
International Journal of Engineering Trends and Technology Volume 73 Issue 4, 368-375, April 2025

ISSN: 2231–5381 / https://doi.org/10.14445/22315381/IJETT-V73I4P129 © 2025 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Transforming UML Models to MongoDB Schemas Using

Model-Driven Architecture and JavaScript

Hamza Natek1, Aziz Srai2, Abdelmounaim Badaoui3, Fatima Guerouate4

1,3,4,LASTIMI Laboratory, Superior School of Technologies of Sale, Mohammadia School of Engineering, Mohamed V

University, Rabat, Morocco.
2ERCI2A, FSTH, Abdelmalek Essaadi University, Tetouan, Morocco.

1Corresponding Author : hamzanatek@gmail.com

Received: 01 July 2024 Revised: 18 March 2025 Accepted: 20 March 2025 Published: 26 April 2025

Abstract - Relational Database Management Systems (RDBMS) have served the data management needs of organizations over

the past decades with strong solutions for solving structured data. But with the advent of Big Data, complexities in dealing with

high volumes, high variety and high velocity of data in production, these systems have been challenged. NoSQL databases are

seen as a potential answer, hosting flexible schema arrangements and extensible execution. Conversion of structured UML

models to dynamic NoSQL schemas is a very resource-hungry process. This article will introduce an approach to automate this

transformation in JavaScript for MongoDB using Model-Driven Architecture (MDA). We cover upfront technical requirements,

a safe connection to MongoDB, transforming UML models to JSON objects, and the M2M and M2T transformation to generate

and validate MongoDB schemas. To ensure that the generated schemas were correct and had a high degree of fidelity, I

validated them with MongoDB Atlas. This automation of the process not only speeds up database design but also makes software

development more agile. The approach was applied to UML-based descriptions of school or college types, showing its suitability

and correctness in producing the database schema that accurately reflects the design stipulated in the UML model.

Keywords - Model-Driven Architecture (MDA), UML, NoSQL Transformation, JavaScript, Schema Generation.

1. Introduction
Traditional relational database systems (RDBMS) have

long been the foundation of data management, providing

reliable mechanisms for structuring, storing, and querying

data through SQL. These are structured systems usually

defined using schemas, support for ACID (Atomicity,

Consistency, Isolation, Durability) transactions, and guarantee

the integrity and reliability of the data being processed.

However, with the growth of Big Data, these applications are

often insufficient to manage data with high volume, variety,

and velocity. One such solution is NoSQL databases, which

provide a way to design a schema without feeling confined to

it, as well as the means to scale performance as the size of the

dataset or the number of concurrent users grows. However,

moving from structured data models such as Uniform

Modelling Language (UML) is not so smooth when it comes

to flexible NoSQL databases. This is where Model Driven

Architecture (MDA) plays its most critical role. The Мodel-

Driven Architecture (MDA) is a way of the framework for

software design and implementation which utilizes models as

the primary artifacts. As we can see, MDA can help solve the

engine of transformation, and mapping those UML models

into NoSQL database schema can be automated [1-3],

meaning reducing the manual part as well as making it

systematic and consistent. This approach has been used in

many fields, including web service and its specification

generation on [4] web frameworks [5, 6], blockchain and IoT

[7-9], AI [10], and mobile application development [11],

databases generation. In this article, we introduce a novel

mechanism to implement this transformation by JavaScript,

considering MongoDB as a NoSQL database. First, we need

to set up the tech prerequisites for transformation. The second

step is to figure out the tools from code, like Mongoose,

XML, JSON Parser, etc. In the transformation script, we

connect to the MongoDB NoSQL database with the right

credentials. We next analyze the UML models and translate

them into exploitable JSON objects.

Then, a series of Model-to-Model (M2M)

transformations are used to produce intermediate NoSQL-

specific schemas. Finally, Model-to-Text (M2T)

transformations generate MongoDB schema definitions and

the required deployment scripts. MongoDB Atlas serves as

the case study for this method, where a second user stores the

transformed objects and asserts that the schemas generated are

faithful and have no biases. Training on this approach runs up

to October 2023. It provides database design in an automated

process that speeds up the development time while also

https://www.internationaljournalssrg.org/
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:hamzanatek@gmail.com

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

369

increasing the flexibility of software development and making

it easy to adapt to changes. The presented approach was

validated by implementing a transformation for UML classes

representing educational generalizations. The resulting

MongoDB schemas were thus used to store sample objects in

a MongoDB instance to prove the method in practice. Our

method's transformation results show that the entire database

structure was generated correctly while faithfully preserving

the structure described in the UML model.

1.1. Data Privacy and Security Considerations

One of the important ethical and security aspects is the

conversion of UML models into NoSQL databases. While

NoSQL is more flexible and scalable, it usually needs to

manage large quantities of sensitive data. In such situations,

ensuring data privacy and security must adhere to best

practices, such as:

• Access Control Mechanisms: Role-based access control

(RBAC) to prevent unauthorized access to data.

• Encryption: Data at rest and in transit is encrypted to

mitigate breach risks.

• Data usage and reporting features: provide audit trails,

logging access to and modifications of information to

trace how it is being used and identify unusual or

threatening behavior

• Regulatory Compliance: Complying with regulations

such as GDPR and HIPAA to protect data.

Integrating security considerations into the

transformation process allows MDA to contribute to more

resilient NoSQL database architectures. This allows MDA to

facilitate stronger NoSQL database architectures by ensuring

data integrity, compliance, and security best practices.

1.2. Big Data Concepts

Big Data is defined by three fundamental characteristics:

Volume, Variety, and Velocity. Volume refers to the massive

amount of data generated, stored, and processed, often

reaching petabyte or even exabyte scales. Variety highlights

the diverse nature of data formats, encompassing structured

data from traditional databases, semi-structured data such as

JSON and XML, and unstructured data like images, videos,

and social media content.

Velocity represents the speed at which data is produced

and ingested, often requiring real-time or near-real-time

processing to extract meaningful insights. These dimensions

collectively present significant data storage, management, and

analysis challenges. Designing NoSQL database structures

that can efficiently handle high-volume, heterogeneous, and

rapidly changing data streams is essential for modern

applications, particularly in domains such as cloud computing,

artificial intelligence, and IoT, where real-time data

processing is critical.

2. Research Background
2.1. Model-Driven Architecture (MDA)

Model-Driven Architecture (MDA): MDA is a software

design approach by the Object Management Group (OMG)

that uses high-level models to lead the software development

process. The general intention of MDA is to decouple the

specification of system functionality from the specification of

the implementation of that functionality on a specific

technology platform. MDA allows for automatic

transformations between various models, greatly minimizing

manual coding and errors.

2.2. Key Concepts of MDA

The MDA approach is based on the concept that models

should be the essential product Within the software

development method. It provides a process in which the

systems' design, analysis, and implementation are based on

abstract representations or models, which can be further

refined and transformed in different ways throughout the

development lifecycle. MDA is centered on the idea of

models and metamodels. Models abstract important aspects of

the system, showing its structure and behavior in a formalized

way. Whatever the technology, whatever the platform, it is a

very high level of abstraction, just fifty peas. Metamodels

describe the language and rules that govern the creation of

these models. Prioritization techniques offer a uniform

structure to ensure consistency and standardization between

models.

A MDA also distinguishes levels of abstraction, namely

Program Independent Model (CIM), Program Independent

Model (PIM), and Program Specific Model (PSM). It focuses

on the business context and the business requirements without

getting into the technical implementation. The PIM defines

the system’s functionality and behavior without any

platform-specific details. Compared with the PIM, the PSM

adapts the platform-independent model (PIM) together with

all the technical information that a system requires in the

implementation platform. Organizing them at various levels

of abstraction helps decompose the domain and build more

manageable and scalable systems. In short, v. MDA enables a

systematic, standardized software engineering approach,

which can make it more agile and robust [12].

2.3. Transformation Types of MDA

Data is modeled using the System Modeling Language

(SysML) and the Unified Modeling Language (UML)

languages for transformations that belong to the Model-

Driven Architecture (MDA) categories. There are two major

types of transformation: M2M (Model-to-Model) and M2T

(Model-to-Text). Example-based transformations: Model-to-

Model (M2M) transformations are used to convert from one

model to another, which may be at the same level of

abstraction or between different levels. This is imperative in

transforming abstract models (Platform Independent Models

(PIMs)) into more detailed low-level Platform Specific Model

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

370

(PSM)s, or, into PIMs with other focus. Concrete M2M

transformation consists of mapping rules that indicate how

elements from the source model relate to the target model.

These rules can be expressed using transformation languages

(for example, QVT (Query/View/Transformation) or ATL

(ATLAS Transformation Language)) that offer formal ways

to define, run and automate the transformation of models.

Model-to-Text (M2T) transformations produce textual

artifacts from models. They can be source code, configuration

files, documentation and other text files needed for the system

to be implemented. M2T transformations are crucial for

covering the distance between high-level models and real

systems. Acceleo (http://www.eclipse.org/acceleo/) and

Xpand (http://www.eclipse.org/Xpand/) are examples of such

tools providing M2T (M2T, Model To Text) transformations

through a template-based approach where certain templates

explain how certain elements in the model are translated into

concrete textual/formatted representation of the model. This

functionality accelerates the software development process

while providing uniformity and precision in the generated

artifacts. M2M and M2T transformations support high-level

abstractions and facilitate the generation of lower-level and

executable pieces of a larger system, likewise enhancing the

flexibility, scalability, and efficiency of the development

process [12].

2.4. Challenges in Transforming UML Models to NoSQL

Schemas

There are several important challenges when

transforming UML models into No SQL schemas, mainly

because UML has a much more structured model, while No

SQL databases can be schema-less. One main challenge is

that UML models (for example, associations, inheritance

hierarchies, constraints) have a well-defined hierarchy and

relationship that needs to be kept in the NoSQL data model,

where relationships are often lost and denormalized. It's

essential to preserve its integrity and consistency in this

process, given that such a mapping, particularly one that

requires complex UML model constraints and relationships,

must be a comprehensive and faithful representation of the

UML model. Scalability and flexibility are another challenge;

NoSQL databases are purpose-built for large-scale,

unstructured data storage, so the process of converting

structured UML models to efficient NoSQL schemas that

provide horizontal scalability adds complexity to the

mapping process. Moreover, there is a lack of comprehensive

tools and frameworks capable of automating this

transformation process, which entails complex transformation

rules and algorithms and the need for numerous manual

adjustments, making it time-consuming and prone to errors. It

further complicated the process, which now includes

provisioning, provisioning time and validity of the generated

schemas and sample data correctness, which requires

additional testing and verification of whether they meet

functional and specification requirements. Such challenges

underline the importance of new methodologies and tools to

aid precise, dynamic and scalable translations from UML

models to NoSQL schemas [13].

3. Methodology
We follow a Model-Driven Architecture (MDA)-based

development process that expresses the development effort in

terms of high-level models. With this, one can convert UML

models into a NoSQL database schema written in JavaScript.

Following MDA principles and transformations, this

methodology includes several steps: preparing the technical

environment where some technical prerequisites were made

available in order to connect to MongoDB securely, UML

models parsed into JSON objects and then undergoing Model-

to-Model (M2M) transformations, Model-to-Text (M2T)

transformations, and finally, validating the schemas (M2T)

using MongoDB Atlas. The overall approach steps are shown

in the diagram below:

Fig. 1 Diagram illustrates the steps in our approach

Preparation of Technical Prerequisites

Connecting to MongoDB

Reading and Analyzing the UML Model

Model-To-Model (M2M) Transformations

Model-To-Text (M2T) Transformations

Validation

M
D

A
 T

ran
sfo

rm
atio

n

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

371

3.1. Preparation of Technical Prerequisites

First, it imports modules: fs - a file system module that

provides a standard API for interacting with the local

computer’s file system; xml2js - it provides a way to parse

XML, which seems to be in Ecore XML format; mongoose -

a library, that connects and interacts with MongoDB; and

lastly, the Schema function from mongoose, which is used to

define the structure of documents in a MongoDB collection.

The code for this step looks like this

const fs = require('fs');
const xml2js = require('xml2js');
const mongoose = require('mongoose');
const { Schema } = mongoose;
Fig. 2 Importing necessary modules for UML to NoSQL transformation

3.2. Preparation of Technical Prerequisites

This step connects you to a MongoDB Atlas cluster using

a MongoDB connection string. But when you go inside the

credentials, you will see a URI used to connect to the

MongoDB database. This way, the transformed schemas will

be alloyed with the instance using the string provided. The

code for this step looks like:

// MongoDB Atlas connection string
(replace <username>, <password> and
<cluster> with your MongoDB Atlas
credentials)
const uri =
'mongodb+srv://<username>:<password>@<clus
ter>/?retryWrites=true&w=majority'

Fig. 3 MongoDB atlas connection string

3.3. MDA Method

Model Driven Architecture: MDA is a software design

approach centered on creating models from different

viewpoints, for instance, an idealized target model, an

achievement model, and different additional levels of views.

MDA defines system functionality separately from the

implementation specification on a given platform. There are

three main levels of abstraction in the process:

3.3.1. Reading and Analyzing the UML Model

Reading and analyzing the UML model from the Ecore

XML file. First, we read the Ecore XML file where the UML

model is stored with the file system module (fs). After reading

the file, we then parse it through the xml to json parser

(xml2js) to allow us to turn the XML data into usable

JavaScript objects. This conversion is critical because it

translates the structured form of the UML model into a format

a JavaScript machine can work with. The produced JSON

objects maintain the hierarchy and relations specified in the

UML model and allow further transformations required to

generate NoSQL schemas. Transformations to RTL or even

gate-level implementations are based on these objects, and the

process ensures that every important object in the UML

model remains intact and translates properly to be ready to be

used in later transformations.

3.3.2. Generating MongoDB Schemas from the Ecore Model

When the data has been converted to JSON, each of the

provided UML classes will be traversed to pull out attributes

and references. UML attributes translate to MongoDB schema

fields, and references are turned into either sub-documents or

ObjectId references. This transition verifies that the UML

entities and relationships are appropriately mapped to

MongoDB structures. NoSQL431 generated MongoDB

schemas from UML models without losing the hierarchy and

relationships between them. Thus, this transformation results

in an implementation that adheres to the original UML model

regarding structure and integrity constraints, enabling

appropriate access and use of data within a NoSQL-based

system. At this point, intermediate specific to NoSQL

schemas produced in this step are ready for a final definition

of MongoDB schemas and their deployment in MongoDB

Atlas, guaranteeing a faithful and coherent representation of

the conceptual models in the NoSQL database. The function

generateSchemasFromEcore records each UML class and its

features, correlating UML attributes to MongoDB schema

properties and UML references to MongoDB subdocuments.

We then provide a one-to-one mapping of each UML class to

the MongoDB schema. This process ensures that the hierarchy

structure and relationships specified in the UML model are

accurately mapped to MongoDB schema definitions.

// Define MongoDB schema definitions based on UML classes from Ecore model
const generateSchemasFromEcore = (ecoreModel) => {
 const eClasses = ecoreModel['ecore:EPackage']['eClassifiers'];
 const schemas = {};
 eClasses.forEach(eClass => {
 const className = eClass['$']['name'];
 const schemaDefinition = {};
 eClass['eStructuralFeatures'].forEach(feature => {
 const featureName = feature['$']['name'];
 const eType = feature['$']['eType'];
 // Map UML attributes to MongoDB schema fields
 if (feature['$']['xsi:type'] === 'ecore:EAttribute') {

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

372

 schemaDefinition[featureName] = String; // For simplicity, assuming all
attributes are strings
 }
 // Map UML references (EReferences) to MongoDB subdocuments
 if (feature['$']['xsi:type'] === 'ecore:EReference') {
 const refType = eType.replace('#//', '');
 schemaDefinition[featureName] = [{ type: Schema.Types.ObjectId, ref: refType
}];
 }
 });
 // Define MongoDB schema for each UML class
 schemas[className] = new Schema(schemaDefinition);
 });
 return schemas;
};

Fig. 4 Generating MongoDB schemas from UML models

3.3.3. Saving Sample Objects in MongoDB

After creating the MongoDB schemas, ensure the

transformation boots up by persisting sample objects in

MongoDB.

Mongoose Establish Connection through generated

schemas with Mongoose models and creating objects from

these models. For instance, we create objects from Entity such

as Student and Course with sample data so that they are saved

in MongoDB. This ensures that the generated schemas are

accurate and that the data can be stored and retrieved from

storage efficiently. We use MongoDB Atlas to perform the

final validation, thus ensuring that the transformed schemas

are faithful to and correct for each of the original UML

model's specifications.

// Function to save sample objects to MongoDB based on the generated schemas
const saveSampleObjectsToMongoDB = (schemas) => {
 mongoose.connect(uri).then(() => {
 // Define Mongoose models based on generated schemas
 const models = {};
 Object.keys(schemas).forEach(className => {
 models[className] = mongoose.model(className, schemas[className]);
 });
 // Sample data for objects to be saved in MongoDB
 const Student = models['Student'];
 const Course = models['Course'];
 const newStudent = new Student({
 studentId: 'S001', firstName: 'John', lastName: 'Doe',

 username: 'johndoe', password: '12345'
 });
 const newCourse = new Course({
 courseId: 'C001', title: 'Introduction to Programming',
 description: 'Learn basic programming concepts'
 });
 // Save the sample objects to MongoDB
 return Promise.all([
 newStudent.save(),
 newCourse.save()
]);
 })
 .then(() => {
 console.log('Sample objects saved to MongoDB');
 })
 .catch(err => {

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

373

 console.error('Error saving sample objects:', err);
 })
 .finally(() => {
 mongoose.disconnect();
 });
};

Fig. 5 Saving sample objects MongoDB

The following code executes the transformation, calling

the other methods already defined. It parses and loads the

UML model from the Ecore XML file, transforms it into a

JavaScript object, generates MongoDB schema definitions

from the UML classes, and inserts sample objects into

MongoDB:

// Read and parse the UML model from the Ecore XML file
const xmlModelPath = 'model.xml';
const parser = new xml2js.Parser();
fs.readFile(xmlModelPath, 'utf-8', (err, data) => {
 if (err) {
 console.error('Error reading file:', err);
 return;
 }
 // Parse the XML data into a JavaScript object
 parser.parseString(data, (parseErr, result) => {
 if (parseErr) {
 console.error('Error parsing XML:', parseErr);
 return;
 }
 // Generate MongoDB schema definitions based on UML classes from Ecore model
 const schemas = generateSchemasFromEcore(result);
 // Save sample objects to MongoDB based on the generated schemas
 saveSampleObjectsToMongoDB(schemas);
 });
});

Fig. 6 The main code source to execute the transformation

Fig. 7 Running the transformation script

The following figure illustrates the execution of the

transformation script in the command line interface. The script

connects to MongoDB Atlas and confirms that sample objects

have been successfully saved to MongoDB. The console

output shows the commands executed and the resulting

messages, indicating a successful connection and data storage.

3.4. Handling Complex UML Models and Performance

Evaluation

The solution part addresses the intricacies of correctly and

effectively mapping UML models to MongoDB schemas.

Mapping inheritance hierarchies, we transpose UML

inheritance to MongoDB schemas using methods like

document embedding for subclasses or referencing in

polymorphic associations. To map multiplicities and

associations, this solution maps different association types

(one-to-one, one-to-many, many-to-many) using embedded

documents or references with data consistency and integrity

guarantees. We enforce UML-defined constraints, such as

uniqueness and range constraints, by means of schema

validation rules, custom validators, or application logic.

Complex attribute types, like arrays, lists, and user-defined

types, are translated into MongoDB-compatible types. To

avoid performance issues due to deeply nested documents, we

denormalize nested document hierarchies or employ flat

structures with references. To measure the efficiency of our

methodology, we metricized transformation time, error rate,

schema correctness, development effort, scalability, and

consistency. We compared the transformation time in the

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

374

automated approach with the manual approach and identified

a significant amount of time savings for various sizes of

models. The error rate, expressed as schema mismatches and

data integrity violations, resulted in fewer human errors with

automation. Schema fidelity was tested by comparing the

schemas generated to expected outcomes, quantifying in

attribute types, relationships, and constraints. The

development effort was gauged via hours for hand vs. auto

transformations, stressing efficiency gains. Scalability

experiments illustrated the process's performance when UML

model size and complexity increased, charted in a scalability

graph. Consistency and reproducibility were verified by

applying the same transformation to multiple copies of the

same UML model and seeing consistent MongoDB schema

output. These performance statistics all demonstrate the

strength and efficacy of our automated transformation

mechanism.

4. Results and Discussion
Our strategy for the transformation of UML models into

NoSQL schemas was successful. The mapping of the UML

models into JSON objects preserved the structure and

relationships of the source model. The M2M and M2T

transformations enabled us to generate correct and functional

MongoDB schemas.

The validation against MongoDB Atlas ensured that the

schemas generated were correct and that the sample objects

were stored and retrieved correctly. This approach guarantees

data consistency and flexibility in meeting Big Data demands.

The following image shows what we should see after doing a

query of courses collection in MongoDB Atlas:

Fig. 8 MongoDB atlas collections overview

Fig. 9 MongoDB atlas query result for course collection

It ensures that the Course object with data like courseId,

title, and description was saved in the database and verifies

that the data was transformed and stored as expected, and the

UML model's details regarding the objects' structure and

content match the outcome.

5. Conclusion

Against the backdrop of Big Data evolution, traditional

relational database systems show their limitation in scalability

and flexibility. To resolve this issue, we have designed a novel

solution for transforming UML models to NoSQL schemas

using JavaScript, i.e., for MongoDB. We start the process by

reading and parsing UML models from Ecore XML files and

then their mapping to usable JSON objects. Secondly, Model-

to-Model (M2M) transformations are employed to generate

intermediate NoSQL schemas, which are then converted into

MongoDB schemas using Model-to-Text (M2T)

transformations.

Finally, we validate these schemas against MongoDB

Atlas so that test objects are stored and retrieved correctly. The

result shows that the provided method effectively preserves

the structure and relationships defined in the UML models

without sacrificing the scalability and flexibility requirements

of Big Data environments.

In the future, this transformation framework will be

generalized to accommodate other structures of NoSQL

databases like document stores, column-family stores, and

graph databases. In addition, future work shall focus on

improving transformation efficiency, automation, and

semantic validation mechanisms to strengthen these proposals

across several real-world scenarios.

Hamza Natek et al. / IJETT, 73(4), 368-375, 2025

375

References
[1] Fatma Abdelhadi, Amal Ait Brahim, and Gilles Zurfluh, “Applying a Model-Driven Approach for UML/OCL Constraints: Application to

NoSQL Databases,” On the Move to Meaningful Internet Systems: OTM Conferences, Rhodes, Greece, pp. 646-660, 2019. [CrossRef]

[Google Scholar] [Publisher Link]

[2] Fatma Abdelhedi et al., “MDA-Based Approach for NoSQL Databases Modelling,” Big Data Analytics and Knowledge Discovery, pp.

88-102, 2017. [CrossRef] [Google Scholar] [Publisher Link]

[3] Fatma Abdelhedi, Amal Ait Brahim, and Gilles Zurfluh, “Towards an Automatic Approach for Implementing UML/OCL Models on

NoSQL Systems,” [Google Scholar]

[4] Jean Bézivin et al., “Applying MDA Approach for Web Service Platform,” Proceedings. Eighth IEEE International Enterprise

Distributed Object Computing Conference, 2004. EDOC 2004, Monterey, CA, USA, pp. 58-70, 2004. [CrossRef] [Google Scholar]

[Publisher Link]

[5] M'hamed Rahmouni, Chaymae Talbi, and Soumia Ziti, “Model-Driven Architecture: Generating Models from Symfony Framework,”

Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 3, pp. 1659-1668, 2023. [CrossRef] [Google Scholar]

[Publisher Link]

[6] M’hamed Rahmouni, and Samir Mbarki, “Model-Driven Generation of MVC2 Web Applications: From Models to Code,” International

Journal of Engineering and Applied Computer Science, vol. 2, no. 7, pp. 217-231, 2017. [Google Scholar]

[7] Moneeb Abbas et al., “A Model-Driven Framework for Security Labs Using Blockchain Methodology,” 2021 IEEE International Systems

Conference, Vancouver, BC, Canada, pp. 1-7, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[8] Nour Moadad, Issam Damaj, and Islam El Kabani, “A Generic MDA-IoT Architecture for Connected Vehicles in Smart Cities,” 2022

IEEE Global Conference on Artificial Intelligence and Internet of Things, Alamein New City, Egypt, pp. 122-129, 2022. [CrossRef]

[Google Scholar] [Publisher Link]

[9] Mantas Jurgelaitis et al., “Smart Contract Code Generation from Platform Specific Model for Hyperledger Go,” World Conference on

Information Systems and Technologies, Terceira Island, Portugal, pp. 63-73, 2021. [CrossRef] [Google Scholar] [Publisher Link]

[10] Mohammad Ali Kadampur, and Sulaiman Al Riyaee, “Skin Cancer Detection: Applying a Deep Learning Based Model Driven

Architecture in the Cloud for Classifying Dermal Cell Images,” Informatics in Medicine Unlocked, vol. 18, 2020. [CrossRef] [Google

Scholar] [Publisher Link]

[11] Hanane Benouda et al., “Modeling and Code Generation of Android Applications Using Acceleo,” International Journal of Software

Engineering and its Applications, vol. 10, no. 3, pp. 83-94, 2016. [Google Scholar] [Publisher Link]

[12] Model Driven Architecture (MDA), The Architecture of Choice for a Changing World, Object Management Group (OMG), 2003.

[Online]. Available: https://www.omg.org/mda/

[13] Aaron Schram, and Kenneth M. Anderson, “MySQL to NoSQL: Data Modeling Challenges in Supporting Scalability,” Proceedings of

the 3rd Annual Conference on Systems, Programming, and Applications: Software for Humanity, Tucson Arizona, USA, pp. 191-202,

2012. [CrossRef] [Google Scholar] [Publisher Link]

https://doi.org/10.1007/978-3-030-33246-4_40
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+a+Model-Driven+Approach+for+UML%2FOCL+Constraints%3A+Application+to+NoSQL+Databases&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-33246-4_40
https://doi.org/10.1007/978-3-319-64283-3_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MDA-Based+Approach+for+NoSQL+Databases+Modelling&btnG=
https://link.springer.com/chapter/10.1007/978-3-319-64283-3_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Towards+an+automatic+approach+for+implementing+UML%2FOCL+models+on+NoSQL+systems&btnG=
https://doi.org/10.1109/EDOC.2004.1342505
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Applying+MDA+approach+for+web+service+platform&btnG=
https://ieeexplore.ieee.org/document/1342505
http://doi.org/10.11591/ijeecs.v30.i3.pp1659-1668
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-driven+architecture%3A+generating+models+from+Symfony+framework&btnG=
https://ijeecs.iaescore.com/index.php/IJEECS/article/view/31475
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Model-Driven+Generation+of+MVC2+Web+Applications%3A+From+Models+to+Code&btnG=
https://doi.org/10.1109/SysCon48628.2021.9447125
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Model-Driven+Framework+for+Security+Labs+using+Blockchain+Methodology&btnG=
https://ieeexplore.ieee.org/document/9447125
https://doi.org/10.1109/GCAIoT57150.2022.10019064
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=A+Generic+MDA-IoT+Architecture+for+Connected+Vehicles+in+Smart+Cities&btnG=
https://ieeexplore.ieee.org/document/10019064
https://doi.org/10.1007/978-3-030-72654-6_7
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Smart+Contract+Code+Generation+from+Platform+Specific+Model+for+Hyperledger+Go&btnG=
https://link.springer.com/chapter/10.1007/978-3-030-72654-6_7
https://doi.org/10.1016/j.imu.2019.100282
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Skin+cancer+detection%3A+Applying+a+deep+learning+based+model+driven+architecture+in+the+cloud+for+classifying+dermal+cell+images&btnG=
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Skin+cancer+detection%3A+Applying+a+deep+learning+based+model+driven+architecture+in+the+cloud+for+classifying+dermal+cell+images&btnG=
https://www.sciencedirect.com/science/article/pii/S2352914819302047?via%3Dihub
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=Modeling+and+Code+Generation+of+Android+Applications+Using+Acceleo&btnG=
https://www.earticle.net/Article/A270929
https://www.omg.org/mda/
https://doi.org/10.1145/2384716.2384773
https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&q=MySQL+to+NoSQL%3A+data+modeling+challenges+in+supporting+scalability&btnG=
https://dl.acm.org/doi/10.1145/2384716.2384773

