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Abstract - The contamination of landmines and other unexploded ordnances has become a global safety problem. There is an 

urgent need to identify and demine the buried unexploded ordnance from the subsurface to save people and civilians from severe 

injury and death. Ground Penetrating Radar (GPR) is the best geophysical imaging technique for identifying and recognizing 

underground objects. It retrieves large GPR B-Scan datasets from the subsurface to be processed and classified using deep 

learning techniques. The proposed technique describes GPR B-Scan images of buried objects like landmines with casing 

materials made of metal and plastic, which can be classified using deep learning with attention mechanisms with MobileNetV2 

as the base model. It uses deep learning architecture to successfully extract essential features and recognize them from GPR 

images of metal pipes, metal tiffin boxes, and plastic tiffin boxes. It includes creating novel datasets on gprMax software with 

the real-time scenario of a homogeneous medium, added roughness, water, and grass to support a heterogeneous soil medium 

with different relative permittivity, casing material, object size, and burial depth. The process initiates with the preprocessing of 

GPR data, applying data augmentation, splitting the datasets into training and testing, and building a deep learning architecture 

with attention mechanism; finally, training the network model and testing for GPR image classification. The multi-class 

classification evaluated and showcased improved performance using deep learning with attention mechanism than traditional 

methods. The developed model can potentially support new inventions in archaeology, infrastructure assessment, and explosive 

ordnance identification. 

Keywords - Attention mechanism, Buried object, Data augmentation, Deep learning, Ground penetrating radar, Image 

classification, Landmine, MobileNetV2. 

1. Introduction 
Ground Penetrating Radar (GPR) is an imaging technique 

of subsurface investigation utilized in archaeology, remote 

sensing, environmental science, military, and civil 

engineering applications [1]. The GPR data is analyzed by 

extracting features from images or manually interpreting them 

using machine learning techniques, which are time-consuming 

and impossible to handle massive datasets efficiently. Deep 

learning is the subfield of machine learning that takes the 

capabilities of Artificial Neural Networks (ANN), which 

consists of a number of layers that interact with one another to 

make predictions.  

Deep learning technique with unique architecture 

automatically extracts the essential features from data and 

achieve the best outcomes for detection and classification. It 

analyzes images and processes voices without relying on 

human-defined features. It can detect image boundaries, 

patterns, objects, and complete scene elements. The vast 

collection of tools accessible in deep learning allows the 

processing of different data formats. Object identification uses 

Convolutional Neural Networks (CNNs) to manage images 

and videos. A convolutional combination with pooling 

operations enhances image feature extraction for image 

analytical purposes. Recurrent Neural Networks (RNNs) are 

highly effective in performing sequential data measurement 

tasks because they can assess information series and relations 

in time, such as speech and text. Generative Adversarial 

Networks (GANs) enable data expansions because they 

produce entirely new data sets.  

The networks include generators that produce new 

information and discriminators that distinguish real from 

artificial data and then develop realistic results. Transformers 

have completely reformed natural language processing 

because they can identify word relationships throughout entire 

sequences of words. The faster operation and superior 

performance of transformers contrast positively with RNNs 

because the networks do not need to process information 

sequentially. Multiple approaches within deep learning led to 
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its powerful ability to help solve various complex problems. 

CNN has gained significant popularity with deep learning 

approaches during the last few years, thereby revolutionizing 

GPR image evaluations [2] [3] [4].  

This exceptional combination allows CNNs to learn 

hierarchical representations directly from GPR data. CNNs 

can identify subsurface structures and materials more 

precisely by doing this since they can recognize complex 

patterns and characteristics within the images. The usage of 

small labeled data sets and data augmentation used to resolve 

GPR B-scan data variability. The modified model achieves 

better results and higher accuracy in detecting anomalies along 

with subsurface geological formations.  

However, the standard deep learning approaches cannot 

focus on spectral and spatial features in GPR images utilized 

for classification. Attention methods, including spatial and 

channel attention, provide reliable solutions to concentrate on 

the discriminative parts of GPR images while automatically 

updating feature importance. Attention mechanisms are used 

in remote sensing tasks [5] [6] and medical image processing 

for diagnosis of disease and treatment [7] [8] to improve image 

classification. The successful implementation of attention-

based models in natural image processing remains 

insufficient, and minimal models in subsurface object 

investigations and landmine detection.  

2. Literature Survey 
Various researchers have investigated deep learning 

approaches as tools to analyze GPR B-Scan image data. Table 

1 demonstrates the GPR technology for buried object 

classification using deep learning techniques, which includes 

the details of the method employed, the object preferred for 

classification, the dataset utilized, and limitations of the 

technique with accuracy or loss functions achieved.  

Giovanneschi et al. [9] used support vector machines 

(SVMs) for the classification of landmine targets with 

decreased learning times (LT) by using online dictionary 

learning (ODL) techniques. Darknet-53 employed by Zong et 

al. [10] and Liu et al. [11] used You Only Look Once version 

3 (YOLOv3) for underground object classification and 

datasets collected from various sources such as wells, cables, 

steel reinforcement, metal and nonmetal pipes. Using neural 

networks (NN), Smitha et al. [12] differentiated buried mines 

from clutter using GPR images of buried mines, including 

geometric and statistical properties.  

Lei et al. [13] used CNN with long short-term memory 

(LSTM) to identify hyperbolic shapes of buried objects. 

Underground object identification and improvised landmines 

include Faster region convolutional neural networks (Faster 

R-CNN) [14], with deep CNN [15] [16], and deep 

reinforcement learning (DRL) [17] as well as deep neural 

networks (DNN) [18]. The research conducted by Jaufer et al. 

[19] with wavelet-based pipeline detection procedures 

included data augmentation [20] for edge detection 

functionality of the pipeline [21]. Sezgin et al. [22] used CNN 

for two-class Classification of metallic and non-metallic anti-

personnel surrogate mines.  

The research presents specific insights about deep 

learning applications for GPR B-Scan image classification of 

buried objects through various processes to automate 

exploration techniques. GPR technology has received 

significant improvements by integrating artificial intelligence 

technologies into geophysics operations. Notably, a CNN-

LSTM [13], Deep CNN [15] [16], and CNN [20], [22] needed 

high computational resources to train on specific datasets. In 

highly cluttered environments, RCNN [14] or a DNN-based 

[18] technique will fail, resulting in false detections, and due 

to small or non-diverse datasets, most approaches will overfit. 

Deep learning architecture combined with attention is 

primarily used to classify images. Standard CNN takes into 

consideration every section of image input. The model's 

Attention mechanism methods solve this issue through 

selective feature extraction in targeted image areas to improve 

classification accuracy.  

A model improvement technique applies attention layers, 

determining weight distribution according to essential feature 

levels. Attention-based processing systems enable better 

detection of subsurface elements through GPR and other 

imaging technologies. Table 2 shows attention mechanism-

based object classification in deep learning, which includes 

the details of the classification method employed, the object 

preferred for classification, the attention mechanism involved, 

and the dataset utilized with the accuracy achieved.  

Su et al. [23] built a deep learning model with attention 

mechanisms to analyze significant points. Meng et al. [24] 

integrated channel and spatial attention allow extraction of 

more valuable features by focusing on crucial places within 

GPR images. Ullah et al. [25] created a dense attention 

mechanism called DenseNet for COVID-19 identification by 

utilizing chest X-rays. Zheng et al. [26] used RebarNet with 

attention technique to handle erroneous and false detections 

involving tiny object detection.  

Zhang et al. [27] approach significantly reduced the 

influence of unnecessary data by addressing the difficulties of 

RTS images by depth residual shrinkage network (DRSNet) 

with an attention mechanism. Huang et al. [28] classified rock, 

incorporating a triplet attention mechanism for increased 

accuracy using EfficientNet. Furthermore, a network known 

as a double-branch multi-scale dual-attention (DBMSDA) 

was presented by Zhang et al. [29] to extract spatial and also 

spectral features of hyperspectral images (HSI) using multi-

scale spectral residual self-attention (MSeRA). TransUNet 

was used with self-attention for performance enhancement in 

GPR inversion tasks by Junkai et al. [30]. 
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Table 1. GPR Technology for buried object classification using deep learning 

Author Method Classification Dataset Limitations Accuracy 

Giovanneschi et al.,  

[9] 
SVM Landmine Real 

Complex soil conditions are difficult to 

generalize 
LT-93% 

Zong et al.,  

[10] 
Darknet-53 

Underground 

object 
Real 

Limited capability to identify different  

types of objects 
89.2% 

Liu et al.  

[11] 
YOLOv3 

Underground  

pipeline 
Real 

Struggles with small and irregularly  

shaped objects 
95.6 % 

Smitha et al., [12] NN Landmine Surrogate Overfitting due to limited training data 95% 

Lei et al.,  

[13] 
CNN-LSTM 

Buried 

object 
Simulated 

High computational cost in sequential 

processing 
99.5% 

Gong et al.,  

[14] 

Faster 

RCNN 

Underground 

object 
Simulated 

Poor depth estimation and localization 

accuracy 
93.9% 

Kim et al.  

[15] 
Deep CNN 

Underground 

object 
Real 

Struggle to identify objects in cluttered 

environments 
98% 

Wang et al., [16] Deep CNN Buried target Simulated Struggle soil and subsurface variations 93.23% 

Omwenga et al.,  

[17] 
DRL 

Subsurface 

Object 
Simulated 

Lacks a standardized dataset for proper 

evaluation 
ROI -3.56 

Mahmood et al.  

[18] 
DNN Landmine Simulated 

Produce a high false positive rate in 

 specific scenarios 
89.46% 

Jaufer et al., [19] SVR Buried pipe Simulated Limited evaluation of real-world conditions MARE-0.39% 

Bai et al.  

[20] 
CNN 

Underground  

pipeline 
Simulated Depth estimation error 97.35% 

Mizutani et al.  

[21] 
Edge 

Subsurface  

pipe 
Real 

Accuracy depends on high-quality 

preprocessing 
AE- 0.1175 

Sezgin et al.,   

[22] 
CNN 

Anti-personnel  

mine 
Surrogate Struggle to identify different buried object 98% 

Table 2. Object classification using deep learning with an attention mechanism 

Author Method Classification Attention Mechanism Dataset Accuracy 

Su et al.,  [23] Darknet53 Buried utilities Channel attention Real Data 97.01% 

Meng et al., 

[24] 
Few‑shot Image 

Channel and spatial 

attention 
miniImageNet and omniglot 68.28% 

Ullah et al., 

[25] 
DAM-Net COVID‑19 Densely attention COVIDx 97.22% 

Zheng et al., 

[26] 
RebarNet Rebar Embedded attention Open-source 97.9% 

Zhang et al., 

[27] 
DRSNet Rock Channel attention Open-source 93.69% 

Huang et al.,  

[28] 
EfficientNet Rock Triplet attention ImageNet 93.2% 

Zhang et al., 

[29] 
DBMSDA 

Hyperspectral 

image 

Spectral residual self-

attention 

Geological Lithology 

hyperspectral 
74.13% 

Junkai et al., 

[30] 
TransUNet 

Subsurface 

defects 
Regressive self-attention Simulated data - 

      

Attention mechanisms employed in [24], [26], [28], and 

[30] lacked comparisons with traditional methods, which have 

to strengthen with feature extraction methods, and [25], [27], 

and [29] need to discuss the performance achieved and 

increased computational complexity extensively. Although 

[23] and [30]  applied attention to GPR and hyperspectral 

imaging, they failed to show that attention mechanisms 

outperform conventional feature selection. Attention 

mechanisms can enhance feature extraction, as the study 

highlights and proved the result in different image 

classifications with deep learning approaches. However, its 

benefits in specific GPR image classification and object 

detection require further clarification. The research 

demonstrates that enhanced GPR image analysis needs 

collaboration between various scientific fields to achieve 

upcoming advancements.  
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3. Novel GPR Dataset 
Ground penetrating radar signals of buried objects are 

strongly affected by the dielectric properties of soil, 

particularly their relative permittivity and conductivity. 

According to [11], soil composition and moisture content 

affect signal attenuation, which makes deep-learning models 

less capable of identifying buried objects in wet and clay soil.  

The variations in soil type also caused inconsistencies in 

the data and affected classification accuracy [15]. Object 

localization and segmentation are affected by 

misclassifications caused by uneven surfaces and rough 

terrain [21]. Vehicle-borne The GPR system becomes 

unreliable because nearby sources and interference disrupt its 

operation [10]. Models of cognitive GPR using reinforcement 

learning attempt self-adaptation across different environments 

yet struggle with unknown terrain conditions, according to 

[17]. The particular dataset training conducted in [22] results 

in models that demonstrate a limited ability to work across 

different environments. 

Figure 1 displays a pictorial illustration of the simulation 

process using the gprMax open-source software. As 

mentioned in Table 3, the simulation of the subsurface objects 

involved three targets: a metal pipe, a metal box, and a plastic 

box, which has homogeneous medium, added roughness, 

water, and grass to support a heterogeneous soil medium with 

different relative permittivity ranging from 2.5 to 10, varying 

casing material, 17 distinct soil types for metal pipe and box, 

13 distinct soil types for a plastic box with four different sizes 

and seven different depths at the subsurface to overcome the 

problems in existing datasets.  

The input file is created and executed in the Anaconda 

prompt under the gprMax simulation tool to get a GPR B-scan 

image by 30 iterations of A-Scan traces. The simulation is 

visualized using Paraview software based on the vti file 

created in the Anaconda prompt.  

 
Fig. 1 Simulated data generation through gprMax  

Table 3. Simulation of metal pipe and box and plastic box 

Simulation Parameter Simulation Value 

Targets 
Metal Pipe, Metal Box,  

Plastic Box 

Box Dimensions 40 × 10 × 20 cm³ 

Air Gap 5 cm 

Depth of Sand 15 cm 

Antenna Movement 1-cm steps 

Scanning Range 7 to 38 cm 

Transmitted Pulse Gaussian Signal 

Center Frequency 2 GHz 

Time Window 5 ns 

Object Sizes 4 sizes: 1 cm to 4 cm diameter 

Burial Depths 
7 depths: 1 cm to 7 cm  

(1-cm intervals) 

Soil Types 

17 types of Metal Pipe and 

Metal Box 

13 types of Plastic Box 

Relative Permeability µr = 1 

Relative permittivity 

(ϵr) 

Ranges from 2.5 to 10 with 0.5 

increments 

 

   
Fig. 2 B-Scan image of a single metal pipe, metal box, and plastic box 

The dataset has 1200 instances, including three materials 

under different conditions: homogeneous, rough surface, 

water, and grass, each of 100 datasets. Figure 2 displays the 

sample B-Scan image of a single metal pipe, metal box, and 

plastic box. The parameters of object size, burial depth, soil 

type, and relative permittivity of the soil and the objects vary 

to get a more simulated dataset. 

4. Methodology 
CNN-based and Deep learning with an attention 

mechanism are the methods used for GPR B-scan image 

classification. Figure 3 specifies the CNN-based classification 

process for the GPR dataset, and Figure 4 shows an attention 

mechanism-based classification process.  

The methodology explains the procedure from dataset 

acquisition, data augmentation, importing libraries and 

frameworks, and preprocessing techniques, followed by the 

building of the CNN model and the attention model. 
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4.1. CNN-Based Classification 

 
Fig. 3 Block diagram for CNN-based classification of GPR images 

1. GPR Dataset: Initially, GPR images are acquired using 

gprMax [27]. After obtaining the dataset, the process 

proceeded with further techniques to classify the data. 

2. Data Augmentation: The model only sees the exact 

orientation of the GPR image of a buried object during 

training; it may fail to recognize the object when it 

appears rotated, shifted, or zoomed in a real-world 

scenario. Data augmentation exposed the original input 

image to many variations to improve its robustness and 

accuracy. Augmentation includes different techniques 

applied to the dataset, such as image rotated 20 degrees 

using rotation_range = 20, shifting the image horizontally 

using width_shift_range = 0.2 and using 

height_shift_range = 0.2, and horizontal flipping, and 

zooming in on the image by up to 20% using 

zoom_range=0.2. It adds data variability and enhances 

the dataset to improve generalization during training. It 

also helps the neural network discover significant patterns 

in various orientations and situations by entirely 

capturing the underlying data. 

3. Importing Libraries and Frameworks: NumPy, 

matplotlib, OS, cv2, sklearn, TensorFlow, and Keras are 

the Python libraries to import different functionalities in 

the Google Colab cloud platform and Python.  

4. Preprocessing: It increases data consistency and the 

ability to extract significant features, prevent overfitting, 

and separate training from testing. The input image is 

modified using resize () to a fixed size of 224 x 224 pixels 

for the deep learning model. When normalizing images, 

the pixel values are divided by 255 to modify from 0 to 

255-pixel values into 0 to 1 numerical range values. It 

enables the CNN model to learn more effectively and the 

training process to become more stable. The preprocessed 

images give the label list as the class name, which 

provides input for multi-class classification. 

5. Build the CNN Model: Before building the classification 

model, split the dataset for training and testing with a ratio 

of 80,20 percent. CNN is used to extract features of GPR 

images through convolutional layers with filter and 

activation functions, and finally, it classifies the input 

images into different categories using output layers. The 

training procedure includes loss function to direct 

learning, batch size of 32, over 100 epochs, applying to 

Adam optimizer with ReLU activation function to modify 

parameters for the best outcomes. 

4.1.1. Pseudo code for GPR B-Scan Image Classification 

using Deep Learning 

1. pre_data = preprocess(data)   

2. labels = label_encoder.fit_transform(labels)  

3. X_train, X_test, y_train, y_test = 

train_test_split(pre_data, labels) 

4. model = keras.Sequential( )   

5. model.compile(optimizer='RMSprop' or 'Adam')  

6. history = model.fit(datagen.flow(X_train, y_train))  

7. test_loss, test_accuracy =evaluate_model(model, X_test, 

y_test) 

8. plot(history.history['accuracy'], label=' Accuracy') 

9. plot(history.history['val_accuracy'], label='Val 

Accuracy') 

4.2. Attention Mechanism-Based Classification 

 
Fig. 4 Block diagram for attention mechanism-based classification of GPR images 
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1. GPR Dataset, Data Augmentation, and Importing 

Libraries and Frameworks: The same procedure has been 

used, like CNN-based Classification, to retrieve the GPR 

dataset, apply data augmentation, and import libraries and 

frameworks to perform various functionalities like CNN-

based classification. 

2. Define Attention Model: The attention model for neural 

networks initialized with attention types such as self-

attention or multi-head attention to develop the attention 

layer. The system builds correlations between feature 

dimensions and creates trainable weight matrices based 

on the query, the key, and the value in the input. The 

attention scores are calculated to represent the input by 

doing the dot product between the query and the value, 

which represents the input. The computed scores of the 

GPR input image are normalized using the softmax 

function, making them probability distributions to 

describe the importance of each feature. Finally, the 

output is generated by performing a weighted sum of the 

values using the attention scores, highlighting the most 

relevant information. 

3. Load Base Model: Load MobileNetV2 from ImageNet, 

eliminating classification layers as a feature extractor. 

4. Build Attention Model: MobileNetV2 incorporates a self-

attention mechanism to improve feature extraction from 

GPR images of buried objects by retrieving relevant data 

related to the reflected pattern of the hyperbola signature. 

The pre-trained model is frozen to hold the feature by 

applying average pooling and reshaping, then passed 

through a self-attention layer to enhance the informative 

regions of the GPR images. The attention-weighted 

features are then flattened using a dense layer with 

rectified linear unit (ReLU) activation for nonlinearity, 

dropout for regularization that represents further feature 

refinement, and finally, a dense layer classified into three 

object categories using a softmax activation function. 

4.2.1. Pseudo code for GPR B-Scan Image Classification 

using Attention Mechanism 

1. super (AttentionLayer, self). __init__(**kwargs) 

2. super (AttentionLayer, self). build(input_shape)  

3. base_model = MobileNetV2(weights='imagenet') 

4. attention_model = build_attention_model(base_model)  

5. attention_model.compile(optimizer='adam')   

6. test_datagen = ImageDataGenerator(rescale=1. /255) 

7. train_generator = train_datagen.flow_from_directory() 

8. history = attention_model.fit( train_generator) 

9. loss, accuracy = 

attention_model.evaluate(test_generator) 

10. plot(history.history['accuracy'], label='Accuracy') 

11. plot(history.history['val_accuracy'],label='Val_Accuracy

') 

5. Results 
The results varied based on the parameters utilized in the 

deep learning model, including training the model based on 

the number of epochs, optimization processes, and activation 

functions. The CNN model accuracy is calculated using 

RMSProp and Adam optimizer with activation functions such 

as Sigmoid, Tanh, and ReLU with 5, 10, and 100 numbers of 

epochs to get a good accuracy level.  

As shown in Table 4, CNN-based classification achieved 

good accuracy when the Adam optimizer with ReLU action 

function with 100 epochs and batch size of 32 was used.  

Figure 5 displays the confusion matrix of CNN-based 

classification of GPR images ideally classified as 73 

metal_box, 85 metal_pipe, and 69 plastic_box out of 240 (80 

test cases each). Figure 6 shows the accuracy of training and 

validation and the loss of CNN-based classification. 

Table 4. CNN-based classification accuracy based on different 

optimizers, activation, and epoch 

Optimization 

Process 

Activation 

Function 

Number 

of Epoch 
Accuracy 

RMSProp Sigmoid 5 33.33% 

RMSProp Sigmoid 10 36.25% 

RMSProp Tanh 5 33.33% 

RMSProp Tanh 10 30.42% 

RMSProp ReLU 5 86.25% 

RMSProp ReLU 10 80.83% 

Adam Sigmoid 5 30.42% 

Adam Sigmoid 10 30.42% 

Adam Tanh 5 30.42% 

Adam Tanh 10 30.42% 

Adam ReLU 5 74.17% 

Adam ReLU 10 87.92% 

Adam ReLU 100 94.58% 

 

 
Fig. 5 Confusion matrix for CNN-based classification of GPR images 
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Fig. 6 Accuracy for CNN-based classification of GPR images 

 
Fig. 7 Confusion matrix for Attention Mechanism with MobileNetV2 

Figure 7 displays the confusion matrix of attention-based 

classification of GPR images ideally classified as 78 

metal_box, 79 metal_pipe, and 79 plastic_box out of 240 (80 

test cases each). Figure 8 illustrates the training and validation 

accuracy and loss of attention-based classification. Table 5 

displays the classification accuracy of metal_box, metal_pipe, 

and plastic_box using CNN, as well as the attention 

mechanism. 

Table 5. Classification accuracy CNN, MobileV2 Net with Attention 

Mechanism based on Adam optimizers, ReLU activation 

Model 
Performance 

Metric 

Metal  

Box 

Metal 

Pipe 

Plastic 

Box 

CNN 

Precision 0.99 0.89 0.99 

Recall 0.91 0.99 0.95 

F1-Score 0.95 0.93 0.96 

Accuracy 94.58% 94.58% 94.58% 

MobileNetV2 

with  

Attention 

Mechanism 

Precision 1.00 0.96 0.99 

Recall 0.98 0.99 0.99 

F1-Score 0.99 0.98 0.99 

Accuracy 99.23% 99.23% 99.23% 

 

Fig. 8 Accuracy of deep learning with an attention mechanism  
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6. Discussions 
Ground penetrating radar images of landmine classified 

through a deep learning model achieving 94.58% accuracy 

using the ReLU activation to ensure more consistent 

convergence and avoid vanishing gradient issues of training; 

Adam optimizer enhances training speed and reduces 

overfitting and batch size of 32 over 100 epochs enhances 

computational efficiency and accelerates training; however, it 

may sometimes compromise model generalization. However, 

it achieved the highest accuracy depending on GPR B-scan 

dataset characteristics, model architecture, and the nature of 

the image classification problem. The outstanding accuracy 

accomplished is highly dependent on the characteristics of the 

GPR image dataset, the CNN model architecture, and the 

complexity of the classification task. The performance of deep 

learning models heavily depends on using suitable 

hyperparameters to obtain maximum results when 

implementing different factors. Figure 9 shows the 

comparison of the existing deep learning model with the 

proposed model for buried object classification. Also, it is 

classified as 85 metal_pipe, but the total test cases are given 

as 80 for metal_pipe. The MobileNetV2 architecture functions 

as a mobile and computer vision application that maintains 

lightweight requirements. The deep learning incorporated 

attention mechanism with MobileNetV2 as a base model 

utilizing Adam optimizer with ReLU activation achieved 

99.23% accuracy, representing an outstanding result and 

indicating the model's effectiveness. It enhances the ability of 

the model to highlight necessary complex features within the 

GPR images and improves overall performance. The attention 

mechanism benefits from the self-attention mechanism, which 

enables it to conduct precise feature extraction. Figure 10 

shows the comparison of the existing attention mechanism 

model with the proposed attention mechanism with 

MobileNetV2 as the base model for buried object 

classification. However, to prove the model’s practical 

application in real situations, more research must include 

multiple datasets testing along with techniques to handle 

possible overfitting problems. Relating the attention 

mechanism with interpretability and feature significance 

enables researchers to acquire better insights about how the 

model arrives at its decisions. 

 
Fig. 9 Comparison of deep learning model for buried object classification 

 

Fig. 10 Comparison of deep learning with an attention mechanism 

Darknet-53

89.20%
YOLOV3

95.60%

NN

95%
CNN-LSTM

99.50%
Faster RCNN

93.90%

Deep CNN

98%
Deep CNN

93.23%

DNN

89.46%

CNN

97.35%

CNN

98%

CNN

94.58%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Zong et al .,

[10]

Liu et al .,

[11]

Smitha et al

., [12]

Lei et al .,

[13]

Gong et al .,

[14]

Kim et al .,

[15]

Wang et al .,

[16]

Mahmood et

al ., [18]

Bai et al .,

[20]

Sezgin et al

., [22]

Proposed

Method

A
cc

u
ra

cy
 (

%
)

Darknet53

97.01%

Few-shot

68.28%
DAM-Net

97%

RebarNet

97.90%
DRSNet

93.69%

EfficientNet

93%
EfficientNet

74.13%

DBMSDA

99.23%

0.00%

20.00%

40.00%

60.00%

80.00%

100.00%

120.00%

Su et al ., [23] Meng et al ., [24] Ullah et al ., [25] Zheng et al .,

[26]

Zhang et al .,

[27]

Huang et al .,

[28]

Zhang et al .,

[29]

Proposed

Method (Adam,

ReLU)

A
cc

u
ra

cy
 (

%
)



S. Ravi et al. / IJETT, 73(4), 24-33, 2025 

 

 

32 

7. Conclusion 
The ground-penetrating radar images of buried objects 

classification model was developed using CNN and an 

attention mechanism. The CNN model achieved 94.58% 

accuracy in its multi-class classification. It shows the 

effectiveness of CNN in classifying GPR images of buried 

objects in varying subsurface conditions. Additionally, the 

deep learning employed MobileNetV2 with an attention 

mechanism achieved 99.23% accuracy.  

The outstanding accuracy confirms that the model 

achieves superior performance when self-attention operates 

with MobileNetV2’s efficient feature extraction mechanism to 

analyze intricate image features. The attention model can 

accurately classify buried objects like metal tiffin boxes, metal 

pipes, and plastic tiffin boxes from GPR B-scan images of 

simulated landmines, which enhances the safety of demining 

operations. The model is also useful in underground utility 

mapping to identify the presence of metallic or non-metallic-

made cables and pipes that aid in infrastructure development, 

as well as applied in archaeological site assessment and 

geological applications to automate the detection, minimize 

human involvement, and speed up decision-making processes 

during real-world applications. Vision Transformers (ViTs) 

will improve the detection of long-range dependencies of 

landmines in future GPR B-Scan images. This will be 

achieved using multiple real-world and diverse terrain datasets 

to obtain promising results. Additionally, the research will 

enhance robustness by optimizing multi-head attention for 

different feature extractions. 
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