative Error for

each data point. This step is used to calculate PRED (n) and

acts as a model for the one that follows. A score of 25 percent

or below denotes good results.

MRE = |predicted − actual| (1)

4.2. MMRE (Mean Magnitude of Relative Error)

Currently, the most efficient and accepted metrics for

estimating exactness are used in MMRE (Mean Magnitude of

Relative Error), also known as mean absolute relative error.

These measures include PRED at power levels 0.25, 0.50, and

0.75, respectively, and MMRE. Researchers employ a

standard metric known as Mean Magnitude of Relative Error

(MMRE) [29] to evaluate capabilities.

 MMRE = (
100

N
) ∗ ∑|predictedi − actuali |/(actuali) (2)

4.3. Mean Squared Error (MSE)

The average squared difference between the expected and

actual values in a dataset is determined using a metric called

mean squared error, or MSE. The squared residuals—the

Desharnais

Kitchenham

Maxwell
Select Dataset Normalization

Divided dataset in to train and Test

(70% for training and 30% for

testing)

Test Data Training data

Select Model

Training the Model

Testing the Model

Start

SVM

RF

DT

Ensemble

CNN

LSTM

Result Analysis (MAE, MSE

RMSE, R-Squared value)

Calculate Evaluation Criteria

(MMRE, MIMER, MOMRE

PRED(N)

End

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

376

discrepancies between the expected and actual values for

every data point are averaged to determine it. You can

evaluate the model's accuracy using the MSE number.

MSE = ∑{(predictedi − actuali)2} /N (3)

4.4. Root Mean Squared Error (RMSE)

Among other error metrics like Mean Absolute Error

(MAE) and Root Mean Squared Error (RMSE), Mean Squared

Error is commonly used to assess model performance. RMSE

computes the square root of the average squared difference,

whereas MAE measures the average absolute difference

between expected and actual values. Because they penalize

large errors more harshly than the MAE, the MSE and RMSE

are more susceptible to outliers.

 RMSE = √(MSE) (4)

4.5. R-squared Error (R2)

The percentage of the dependent variable's variation that

can be predicted by the independent variables is shown by this

statistical metric. To calculate the R-squared (R²) value from

the RMSE, you need the total variance (SST) of the observed

values. First, Calculate RSS (Residual Sum of Squares), then

calculate SST (Total Sum of Squares):

R Square = 1 − (RSS/SST) (5)

4.6. PRED (n) Accuracy of Prediction

In addition, a model must be accurate to within 25% of

cases, or 75% of the time [33]. To find the accuracy rate

PRED(n) (represented by n), divide the total number of data

points in a data set that has an MRE of 0.25 or less

(represented by k) by the total number of data points in the

data set. The derived equation is PRED (n) = k/n, where n =

0.25 [30]. PRED(n) frequently displays the average

percentage of guesses that were within n percent of the actual

values. PRED = 50%, for example, suggests that half of the

estimates are within 30% of the real if there are N datasets.

MREi<=n/100,then

PRED(x) = (
100

N
) ∗ ∑ i … N1, else 0~ (6)

The anticipated estimated value is closer to the actual

estimate, the lower the MMRE value, and vice versa.

Reviewing previous research on software cost assessment is

being done [31]. Over the past ten years, a number of meta-

heuristic approaches for software cost estimates have been put

into practice. Using deep learning techniques for software

project development cost estimation may result in significant

prediction errors due to a number of important factors. Despite

their great accuracy and flexibility, deep learning models are

not resistant to large and consistent changes in project costs.

Understanding the reasons for and features of these errors is

necessary to improve model reliability and decision-making.

Significant prediction errors in deep learning-based cost

estimation are caused by model design, data limitations, and

real-world project uncertainty. Beyond simply improving

model performance, identifying, assessing, and correcting

these errors is essential.

The proposed deep learning model achieved superior

accuracy in software cost estimation compared to state-of-the-

art methods, such as traditional machine learning algorithms

and deep learning architectures. Research on the optimization

of software cost estimation has computed the efficacy of

metaheuristic algorithms. The author carried out an

exploratory longitudinal case study in [32] [33]. Semi-

structured interviews and archival research were used to

gather data. The accuracy of effort estimation is increased by

the two-stage estimation procedure, which re-estimates the

analysis step.

In software evaluation, undervaluation is the predominant

trend, and work overspending is more common in less

experienced teams. Researchers have identified several

limitations in the literature, and our experiment has shown that

the majority of researchers overlook the preprocessing

processes. In addition to these restrictions, attribute selection

is a significant restriction that directly impacts memory

utilization and outcomes. Thus, in order to get beyond these

restrictions, we do these simple actions (Figure 5). These

methods collectively ensure that deep learning models used

for cost estimation in software projects are not only accurate

but also trustworthy, transparent, and repeatable, which is

essential in real-world decision-making scenarios.

5. Experiments and Results
This section presents the outcomes of the study carried

out in an organized way for cost estimation of a software

project.

5.1. Datasets Description

5.1.1. Desharnais Dataset

Since their existence would have affected the accuracy of

the findings, researchers decided to leave these projects out of

the estimation process. 77 software projects were finished

after the data preprocessing stage.

5.1.2. Maxwell Dataset

One of the biggest commercial banks in Finland provided

the Maxwell dataset, which consists of 62 projects with 23

attributes; a piece gives the Maxwell dataset a thorough

explanation.

5.1.3. Kitchenham Dataset

The Kitchenham dataset, compiled by Kitchenham and

her colleagues, encompasses data from multiple sources,

including proprietary and public domain projects.

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

377

Experiment Design (Figure 5)

• Apply Feature Selection Method

• Ensemble Learning Methods

• Computing the results

Fig. 5 Experiment setup for software cost estimation

5.2. Extracting Features for Estimating Software Costs

When creating models to estimate software project

costs, feature extraction is a critical step in the process. The

Word2Vec approach is used in this work to extract pertinent

features from Desharnais, Kitchenham, and Maxwell

datasets. After they have been retrieved, these characteristics

are added to the cost calculation procedure. Table 2 below

presents the characteristics that were extracted from the three

datasets and gives a detailed summary of the attributes that

may be taken into account during the cost-estimating

process. By using these characteristics as input variables,

prediction models that can more precisely and accurately

estimate the costs of software projects may be developed.

Table 2. List of features extracted using Word2Vec

Datasets Extracted Features

Desharnais

Project, Points NonAdjust, ManagerExp,

Adjustment, YearEnd, Length Transactions,

PointsAjust, Effort, TeamExp,

Maxwell

Effort, Har, Year, Duration, App, T14,

Source, Nlan, T06, T05, T15, T09, Size,

Time

Kitchenham
Adjfp, Estimate method, Client code,

Estimate, Projecttype, Duration, Effort

5.3. Selecting Features for Estimating Software Costs

It is critical to select features for a model if one is to build

reliable and reasonable software cost-estimating models. In

order to obtain the most relevant features while mitigating the

risk of overfitting the predictive models, the study observed

the RFE methodology to glean the most salient features from

three datasets. RFE is quite popular in regression modeling for

regularization and feature selection. It works by successively

eliminating elements that, according to a pre-defined rule, are

deemed unnecessary or redundant. These repeated steps lead

to a shorter and clearer explanation of the model, which

finalizes with the strongest predictors that remain in the

model. After the RFE method, features that were gathered

from three datasets are shown in Table 3.

Table 3. List of features using RFE

Dataset Selected Features

Desharnais
Project, Transactions, Effort, TeamExp,

PointsAjust, PointsNonAdjust

Maxwell
App, Effort, Har, Source, Nlan, T05, T09,

T15, Year, Duration, Time, Size

Kitchenham
Effort, Project type, Client code, Duration,

Estimate, Adjfp

Table 2. Each dataset is represented by a row in the table,

while the columns indicate the specific features assigned to

each dataset. These features were chosen because they have

the potential to greatly contribute to accurate software cost

prediction. By adding these selected features into predictive

models, the software cost-estimating process can benefit from

a more robust and informative collection of input variables,

resulting in higher cost estimation accuracy.

5.4. Performance Evaluation Outcomes on Various ML

Models

This section discusses the performance metrics of various

ML models on all three datasets. It describes different kinds of

errors calculated for each model.

5.4.1. On the Desharnais Dataset

Different ML models, including LR, DT, SVM, and

Ensemble, were evaluated on the Desharnais dataset using

various performance metrics, as shown in Table 4.

Table 4. Error metrics obtained on the desharnais dataset

Error Metrics MAE R2 RMSE
LR 0.263 0.778 0.353

DT 0.432 0.532 0.372

SVM 0.331 0.804 0.331

Ensemble 0.336 0.798 0.241

Figure 6, given below, illustrates a comparison of

different ML and DL models based on error metrics across the

Desharnais dataset. It further emphasizes the performance

variations among the models, highlighting their strengths and

weaknesses in predicting software project costs.

Datasets

(Desharnais, Maxwell, and Kitchenham

datasets)

Pre-Processing

Feature Selection

Model Validation

Model Evaluation

Model Comparison

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

378

Fig. 6 Performance metrics comparison on the desharnais

5.4.2. On Maxwell Dataset

Various ML models were evaluated on the Maxwell

dataset using various performance metrics, as shown in Table

5. Error metrics for various ML models applied to the Maxwell

dataset are summarized in Table 5.

Table 5. Error metrics obtained on the maxwell dataset

Error Metrics MAE R2 RMSE

LR 0.201 0.929 0.275

DT 0.326 0.761 0.406

SVM 0.202 0.929 0.274

Ensemble 0.194 0.930 0.270

Fig. 7 Performance metrics comparison on the maxwell

5.4.3. On Kitchenham Dataset

Various ML models were evaluated on the Kitchenham

dataset using various performance metrics, as shown in Table

6.

Table 6. Error metrics obtained on the kitchenham dataset

Error Metrics MAE R2 RMSE

LR 0.483 0.607 0.588

DT 0.929 0.017 0.706

SVM 0.698 0.447 0.537

Ensemble 0.658 0.507 0.241

Figure 7 depicts the error metrics of several ML models

and a comparative analysis of the performance of each model,

shedding light on their effectiveness in software cost

estimation on the Maxwell Dataset. It examines relevant

features obtained from extraction and selection and results

obtained by evaluating ML models for estimation. Machine

learning and Deep learning algorithms considered for

estimation are FFN, RNN, LSTM, CNN, and SVM. Table 6

displays the performance measures of the machine and deep

learning algorithms of different datasets. Figure 8 displays a

graphical representation of the Mean Absolute Error, Mean

Square Error, Root Mean Squared Error, and R-squared of the

kitchenham dataset [34] [35] [36].

Fig. 8 Performance metrics comparison on the kitchenham

5.6. Performance Evaluation Outcomes on Various DL

Models

Incorporating perspectives from relevant stakeholders

provides a well-rounded and practical view of the application

of deep learning (DL) in software cost estimation. Feature

engineering should involve technical team input to include

relevant software metrics (e.g., cyclomatic complexity, reuse

ratio). DL outputs should be integrated with visualization and

reporting tools (e.g., dashboards) to communicate uncertainty

and assumptions clearly. Demonstrate long-term cost savings

and risk reduction through case studies or pilot projects using

DL models. Different DL models, including CNN and LSTM,

were evaluated on the Desharnais, Maxwell, and Kitchenham

datasets using various performance metrics, as shown in Table

7.
Table 7. Maxwell dataset

Layer Type Output Shape Param #

conv1d_1 (conv1d) (None, 26, 64) 192

Flatten_1 (Flatten) (None, 1664) 0

dense_3 (Dense) (None, 50) 83250

dense_4 (Dense) (None, 25) 1275

dense_5 (Dense) (None, 1) 26

5.6.1. Effort Estimation Using CNN Model

Dataset: CNN Model R-squared, MSE, and RMSE for

Maxwell Dataset (Table 7), Kitchenham Dataset (Table 8),

and Deshanair Dataset (Table 9) and Figure 9 represent

CNN model on different datasets [37] [38].

0

0.2

0.4

0.6

0.8

1

MAE R2 RMSE

LR

DT

SVM

Ensemble

0

0.2

0.4

0.6

0.8

1

MAE R2 RMSE

LR

DT

SVM

Ensemble

0

0.2

0.4

0.6

0.8

1

MAE R2 RMSE

LR

DT

SVM

Ensemble

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

379

Table 8. Kitchenham dataset

Layer Type Output Shape Param #

conv1d_2 (conv1d) (None, 266, 64) 192

Flatten_2 (Flatten) (None, 17024) 0

dense_6 (Dense) (None, 50) 851250

dense_7 (Dense) (None, 25) 1275

dense_8 (Dense) (None, 1) 26

Table 9. Deshanair dataset

Layer Type Output Shape Param #

conv1d (conv1d) (None, 11, 64) 192

flatten (Flatten) (None, 704) 0

Dense (Dense) (None, 50) 35250

dense_1 (Dense) (None, 25) 1275

dense_2 (Dense) (None, 1) 26

Table 10. Compare errors on the CNN method with different datasets

Datasets MAE MSE RMSE R2

Desharnais 0.1651 0.5045 0.5045 0.8941

Maxwell 0.7826 0.1893 0.4350 0.6913

Kitchenham 0.3452 0.1726 0.4155 0.4524

The Kitchenham, Desharnais, and Maxwell datasets, all

frequently used in software cost estimation research, are used

in this comparison of Machine Learning (ML) and Deep

Learning (DL) techniques using standard performance

metrics. Evaluation of the Deep Learning Models Next are

presented the results of the experiments performed on the

different datasets.

The following tables demonstrate the performance of

each model when estimating LSTM and CNN Models using

the datasets (Desharnais, Maxwell, and Kitchenham datasets),

respectively. The values of MAE, MdAE MSE, MdAE, and

RMSE are shown, which were obtained after applying the 10-

fold cross-validation. For all the metrics used, the smaller the

value, the better the result.

Fig. 9 CNN model on different datasets

5.6.2. Effort Estimation Using LSTM Model

Dataset: LSTM Model R-squared, MSE, and RMSE for

Maxwell Dataset, Kitchenham Dataset, and Desharnais

Dataset (Table 10) and Figure 10 represent LSTM model on

different datasets. The Kitchenham, Desharnais, and Maxwell

datasets, all frequently used in software cost estimation

research, are employed in this comparison of Machine Learning

(ML) and Deep Learning (DL) techniques, utilizing standard

performance metrics (MAE, R², MSE, RMSE). Particularly on

organized data sets like Maxwell and Desharnais, machine

learning models like SVR demonstrated a moderate level of

performance.

Table 10. Compare errors on the LSTM method with different database

Datasets MAE MSE RMSE R2

Deshanair 0.2606 0.6296 0.0968 0.7934

Maxwell 0.0619 0.0008 0.0285 0.7299

Desharnais 0.0619 0.0004 0.0219 0.1395

ML models were consistently outperformed by Deep

Learning Models (CNN, LSTM), particularly when it came to

lower MAE, MSE, and RMSE and higher R2 scores. The fact

that LSTM performed the best across all datasets demonstrated

how well it can identify complex nonlinear patterns or

sequential patterns in graphical software project data.

Fig. 10 LSTM model on different datasets

6. Conclusion
This study evaluates the effectiveness of many ML and

DL models in software project cost estimation. The findings

from the data set, obtained through the employment of ML and

DL models, prove with certainty that dependence on model

choice plays a significant role in the success and precision of

estimating software costs. The SVM model fared better than

other models on the Desharnais dataset as it achieved the

highest R2 value of 0.804, which showed better prediction

capabilities. In contrast, the Maxwell dataset showed that LR

and SVM performed best, with LR achieving an MAE of

0.483 and R2 of 0.929; SVM, on its part, had an RMSE of

0.537. Kitchenham dataset reported the second highest R2 of

0.201 and 0.275 and the lowest MAE and RMSE of the series

of 0.929 in favor of SVM and LR, respectively, as the best

reliable models. This research evaluates the methods of

0

0.2

0.4

0.6

0.8

1

MAE MSE RMSE R2

Deshanair

Maxwell

Kitchenham

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

MAE MSE RMSE R2

Deshanair

Maxwell

Deshanair

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

380

Machine Learning (ML) and Deep Learning (DL) in relation

to the Kitchenham, Desharnais, and Maxwell datasets. It is

noted that ML models had a significant advantage over Deep

Learning Models (CNN, LSTM) in achieving lower MAE,

MSE, and RMSE while also having greater R2 values. Out of

all models, LSTM excelled the most across all datasets,

showcasing its capacity to recognize intricate nonlinear or

sequential graph patterns within project data from software

engineering. Rankings also follow the same principle; in this

case, lesser is better. The results of the experiments are

presented in tables showing the performance of the various

models when estimating the LSTM and CNN Models using

the datasets.

These results emphasize the importance of using relevant

models trained and tailored to please a specific task in order to

improve the accuracy of estimating software cost. From the

evidence presented in the results section, it is evident that

SVM and LR are notable models that yield satisfactory

performance metrics across various datasets. Thus, by using

more accurate cost prediction approaches, using ML [39]

techniques, in particular, LR and SVM hold the potential for

improving software project planning and management.

However, more investigation into deep learning

architectures and ensemble learning strategies may be

necessary to improve the precision and resilience of software

cost-estimating models. The following assessment measures

are taken into account: R-squared, Mean Absolute Error

(MAE), Mean Square Error (MSE), and Root Mean Squared

Error (RMSE).

• RQ1-Related Algorithms Discussion: Table 5 indicates

that Linear Regression is the second most used algorithm.

Other potential benefits of Deep Learning techniques

include automated feature extraction and improved

performance.

• RQ2-Related Features Discussion: To display the key

features and algorithms, groups are formed for features

and algorithms. This decision preserves clarity but

eliminates specific information.

• RQ3-Related Evaluation Parameters and Techniques

Discussion: The chosen publications provide very few

evaluation parameters. The majority of studies measured

the model's quality using RMSE. The evaluation

parameters MSE, R2, and MAE are additional.
• RQ4-Related Difficulties Discussion: Based on the

articles' clear claims, challenges were reported. Much

more may be stated about the model's accuracy as

additional data is collected for testing and training.

Additionally, works collectively emphasize the critical

factors influencing the success of using deep learning models

for software cost estimation, including the integration of

advanced modeling techniques, feature selection, data

preprocessing, model optimization, and uncertainty

quantification[40]. Building on the findings of this

experiment, the next focus will be on developing a crop

production forecast model based on DL [41]. Deep learning

approaches have limitations and drawbacks that should be

carefully considered, even though they may greatly enhance

software project cost estimation. These challenges include

identifying requirements, interpretability problems,

overfitting risk, and the need for sizable, high-quality datasets.

To get around these restrictions, a mix of methods, such as

careful data preparation, regularization, and, in some cases,

the use of simpler models, may improve the effectiveness of

deep learning for software project cost estimation.

Additionally, ongoing assessment and improvement of the

models will ensure that they adapt to changing trends in

software development [42].

Future Work
To get more thorough findings in the future, researchers

will continue to experiment with new techniques and integrate

cloud computing into estimation models.

Acknowledgments
The author would like to extend deepest appreciation to

“Dr. Manojkumar Deshpande” and “Dr. Piyush Chaudhary”

of the "Department of Computer Sciences and Engineering" at

Prestige Institute of Engineering Management and Research,

Indore, for their contributions to this study. To everyone who

made this study possible, the author would like to extend their

sincere gratitude.

References
[1] Victor Uc-Cetina, “Recent Advances in Software Effort Estimation Using Machine Learning,” arXiv Preprint, 2023. [CrossRef] [Google

Scholar] [Publisher Link]

[2] Robin Ramaekers, Radek Silhavy, and Petr Silhavy, “Software Cost Estimation Using Neural Networks,” Software Engineering Research

in System Science, pp. 831-847, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[3] Muhammad Usman et al., “Effort Estimation in Large-Scale Software Development: An Industrial Case Study,” Information and Software

Technology, vol. 99, pp. 21-40, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[4] Solomon Mensah et al., “Duplex Output Software Effort Estimation Model with Self-Guided Interpretation,” Information and Software

Technology, vol. 94, pp. 1-13, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[5] Narciso Cerpa et al., “Evaluating Different Families of Prediction Methods for Estimating Software Project Outcomes,” Journal of Systems

and Software, vol. 112, pp. 48-64, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.48550/arXiv.2303.03482
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+advances+in+software+effort+estimation+using+machine+learning&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Recent+advances+in+software+effort+estimation+using+machine+learning&btnG=
https://arxiv.org/abs/2303.03482
https://doi.org/10.1007/978-3-031-35311-6_77
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Cost+Estimation+Using+Neural+Networks&btnG=
https://link.springer.com/chapter/10.1007/978-3-031-35311-6_77
https://doi.org/10.1016/j.infsof.2018.02.009
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Effort+estimation+in+large-scale+software+development%3A+an+industrial+case+study&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584918300326
https://doi.org/10.1016/j.infsof.2017.09.010
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Duplex+output+software+effort+estimation+model+with+self-guided+interpretation&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0950584916304025
https://doi.org/10.1016/j.jss.2015.10.011
jhttps://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Evaluating+different+families+of+prediction+methods+for+estimating+software+project+outcomes&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S016412121500223X

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

381

[6] Vahid Garousi et al., “A Survey of Software Engineering Practices in Turkey,” Journal of Systems and Software, vol. 108, pp. 148-177,

2015. [CrossRef] [Google Scholar] [Publisher Link]

[7] Neelamdhab Padhy, R.P. Singh, and Suresh Chandra Satapathy, “Software Reusability Metrics Estimation: Algorithms, Models and

Optimization Techniques,” Computers & Electrical Engineering, vol. 69, pp. 653-668, 2018. [CrossRef] [Google Scholar] [Publisher

Link]

[8] Yansi Keim et al., “Software Cost Estimation Models and Techniques: A Survey,” International Journal of Engineering Research and

Technology, vol. 3, no. 2, pp. 1763-1768, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[9] Saoud Sarwar, and Monika Gupta, “Proposing Effort Estimation of COCMO-II through Perceptron Learning Rule,” International Journal

of Computer Application, vol. 70, no. 1, pp. 29-32, 2013. [CrossRef] [Google Scholar] [Publisher Link]

[10] Somya Goyal, and Anubha Parashar, “Machine Learning Application to Improve COCOMO Model Using Neural Networks,”

International Journal of Information Technology and Computer Science, vol. 10, no. 3, pp. 35-51, 2018. [CrossRef] [Google Scholar]

[Publisher Link]

[11] Przemyslaw Pospieszny, Beata Czarnacka-Chrobot, and Andrzej Kobylinski, “An Effective Approach for Software Project Effort and

duration Estimation with Machine Learning Algorithms,” Journal of Systems and Software, vol. 137, pp. 184-196, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[12] V. Venkataiah et al., “Application of Ant Colony Optimization Techniques to Predict Software Cost Estimation,” Computer

Communication, Networking and Internet Security, Springer, pp. 315-325, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[13] Faiza Tahir, and Mahum Adil, “An Empirical Analysis of Cost Estimation Models on Undergraduate Projects Using COCOMO II,” 2018

International Conference on Smart Computing and Electronic Enterprise (ICSCEE), Shah Alam, Malaysia, pp. 105, 2018. [CrossRef]

[Google Scholar] [Publisher Link]

[14] Nazeeh Ghatasheh et al., “Optimizing Software Effort Estimation Models Using Firefly Algorithm,” arXiv Preprint, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[15] E.E. Miandoab, and F.S. Gharehchopogh, “A Novel Hybrid Algorithm for Software Cost Estimation Based on Cuckoo Optimization and

k-Nearest Neighbor’s Algorithms,” Engineering, Technology & Applied Science Research, vol. 6, no. 3, pp. 1018-1022, 2016. [CrossRef]

[Google Scholar] [Publisher Link]

[16] Syed Sajid Ullah et al., “A Lightweight Identity-Based Signature Scheme for Mitigation of Content Poisoning Attack in Named Data

Networking with Internet of Things,” IEEE Access, vol. 8, pp. 98910-98928, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[17] Iqbal H. Sarker, “Deep Learning: A Comprehensive Overview on Techniques, Taxonomy,” SN Computer Science, vol. 2, 2021. [CrossRef]

[Google Scholar] [Publisher Link]

[18] Vachik S. Dave, and Kamlesh Dutta, “Neural Network-Based Models for Software Effort Estimation: A review,” Artificial Intelligence

Review, vol. 42, no. 2, pp. 295-307, 2014. [CrossRef] [Google Scholar] [Publisher Link]

[19] Ali Bou Nassif et al., “Neural Network Models for Software Development Effort Estimation: A Comparative Study,” Neural Computing

& Applications, vol. 27, no. 8, pp. 2369-2381, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[20] Jason Brownlee, “Long Short-Term Memory Networks with Python Develop Sequence Prediction Models with Deep Learning,” Machine

Learning Mastery, 2019. [Google Scholar]

[21] A.G. Priya Varshini et al., “Comparative Analysis of Machine Learning and Deep Learning Algorithms for Software Effort Estimation,”

Journal of Physics: Conference Series, vol. 1767, no. 1, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[22] Farhad Akhbardeh, and Hassan Reza, “A Survey of Machine Learning Approach to Software Cost Estimation,” 2021 IEEE International

Conference on Electro Information Technology (EIT), USA, pp. 405-408, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[23] Govinda et al., “Framework for Estimating Software Cost Using Improved Machine Learning Approach,” Congress on Intelligent Systems,

pp.713-725, 2022. [CrossRef] [Google Scholar] [Publisher Link]

[24] Mohammad Alauthman, Ahmad al-Qerem, and Amjad Aldweesh, “Machine Learning for Accurate Software Development Cost

Estimation in Economically and Technically Limited Environments,” International Journal of Software Science and Computational

Intelligence, vol. 15, no. 1, pp. 1-24, 2024. [CrossRef] [Google Scholar] [Publisher Link]

[25] Mustafa Hammad, “Software Cost Estimation using Stacked Ensemble Classifier and Feature Selection,” International Journal of

Advanced Computer Science and Applications, vol. 14, no. 6, pp. 183-189, 2023. [CrossRef] [Google Scholar] [Publisher Link]

[26] Karthick Panner Selvam, and Mats H0akan Brorsson, “Can Semi-Supervised Learning Improve Prediction of Deep Learning Model

Resource Consumption?,” International Journal of Advanced Computer Science and Applications, vol. 15, no. 6, pp. 74-83, 2024.

[CrossRef] [Google Scholar] [Publisher Link]

[27] Lugo Garcia Jose Alejandro, Garcia Perez Ana María, and Delgado Martínez Ramsés, “Indicator Management in Software Projects:

Current and Future Perspectives,” Revista Cubana de Ciencias Informatics, vol. 3, no. 3-4, pp. 19-25, 2009. [Google Scholar] [Publisher

Link]

[28] Shivangi Shekhar, and Umesh Kumar, “Review of Various Software Cost Estimation Techniques,” International Journal of Computer

Application, vol. 141, no. 11, pp. 31–34, 2016. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1016/j.jss.2015.06.036
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+survey+of+software+engineering+practices+in+Turkey&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121215001314
https://doi.org/10.1016/j.compeleceng.2017.11.022
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+reusability+metrics+estimation%3A+algorithms%2C+models+and+optimization+techniques&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0045790617323327
https://www.sciencedirect.com/science/article/abs/pii/S0045790617323327
https://doi.org/10.17577/IJERTV3IS20384
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+cost+estimation+models+and+techniques%3A+a+survey&btnG=
https://www.ijert.org/software-cost-estimation-models-and-techniques-a-survey
https://doi.org/10.5120/11929-7707
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Proposing+effort+estimation+of+COCMO-II+through+perceptron+learning+rule&btnG=
https://www.ijcaonline.org/archives/volume70/number1/11929-7707/
%22https:/doi.org/10.5815/ijitcs.2018.03.05
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+learning+application+to+improve+COCOMO+model+using+neural+net-+works&btnG=
https://www.mecs-press.org/ijitcs/ijitcs-v10-n3/v10n3-5.html
https://doi.org/10.1016/j.jss.2017.11.066
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+effective+approach+for+software+project+effort+and+duration+estimation+with+machine+learning+algorithms&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S0164121217302947
https://doi.org/10.1007/978-981-10-3226-4_32
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Application+of+ant+colony+optimization+techniques+to+predict+software+cost+estimation&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-3226-4_32
https://doi.org/10.1109/ICSCEE.2018.8538361
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+empirical+analysis+of+cost+estimation+models+on+undergraduate+projects+using+COCOMO+II&btnG=
https://ieeexplore.ieee.org/abstract/document/8538361
https://doi.org/10.4236/jsea.2015.83014
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Optimizing+software+effort+estimation+models+using+firefly+algorithm&btnG=
https://arxiv.org/abs/1903.02079
https://doi.org/10.48084/etasr.701
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+novel+hybrid+algorithm+for+software+cost+estimation+based+on+cuckoo+optimization+and+k-nearest+neighbor%E2%80%99s+algorithms&btnG=
http://www.etasr.com/index.php/ETASR/article/view/701
https://doi.org/10.1109/ACCESS.2020.2995080
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+lightweight+identity-based+signature+scheme+for+mitigation+of+content+poisoning+attack+in+named+data+networking+with+internet+of+things&btnG=
https://ieeexplore.ieee.org/abstract/document/9094360
https://doi.org/10.1007/s42979-021-00815-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Deep+Learning%3A+A+Comprehensive+Overview+on+Techniques%2C+Taxonomy&btnG=
https://link.springer.com/article/10.1007/s42979-021-00815-1?src_trk=em6703f7aabc72b7.219416491479470096
https://doi.org/10.1007/s10462-012-9339-x
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+network-based+models+for+software+effort+estimation%3A+a+review&btnG=
https://link.springer.com/article/10.1007/s10462-012-9339-x
https://doi.org/10.1007/s00521-015-2127-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neural+network+models+for+software+development+effort+estimation%3A+a+comparative+study&btnG=
https://link.springer.com/article/10.1007/s00521-015-2127-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Long+Short-Term+Memory+Networks+with+Python+Develop+Sequence+Prediction+Models+with+Deep+Learning%2C+Machine+Learning+Mastery&btnG=
https://doi.org/10.1088/1742-6596/1767/1/012019
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparative+analysis+of+Machine+learning+and+Deep+learning+algorithms+for+Software+Effort+Estimation&btnG=
https://iopscience.iop.org/article/10.1088/1742-6596/1767/1/012019/meta
https://doi.org/10.1109/EIT51626.2021.9491912
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Survey+of+Machine+Learning+Approach+to+Software+Cost+Estimation&btnG=
https://ieeexplore.ieee.org/abstract/document/9491912
https://doi.org/10.1007/978-981-16-9416-5_53
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Framework+for+Estimating+Software+Cost+Using+Improved+Machine+Learning+Approach&btnG=
https://link.springer.com/chapter/10.1007/978-981-16-9416-5_53
https://doi.org/10.4018/IJSSCI.331753
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Machine+Learning+for+Accurate+Software+Development+Cost+Estimation+in+Economically+and+Technically+Limited+Environments&btnG=
https://www.igi-global.com/article/machine-learning-for-accurate-software-development-cost-estimation-in-economically-and-technically-limited-environments/331753
https://doi.org/10.14569/IJACSA.2023.0140621
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Cost+Estimation+using+Stacked+Ensemble+Classifier+and+Feature+Selection&btnG=
https://www.proquest.com/openview/e0e053ffe5b850bd1ed7c50d1bbe10c2/1?pq-origsite=gscholar&cbl=5444811
https://doi.org/10.14569/IJACSA.2024.0150610
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Can+Semi-Supervised+Learning+Improve+Prediction+of+Deep+Learning+Model+Resource+Consumption&btnG=
https://orbilu.uni.lu/handle/10993/62221
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Gestion+de+indicadores+en+proyectos+de+software.+Perspectivas+actuales+y+futuras&btnG=
https://rcci.uci.cu/index.php/RCCI/article/view/68
https://rcci.uci.cu/index.php/RCCI/article/view/68
https://doi.org/10.5120/ijca2016909867
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Review+of+various+software+cost+estimation+techniques&btnG=
https://www.ijcaonline.org/archives/volume141/number11/24831-2016909867/

Ajay Jaiswal et al. / IJETT, 73(5), 369-382, 2025

382

[29] R. Saljoughinejad, and V. Khatibi, “A New Optimized Hybrid Model Based on COCOMO to Increase the Accuracy of Software Cost

Estimation,” Journal of Advances in Computer Engineering and Technology, vol. 4, pp. 41-50, 2018. [Google Scholar] [Publisher Link]

[30] Anupama Kaushik, and Niyati Singal, “A Hybrid Model of Wavelet Neural Network and Metaheuristic Algorithm for Software

Development Effort Estimation,” International Journal of Information Technology, vol. 14, no. 3, pp. 1689-1698, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[31] Robert Marco, Nanna Suryana, and Sharifah Sakinah Syed Ahmad, “A Systematic Literature Review on Methods for Software Effort

Estimation,” Journal of Theoretical and Applied Information Technology, vol. 97, no. 2, pp. 434-464, 2019. [Google Scholar] [Publisher

Link]

[32] Zahid Hussain Wani, and S.M.K. Quadri, “An Improved Particle Swarm Optimization-Based Functional Link Artificial Neural Network

Model for Software Cost Estimation,” International Journal of Swarm Intelligence, vol. 4, no. 1, pp. 38- 54, 2019. [CrossRef] [Publisher

Link]

[33] Shotaro Minami, “Predicting Equity Price with Corporate Action Events Using LSTM-RNN,” Journal of Mathematical Finance, vol. 8,

no. 1, pp. 58-63, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[34] Panagiotis Barmpalexis et al., “Comparison of Multi-Linear Regression, Particle Swarm Optimization Artificial Neural Networks and

Genetic Programming in the Development of Mini-Tablets,” International Journal of Pharmaceutics, vol. 551, no. 1-2, pp. 166-176, 2018.

[CrossRef] [Google Scholar] [Publisher Link]

[35] Ch Anwar ul Hassan, and Muhammad Sufyan Khan, “An Effective Nature Inspired Approach for the Estimation of Software Development

Cost,” 2021 16th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, pp. 1-6, 2021. [CrossRef] [Google

Scholar] [Publisher Link]

[36] Simon Fong, Suash Deb, and Xin-she Yang, “How Meta-Heuristic Algorithms Contribute to Deep Learning in the Hype of Big Data

Analytics,” Proceedings of the Progress in Intelligent Computing Techniques: Theory, Practice, and Applications, Singapore, pp. 3-25,

2017. [CrossRef] [Google Scholar] [Publisher Link]

[37] A. Hussein et al. “Software-Defined Networking (SDN): the Security Review,” Journal of Cyber Security Technology, vol. 4, no.1, pp. 1-

66, 2020. [CrossRef] [Google Scholar] [Publisher Link]

[38] Manohar K. Kodmelwar, Shashank D. Joshi, and V. Khanna, “A Deep Learning Modified Neural Network Used for Efficient Effort

Estimation,” Journal of Computational and Theoretical Nanoscience, vol. 15, pp. 11-12, pp. 3492-3500(9), 2018. [CrossRef] [Google

Scholar] [Publisher Link]

[39] Priya Agrawal, and Shraddha Kumar, “Early Phase Software Effort Estimation Model: A Review,” 2016 Symposium on Colossal Data

Analysis and Networking (CDAN), Indore, India, pp. 1-8, 2016. [CrossRef] [Google Scholar] [Publisher Link]

[40] Ishleen Kaur et al., “Neuro Fuzzy: COCOMO II Model for Software Cost Estimation,” International Journal of Information Technology,

vol. 10, pp. 181-187, 2018. [CrossRef] [Google Scholar] [Publisher Link]

[41] Rohit Malik et al., “Software Reliability Estimation Using COCOMO II and Neuro Fuzzy Method,” International Journal of Emerging

Technologies and Innovative Research, vol. 5, no. 9 385-392, 2018. [Google Scholar]

[42] Fizza Mansoor et al., “Enhancing Software Cost Estimation Using Feature Selection and Machine Learning Techniques,” Computers,

Materials & Continua, vol. 81, no. 3, pp. 4603-4624, 2024. [CrossRef] [Google Scholar] [Publisher Link]

https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+new+optimized+hybrid+model+based+on+COCOMO+to+increase+the+accuracy+of+software+cost+estimation&btnG=
https://sanad.iau.ir/Journal/jacet/Article/789136
https://doi.org/10.1007/s41870-019-00339-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+hybrid+model+of+wavelet+neural+network+and+metaheuristic+algorithm+for+software+development+effort+estimation&btnG=
https://link.springer.com/article/10.1007/s41870-019-00339-1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+systematic+literature+review+on+methods+for+software+effort+estimation&btnG=
https://www.jatit.org/volumes/ninetyseven2.php
https://www.jatit.org/volumes/ninetyseven2.php
https://doi.org/10.1504/IJSI.2019.097408
https://www.inderscienceonline.com/doi/10.1504/IJSI.2019.097408
https://www.inderscienceonline.com/doi/10.1504/IJSI.2019.097408
https://www.scirp.org/journal/articles?searchCode=Shotaro+Minami&searchField=authors&page=1
https://www.scirp.org/journal/paperinformation?paperid=82180
https://www.scirp.org/journal/home?journalid=648
https://www.scirp.org/journal/home?issueid=10544
https://www.scirp.org/journal/home?issueid=10544
https://doi.org/10.4236/jmf.2018.81005
https://scholar.google.com/scholar?q=Predicting+Equity+Price+with+Corporate+Action+Events+Using+LSTM-RNN&hl=en&as_sdt=0,5
https://www.scirp.org/journal/paperinformation?paperid=82180
https://doi.org/10.1016/j.ijpharm.2018.09.026
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Comparison+of+multi-linear+regression%2C+particle+swarm+optimization+artificial+neural+networks+and+genetic+programming+in+the+development+of+mini-tablets&btnG=
https://www.sciencedirect.com/science/article/abs/pii/S037851731830677X
https://doi.org/10.1109/ICET54505.2021.9689832
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Effective+Nature+Inspired+Approach+for+the+Estimation+of+Software+Development+Cost&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=An+Effective+Nature+Inspired+Approach+for+the+Estimation+of+Software+Development+Cost&btnG=
https://ieeexplore.ieee.org/abstract/document/9689832
https://doi.org/10.1007/978-981-10-3373-5_1
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=How+meta-heuristic+algorithms+contribute+to+deep+learning+in+the+hype+of+big+data+analytics&btnG=
https://link.springer.com/chapter/10.1007/978-981-10-3373-5_1
https://doi.org/10.1080/23742917.2019.1629529
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software-Defined+Networking+%28SDN%29%3A+the+security+review&btnG=
https://www.tandfonline.com/doi/abs/10.1080/23742917.2019.1629529
https://doi.org/10.1166/jctn.2018.7651
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+modified+neural+network+used+for+efficient+effort+estimation&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+deep+learning+modified+neural+network+used+for+efficient+effort+estimation&btnG=
https://www.ingentaconnect.com/contentone/asp/jctn/2018/00000015/f0020011/art00073
https://doi.org/10.1109/CDAN.2016.7570914
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Early+Phase+Software+Effort+Estimation+Model%3A+A+Review&btnG=
https://ieeexplore.ieee.org/abstract/document/7570914
https://doi.org/10.1007/s41870-018-0083-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Neuro+fuzzy%3A+COCOMO+II+model+for+software+cost+estimation&btnG=
https://link.springer.com/article/10.1007/s41870-018-0083-6
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Software+Reliability+Estimation+Using+COCOMO+II+and+Neuro+Fuzzy+Method%2C&btnG=
https://doi.org/10.32604/cmc.2024.057979
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Enhancing+Software+Cost+Estimation+Using+Feature+Selection+and+Machine+Learning+Techniques&btnG=
https://openurl.ebsco.com/EPDB%3Agcd%3A1%3A33727361/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A181864463&crl=c&link_origin=scholar.google.com

